空气阴极微生物燃料电池阴极结构及催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(Microbial Fuel Cell,MFC)能够利用产电菌将废水中有机物的化学能直接转化为电能,是21世纪环境工程领域中新兴的水处理研究方向之一。在众多类型的MFC中,空气阴极微生物燃料电池(Air-cathode MicrobialFuel Cell,ACMFC)因其阴极使用空气中的氧气作为氧化剂而具有较高理论电压。然而,ACMFC阴极的氧还原反应需要在铂/碳(Pt/C)的催化下才能顺利进行,昂贵的Pt/C大大增加了ACMFC的成本,这使得ACMFC的研究目前仍停留在小规模的实验室水平上。作为Pt/C的替代,低成本阴极催化剂的研制正在成为ACMFC领域的研究热点。目前催化剂成本的降低往往是以阴极性能下降为代价的。如何在降低ACMFC成本的同时不降低其产电能力是ACMFC研究领域亟待解决的问题。
     本文围绕“降低ACMFC成本,提高其阴极性能”这一主题,对ACMFC的阴极材料和结构进行了研究,具体内容包括:
     通过测试单室六面体型ACMFC的功率密度考察了Pd/C和Ru/C的氧还原性能,并与Pt/C进行了对比。结果表明,Pd/C和Ru/C作催化剂时,ACMFC的COD去除率和库伦效率均与Pt/C催化剂相当,ACMFC的最大功率密度分别是Pt/C作催化剂时的90.3%和85.5%,但ACMFC单位成本的产能分别是Pt/C的1.8倍和6倍。
     为了进一步降低ACMFC的成本,制备了成本低、氧还原催化活性较强、稳定性较好的掺氮碳粉,并将其用作ACMFC阴极催化剂。为了增强掺氮效果,还尝试了在硝酸处理前增加盐酸-热混合预处理的掺氮方法,并对比分析了有无预处理的掺氮碳粉中的含氮量和含氮官能团类型。结果表明,掺氮后,碳粉的催化活性显著提高,ACMFC的最大功率密度提高了1.1倍。预处理有助于增强掺氮效果,使得ACMFC最大功率密度提高了12.4%。发现影响催化活性的关键官能团有:吡啶型氮、吡咯型氮和氮氧化物。尝试通过优化碳粉粒径和掺氮碳粉用量来提高阴极性能,发现碳粉粒径宜为1600nm左右,增大用量能够明显增强ACMFC的产电能力。结果表明,通过混合预处理和硝酸处理后的碳粉可以替代甚至优于Pt/C,采用掺氮碳粉作阴极催化剂后,其ACMFC的最大功率密度为926.0mW·m~(-2),与Pt/C(980.6mW·m~(-2))相当,但成本可观地降低了78%。此外,掺氮碳粉阴极的过电位仅为Pt/C阴极的一半,其极化损失小。更为重要的是,通过监测30个周期内ACMFC的最大功率密度,发现掺氮碳粉阴极的稳定性明显优于Pt/C阴极,掺氮碳粉阴极ACMFC的最大功率密度几乎不变,而Pt/C阴极ACMFC的最大功率密度下降达13%,且有进一步下降的趋势。
     通过优化阴极结构来提高ACMFC的产电能力,优化主要针对:催化层的梯度、制备扩散层时的降温方式、碳基层碳粉的灰分和粒径的选择等。结果表明,在不改变催化剂总用量和粘结剂总用量的前提下,将原来的单层催化层改为催化剂和粘结剂用量梯度减少(从阴极液到空气方向)的多层催化层后,ACMFC的功率密度有所提高。在扩散层的制备过程中,快速降温比慢速降温更容易形成有利于氧气扩散的孔隙,使氧气顺利到达催化层参与氧还原反应。碳基层的碳粉粒径存在一个最优值,约为1300nm,此时氧气传质较好。碳粉的灰分越小所制备的碳基层性能越好。
     在合成低成本催化剂和阴极结构优化的基础上,考察了硫化物对掺氮碳粉催化活性的影响,并与Pt/C催化剂进行了对比。当电解液中含有硫化物时,Pt/C的氧还原催化活性明显降低。ACMFC在Na2S浓度为0.2g·L时的最大功率密度比中性电解液时减少了约21.3%。而掺氮碳粉的催化活性基本不受硫化物的影响,相同Na2S浓度下其ACMFC的最大功率密度比Pt/C高11.4%。当ACMFC阴极受硫化物影响时,使用掺氮碳粉代替Pt/C作为阴极催化剂不仅能大幅降低成本,且能获得更大的电能输出。
Taking advantage of bacterium consuming the organics in the wastewater,microbial fuel cell (MFC) directly converts the bioenergy to electricity and it isbecoming a new research direction in the field of environmenetal engineering.Among many different types of MFC, air-cathode microbial fuel cell (ACMFC)provides relatively high theoretical cell voltage because it uses the oxygen in the airas the cathodic catalyst for oxygen reduction reaction (ORR). However, theexpensive platinum (Pt), which serves as the indispensable ORR catalyst incathodes, dramatically increases the cost of ACMFCs. The relative research onACMFCs is still limited to the laboratory scale. Many low-cost substitutes for Pthave been developed and the cost of ACMFCs is indeed reduced, however, at thecost of degrading the electricity generation capacity. Reducing the cost of ACMFCwhile keeping its high electricity generation capacity is becoming an urgentproblem to be solved in the field of research on ACMFC.
     Focusing the goal of reducing cost and improving cathodic performance ofACMFCs, cathodic materials and structure was studied, with the detailed contentsas below:
     Catalytic activities of Pd/C and Ru/C for ORR were investigated by testingpower densities of a single-chamber hexahedral ACMFC and comparison with Pt/Cwas made as well. Results showed that Pd/C and Ru/C were both equivalent to Pt/Cin terms of columbic efficiencies and COD removal rates of ACMFCs and theirmaximum power densities (MPDs) were respectively90.3%and85.5%of that ofPt/C. The amount of electricity generation per cost for Pd/C and Ru/C wererespectively1.8times and6times as that for Pt/C.
     Low-cost nitrogen-doped carbon powders (NDCP) with high catalytic activityfor ORR and good stability were prepared and used as the cathodic catalyst ofACMFCs. In order to further improve the effect of the nitrogen-doped treatment, ahybrid pretreatment was introduced consisting of hydrochloric acid immersion andheat treatment. The nitrogen content and the types of key nitrogen functional groupwere compared in NDCPs with and without the hybrid pretreatment. Results showedthat the catalytic activity of NDCP (without the pretreatment) was1.1times as that of untreated carbon powders. The pretreatment can obviously enhance the N-dopedeffect, with the corresponding maximum power density of ACMFC increased by12.4%. Three key N-functional groups were found to be pyridinic-type nitrogen,pyrrolic-like nitrogen and chemisorbed nitrogen oxide. The grain sizes of carbonpowders and the dosage of catalysts were optimized in order to improve thecathodic performance. Reuslts showed that the grain size of1600nm was preferredand increasing the dose of NDCP could considerably improve the MPD of ACMFC.The final conclusion achieved was that the prepared NDCP (with the pretreatment)was competent enough to replace the expensive Pt/C. The MPD of the ACMFCbased on NDCP was almost equal to that of ACMFC based on Pt/C, i.e.926.0mW·m~(-2)for NDCP vs.980.6mW·m~(-2)for Pt/C, while the cost of ACMFCs wasreduced by78%. Moreover, the NDCP cathode processed much smaller polarizationloss, which was only half of that of Pt/C cathode. More importantly, NDCP showedmuch higher long-term stability than Pt/C. The MPD of ACMFC based on NDCPnearly remained unchanged after running30periods. By contrast, the MPD ofACMFC based on Pt/C decreased by as much as13%and tended to decreasefurther.
     Optimizations of cathodic structure was conducted in terms of the gradient ofcatalytic layer, the cooling rate when preparing diffusion layer, ash content andgrain sizes of carbon powders of the carbon base layer, and so on. Results showedthat the MPD of ACMFCs was increased by keeping the total dose of catalysts andbinder both constant while changing the single catalyst laer to the gradient multiplecatalytic layers in which the amount of catalysts gradually decreased along thedirection from the cathodic electrolyte to the outside air. The cathodic performancealso benefited from the rapid cooling when preparing the diffusion layer, becausethe developed pore passage was easier for oxygen to pass and then reach thecatalytic layer completing ORR reaction. There existed an optimum grain size,around1000mesh, for carbon powders in the carbon base layer. The lower the ashcontent was, the better the performance of ACMFCs.
     Based on the previous prepared low-cost NDCP catalyst and the optimizedcathodic structure, the effect of sulfide on the catalytic activity of NDCP wasstudied and compared with Pt/C. Results showed that existence of sulfide greatlydecreased the activity of Pt/C. When concentration of Na2S solution was0.2g/L, theMPD of ACMFC with Pt/C cathode was reduced by21.3%as compared to the neutral electrolyte. By contrast, NDCP cathodes nearly disregard the existence ofsulfide and the corresponding MPD of ACMFC larger than that of Pt/C by11.4%under the same concentration of Na2S. With such NDCP cathodes, not only the costof ACMFCs can be substantially reduced, but larger electricity output can be alsoachieved when ACMFCs operated in the presence of sulfide.
引文
1中华人民共和国环境保护部2010年环境统计年报-废水.http://zls.mep.gov.cn/hjtj/nb/2010tjnb/201201/t20120118_222727.htm.
    2王凯军,贾立敏,环保学.城市污水生物处理新技术开发与应用[M].化学工业出版社,2001.
    3王凯军.厌氧(水解)—好氧处理工艺的理论与实践[J].中国环境科学,1998,18(4):337-340.
    4鲁玉龙.厌氧—好氧工艺处理印染废水技术的现状及发展[J].污染防治技术,1998,11(1):12-14.
    5邓荣森.氧化沟污水处理理论与技术[M].化学工业出版社,2006.
    6王凯军.氧化沟的设计方法讨论[J].中国给水排水,1999,15(1):26-29.
    7刘雨,环境保护,赵庆良,等.生物膜法污水处理技术[M].中国建筑工业出版社,2000.
    8王圣武,马兆昆.生物膜污水处理技术和生物膜载体[J].江苏化工,2004,32(004):36-38.
    9郝晓地,曹秀芹,曹亚莉.污水生物处理技术重在可持续发展[J].建设科技,2006(021):28-29.
    10任南琪,王宝贞.有机废水处理生物制氢技术[J].中国环境科学,1994,14(6):411-415.
    11李建政,任南琪,林明,等.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2):252-256.
    12李昌珠,蒋丽娟,程树棋.生物柴油:绿色能源[M].化学工业出版社,2005.
    13单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46.
    14Allen R M, Bennetto H P. Microbial fuel-cells[J]. Applied biochemistry andbiotechnology,1993,39(1):27-40.
    15Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation ofglucose in mediatorless microbial fuel cells[J]. Nature biotechnology,2003,21(10):1229-1232.
    16Logan B E. Peer reviewed: extracting hydrogen and electricity from renewableresources[J]. Environmental science&technology,2004,38(9):160-167.
    17Min B, Kim J R, Oh S E, et al. Electricity generation from swine wastewaterusing microbial fuel cells[J]. Water Research,2005,39(20):4961-4968.
    18Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology toboost performance of microbial fuel cells: a critical review[J]. Energy Environ.Sci.,2008,1(4):417-429.
    19Logan B, Cheng S, Watson V, et al. Graphite fiber brush anodes for increasedpower production in air-cathode microbial fuel cells[J]. Environmental science&technology,2007,41(9):3341-3346.
    20Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodologyand technology[J]. Environmental Science&Technology,2006,40(17):5181-5192.
    21Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable ofconverting glucose to electricity at high rate and efficiency[J]. Biotechnologyletters,2003,25(18):1531-1535.
    22You S, Zhao Q, Zhang J, et al. A microbial fuel cell using permanganate as thecathodic electron acceptor[J]. Journal of power sources,2006,162(2):1409-1415.
    23Richter H, Lanthier M, Nevin K P, et al. Lack of electricity production byPelobacter carbinolicus indicates that the capacity for Fe (III) oxide reductiondoes not necessarily confer electron transfer ability to fuel cell anodes[J].Applied and environmental microbiology,2007,73(16):5347-5353.
    24Logan B E, Regan J M. Microbial fuel cells-challenges and applications[J].Environmental science&technology,2006,40(17):5172-5180.
    25Llompart S, Yu L T, Mas J C, et al. Oxygen‐Regeneration of DischargedManganese Dioxide Electrode[J]. Journal of the Electrochemical Society,1990,137:371.
    26Brenet J P. Electrochemical behaviour of metallic oxides[J]. Journal of PowerSources,1979,4(3):183-190.
    27Hyodo T, Hayashi M, Miura N, et al. Catalytic Activities of Rare‐EarthManganites for Cathodic Reduction of Oxygen in Alkaline Solution[J]. Journalof the Electrochemical Society,1996,143:L266-L267.
    28Hyodo T, Hayashi M, Mitsutake S, et al. Praseodymium–calcium manganites(Pr1? xCaxMnO3) as electrode catalyst for oxygen reduction in alkalinesolution[J]. Journal of applied electrochemistry,1997,27(6):745-746.
    29King W J, Tseung A. The reduction of oxygen on nickel-cobalt oxides--I:: Theinfluence of composition and preparation method on the activity ofnickel-cobalt oxides[J]. Electrochimica Acta,1974,19(8):485-491.
    30Yang C C. Preparation and characterization of electrochemical properties of aircathode electrode[J]. International journal of hydrogen energy,2004,29(2):135-143.
    31Yang C C, Hsu S T, Chien W C, et al. Electrochemical properties of airelectrodes based on MnO2catalysts supported on binary carbons[J].International journal of hydrogen energy,2006,31(14):2076-2087.
    32Ananth M V, Manimaran K, Arul Raj I, et al. Influence of air electrodeelectrocatalysts on performance of air-MH cells[J]. International Journal ofHydrogen Energy,2007,32(17):4267-4271.
    33Gojkovi? S L, Gupta S, Savinell R F. Heat-treated iron (III) tetramethoxyphenylporphyrin chloride supported on high-area carbon as an electrocatalyst foroxygen reduction: Part II. Kinetics of oxygen reduction[J]. Journal ofElectroanalytical Chemistry,1999,462(1):63-72.
    34Zhu A L, Wang H, Qu W, et al. Low temperature pyrolyzed cobalt tetramethoxyphenylporphyrin catalyst and its applications as an improved catalyst for metalair batteries[J]. Journal of Power Sources,2010,195(17):5587-5595.
    35Lefevre M, Dodelet J P, Bertrand P. O2reduction in PEM fuel cells: Activityand active site structural information for catalysts obtained by the pyrolysis athigh temperature of Fe precursors[J]. The Journal of Physical Chemistry B,2000,104(47):11238-11247.
    36Chu D, Jiang R. Novel electrocatalysts for direct methanol fuel cells[J]. SolidState Ionics,2002,148(3):591-599.
    37Iijima S. Helical microtubules of graphitic carbon[J]. nature,1991,354(6348):56-58.
    38Li W, Liang C, Qiu J, et al. Carbon nanotubes as support for cathode catalyst ofa direct methanol fuel cell[J]. Carbon,2002,40(5):787-790.
    39Britto P J, Santhanam K S V, Rubio A, et al. Improved charge transfer at carbonnanotube electrodes[J]. Advanced Materials,1999,11(2):154-157.
    40Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175.
    41Wang C, Waje M, Wang X, et al. Proton exchange membrane fuel cells withcarbon nanotube based electrodes[J]. Nano letters,2004,4(2):345-348.
    42Shao Y, Liu J, Wang Y, et al. Novel catalyst support materials for PEM fuelcells: current status and future prospects[J]. J. Mater. Chem.,2008,19(1):46-59.
    43Shao Y, Sui J, Yin G, et al. Nitrogen-doped carbon nanostructures and theircomposites as catalytic materials for proton exchange membrane fuel cell[J].Applied Catalysis B: Environmental,2008,79(1):89-99.
    44Chen Z, Higgins D, Tao H, et al. Highly active nitrogen-doped carbonnanotubes for oxygen reduction reaction in fuel cell applications[J]. The Journalof Physical Chemistry C,2009,113(49):21008-21013.
    45Chen Z, Higgins D, Chen Z. Nitrogen doped carbon nanotubes and their impacton the oxygen reduction reaction in fuel cells[J]. Carbon,2010,48(11):3057-3065.
    46Matter P H, Wang E, Arias M, et al. Oxygen reduction reaction activity andsurface properties of nanostructured nitrogen-containing carbon[J]. Journal ofMolecular Catalysis A: Chemical,2007,264(1):73-81.
    47Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with highelectrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764.
    48Nagaiah T C, Kundu S, Bron M, et al. Nitrogen-doped carbon nanotubes as acathode catalyst for the oxygen reduction reaction in alkaline medium[J].Electrochemistry Communications,2010,12(3):338-341.
    49Erable B, Duteanu N, Kumar S M, et al. Nitric acid activation of graphitegranules to increase the performance of the non-catalyzed oxygen reductionreaction (ORR) for MFC applications[J]. Electrochemistry Communications,2009,11(7):1547-1549.
    50Iwazaki T, Obinata R, Sugimoto W, et al. High oxygen-reduction activity ofsilk-derived activated carbon[J]. Electrochemistry Communications,2009,11(2):376-378.
    51Fernández J L, Walsh D A, Bard A J. Thermodynamic guidelines for the designof bimetallic catalysts for oxygen electroreduction and rapid screening byscanning electrochemical microscopy. M-Co (M: Pd, Ag, Au)[J]. Journal of theAmerican Chemical Society,2005,127(1):357-365.
    52Fernández J L, Raghuveer V, Manthiram A, et al. Pd-Ti and Pd-Co-Auelectrocatalysts as a replacement for platinum for oxygen reduction in protonexchange membrane fuel cells[J]. Journal of the American Chemical Society,2005,127(38):13100-13101.
    53Raghuveer V, Manthiram A, Bard A J. Pd-Co-Mo electrocatalyst for the oxygenreduction reaction in proton exchange membrane fuel cells[J]. The Journal ofPhysical Chemistry B,2005,109(48):22909-22912.
    54Li X, Huang Q, Zou Z, et al. Low temperature preparation of carbon-supportedPdCo alloy electrocatalysts for methanol-tolerant oxygen reduction reaction[J].Electrochimica Acta,2008,53(22):6662-6667.
    55Shao M H, Sasaki K, Adzic R R. Pd-Fe nanoparticles as electrocatalysts foroxygen reduction[J]. Journal of the American Chemical Society,2006,128(11):3526-3527.
    56Sarkar A, Murugan A V, Manthiram A. Low cost Pd–W nanoalloyelectrocatalysts for oxygen reduction reaction in fuel cells[J]. J. Mater. Chem.,2008,19(1):159-165.
    57Zhang Z, Wang X, Cui Z, et al. Pd nanoparticles supported on WO3/C hybridmaterial as catalyst for oxygen reduction reaction[J]. Journal of Power Sources,2008,185(2):941-945.
    58Cheng L, Zhang Z, Niu W, et al. Carbon-supported Pd nanocatalyst modified bynon-metal phosphorus for the oxygen reduction reaction[J]. Journal of PowerSources,2008,182(1):91-94.
    59Calegaro M L, Lima F, Ticianelli E A. Oxygen reduction reaction on nanosizedmanganese oxide particles dispersed on carbon in alkaline solutions[J]. Journalof power sources,2006,158(1):735-739.
    60Bezdicka P, Grygar T, Klápste B, et al. MnOx/C composites as electrodematerials. I. Synthesis, XRD and cyclic voltammetric investigation[J].Electrochimica acta,1999,45(6):913-920.
    61Klapste B, Vondrak J, VelickáJ. MnOx/C composites as electrode materials II.Reduction of oxygen on bifunctional catalysts based on manganese oxides[J].Electrochimica acta,2002,47(15):2365-2369.
    62Vondrák J, Klapste B, VelickáJ, et al. Electrochemical activity of manganeseoxide/carbon-based electrocatalysts[J]. Journal of New Materials forElectrochemical Systems,2005,8(3):209-211.
    63Roche I, Chainet E, Chatenet M, et al. Carbon-supported manganese oxidenanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) inalkaline medium: physical characterizations and ORR mechanism[J]. TheJournal of Physical Chemistry C,2007,111(3):1434-1443.
    64Roche I, Scott K. Carbon-supported manganese oxide nanoparticles aselectrocatalysts for oxygen reduction reaction (orr) in neutral solution[J].Journal of Applied Electrochemistry,2009,39(2):197-204.
    65Yang R, Stevens K, Dahn J R. Investigation of Activity of SputteredTransition-Metal (TM)–C–N (TM=V, Cr, Mn, Co, Ni) Catalysts for OxygenReduction Reaction[J]. Journal of the Electrochemical Society,2008,155:B79-B91.
    66Ilevbare G O, Scully J R. Oxygen reduction reaction kinetics on chromateconversion coated Al-Cu, Al-Cu-Mg, and Al-Cu-Mn-Fe intermetalliccompounds[J]. Journal of the Electrochemical Society,2001,148:B196-B207.
    67Zhang L, Liu C, Zhuang L, et al. Manganese dioxide as an alternative cathodiccatalyst to platinum in microbial fuel cells[J]. Biosensors and Bioelectronics,2009,24(9):2825-2829.
    68Liu X W, Sun X F, Huang Y X, et al. Nano-structured manganese oxide as acathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fedwith a synthetic wastewater[J]. Water research,2010,44(18):5298-5305.
    69Li X, Hu B, Suib S, et al. Manganese dioxide as a new cathode catalyst inmicrobial fuel cells[J]. Journal of Power Sources,2010,195(9):2586-2591.
    70Mahmoud M, Gad Allah T A, El-Katib K M, et al. Power generation usingspinel Manganese-Cobalt oxide as a cathode catalyst for microbial fuel cellapplications[J]. Bioresource technology,2011,102:10459-10464.
    71周顺桂,张礼,霞庄莉.二氧化锰在制备微生物燃料电池阴极中的应用:20090128.
    72卢娜,周奔,邓丽芳,等. MnO_2为阴极催化剂的微生物燃料电池处理淀粉废水研究[J].应用基础与工程科学学报,2009,1:838-844.
    73孙瑾华,刘建好,黄呈珠,等.二氧化锰为阴极催化剂的微生物燃料电池[J].电源技术,2009,32(12):838-840.
    74莫光权.功能化碳纳米管材料在微生物燃料电池中的应用研究[D].华南理工大学,2010.
    75Wang B. Recent development of non-platinum catalysts for oxygen reductionreaction[J]. Journal of Power Sources,2005,152:1-15.
    76Lee K, Zhang J, Wang H, et al. Progress in the synthesis of carbonnanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cellcatalysis[J]. Journal of Applied Electrochemistry,2006,36(5):507-522.
    77Villers D, Jacques-Bedard X, Dodelet J. Fe-Based Catalysts for OxygenReduction in PEM Fuel Cells[J]. Journal of The Electrochemical Society,2004,151(9):A1507-A1515.
    78Medard C, Lefevre M, Dodelet J P, et al. Oxygen reduction by Fe-basedcatalysts in PEM fuel cell conditions: Activity and selectivity of the catalystsobtained with two Fe precursors and various carbon supports[J]. Electrochimicaacta,2006,51(16):3202-3213.
    79Zhao F, Harnisch F, Schr?der U, et al. Application of pyrolysed iron (II)phthalocyanine and CoTMPP based oxygen reduction catalysts as cathodematerials in microbial fuel cells[J]. Electrochemistry communications,2005,7(12):1405-1410.
    80Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chambermicrobial fuel cells[J]. Environmental science&technology,2006,40(1):364-369.
    81Kim J R, Kim J Y, Han S B, et al. Application of Co-naphthalocyanine (CoNPc)as alternative cathode catalyst and support structure for microbial fuel cells[J].Bioresource technology,2011,102(1):342-347.
    82Yuan Y, Ahmed J, Kim S. Polyaniline/carbon black composite-supported ironphthalocyanine as an oxygen reduction catalyst for microbial fuel cells[J].Journal of Power Sources,2011,196(3):1103-1106.
    83Wang L, Liang P, Zhang J, et al. Activity and stability of pyrolyzed ironethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells[J].Bioresource technology,2011,102:5093-5097.
    84Yuan Y, Jeon Y, Zhong S, et al. Iron phthalocyanine supported onamino-functionalized multi-walled carbon nanotube as an alternative cathodicoxygen catalyst in microbial fuel cells[J]. Bioresource technology,2011,102:5849-5854.
    85Zhang Y, Mo G, Li X, et al. Iron tetrasulfophthalocyanine functionalizedgraphene as a platinum-free cathodic catalyst for efficient oxygen reduction inmicrobial fuel cells[J]. Journal of Power Sources,2011,197:93-96.
    86Martínez Millán W, Toledano Thompson T, Arriaga L G, et al. Characterizationof composite materials of electroconductive polymer and cobalt aselectrocatalysts for the oxygen reduction reaction[J]. International Journal ofHydrogen Energy,2009,34(2):694-702.
    87HaoYu E, Cheng S, Scott K, et al. Microbial fuel cell performance with non-Ptcathode catalysts[J]. Journal of Power Sources,2007,171(2):275-281.
    88Luo C, Zuo X, Wang L, et al. Flexible Carbon Nanotube?Polymer CompositeFilms with High Conductivity and Superhydrophobicity Made by SolutionProcess[J]. Nano Letters,2008,8(12):4454-4458.
    89Chen Y S, Huang J H, Chuang C C. Glucose biosensor based on multiwalledcarbon nanotubes grown directly on Si[J]. Carbon,2009,47(13):3106-3112.
    90Arranz-Andrés J, Blau W J. Enhanced device performance using differentcarbon nanotube types in polymer photovoltaic devices[J]. Carbon,2008,46(15):2067-2075.
    91Lefèvre M, Dodelet J P. Fe-based catalysts for the reduction of oxygen inpolymer electrolyte membrane fuel cell conditions: determination of the amountof peroxide released during electroreduction and its influence on the stability ofthe catalysts[J]. Electrochimica acta,2003,48(19):2749-2760.
    92Lalande G, Cote R, Guay D, et al. Is nitrogen important in the formulation ofFe-based catalysts for oxygen reduction in solid polymer fuel cells?[J].Electrochimica acta,1997,42(9):1379-1388.
    93Strelko V V, Kartel N T, Dukhno I N, et al. Mechanism of reductive oxygenadsorption on active carbons with various surface chemistry[J]. Surface science,2004,548(1):281-290.
    94Su F, Tian Z, Poh C K, et al. Pt Nanoparticles Supported on Nitrogen-DopedPorous Carbon Nanospheres as an Electrocatalyst for Fuel Cells?[J]. Chemistryof Materials,2009,22(3):832-839.
    95Xia Y, Mokaya R. Generalized and facile synthesis approach to N-doped highlygraphitic mesoporous carbon materials[J]. Chemistry of materials,2005,17(6):1553-1560.
    96Wu G, Li D, Dai C, et al. Well-dispersed high-loading Pt nanoparticlessupported by shell-core nanostructured carbon for methanol electrooxidation[J].Langmuir,2008,24(7):3566-3575.
    97Wang X, Lee J S, Zhu Q, et al. Ammonia-treated ordered mesoporous carbonsas catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials,2010,22(7):2178-2180.
    98Hou P X, Orikasa H, Yamazaki T, et al. Synthesis of nitrogen-containingmicroporous carbon with a highly ordered structure and effect of nitrogendoping on H2O adsorption[J]. Chemistry of materials,2005,17(20):5187-5193.
    99Yang J, Liu D J, Kariuki N N, et al. Aligned carbon nanotubes with built-inFeN4active sites for electrocatalytic reduction of oxygen[J]. ChemicalCommunications,2008(3):329-331.
    100Maldonado S, Stevenson K J. Direct Preparation of Carbon NanofiberElectrodes via Pyrolysis of Iron(II) Phthalocyanine:? Electrocatalytic Aspectsfor Oxygen Reduction[J]. The Journal of Physical Chemistry B,2004,108(31):11375-11383.
    101Hu Y, Xu Q, Sun J, et al. Iron-and nitrogen-functionalized graphene as anon-precious metal catalyst for enhanced oxygen reduction in an air-cathodemicrobial fuel cell[J]. Journal of Power Sources,2012,213:265-269.
    102Yuan Y, Zhou S, Zhuang L. Polypyrrole/carbon black composite as a noveloxygen reduction catalyst for microbial fuel cells[J]. Journal of Power Sources,2010,195(11):3490-3493.
    103万群义.蒽醌掺杂聚吡咯在电极材料中的应用[D].广东:华南理工大学,2011.
    104马金福,柳永宁.金属酞菁类大环化合物对氧气还原反应催化行为的阻抗谱研究[J].高等学校化学学报,2011,32(10):2371-2375.
    105李冬梅,史海凤,殷瑶,等.磷酸活化石墨的氧还原特性以及用于微生物燃料电池阴极[J].:2454-2460.
    106Jordan L R, Shukla A K, Behrsing T, et al. Effect of diffusion-layer morphologyon the performance of polymer electrolyte fuel cells operating at atmosphericpressure[J]. Journal of applied electrochemistry,2000,30(6):641-646.
    107Neergat M, Shukla A K. Effect of diffusion-layer morphology on theperformance of solid-polymer-electrolyte direct methanol fuel cells[J]. Journalof power sources,2002,104(2):289-294.
    108Lim C, Wang C Y. Effects of hydrophobic polymer content in GDL on powerperformance of a PEM fuel cell[J]. Electrochimica Acta,2004,49(24):4149-4156.
    109Park G G, Sohn Y J, Yang T H, et al. Effect of PTFE contents in the gasdiffusion media on the performance of PEMFC[J]. Journal of Power Sources,2004,131(1):182-187.
    110Lin G, Van Nguyen T. Effect of thickness and hydrophobic polymer content ofthe gas diffusion layer on electrode flooding level in a PEMFC[J]. Journal ofthe Electrochemical Society,2005,152:A1942-A1948.
    111Park S, Lee J W, Popov B N. Effect of PTFE content in microporous layer onwater management in PEM fuel cells[J]. Journal of Power Sources,2008,177(2):457-463.
    112Wang E D, Shi P F, Du C Y. Treatment and characterization of gas diffusionlayers by sucrose carbonization for PEMFC applications[J]. ElectrochemistryCommunications,2008,10(4):555-558.
    113Zhang F, Saito T, Cheng S, et al. Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel meshcurrent collectors[J]. Environmental science&technology,2010,44(4):1490-1495.
    114Gostick J T, Fowler M W, Ioannidis M A, et al. Capillary pressure andhydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells[J].Journal of Power Sources,2006,156(2):375-387.
    115Pasaogullari U, Wang C Y. Two-phase transport and the role of micro-porouslayer in polymer electrolyte fuel cells[J]. Electrochimica Acta,2004,49(25):4359-4369.
    116Zhang F, Pant D, Logan B E. Long-term performance of activated carbon aircathodes with different diffusion layer porosities in microbial fuel cells[J].Biosensors and Bioelectronics,2011,30(1):49-55.
    117Chen-Yang Y W, Hung T F, Huang J, et al. Novel single-layer gas diffusionlayer based on PTFE/carbon black composite for proton exchange membranefuel cell[J]. Journal of Power Sources,2007,173(1):183-188.
    118Voss S, Kollmann H, Kollmann W. New innovative materials for advancedelectrochemical applications in battery and fuel cell systems[J]. Journal ofpower sources,2004,127(1):93-97.
    119Kamavaram V, Veedu V, Kannan A M. Synthesis and characterization ofplatinum nanoparticles on in situ grown carbon nanotubes based carbon paperfor proton exchange membrane fuel cell cathode[J]. Journal of Power Sources,2009,188(1):51-56.
    120Thiedmann R, Fleischer F, Hartnig C, et al. Stochastic3D modeling of the GDLstructure in PEMFCs based on thin section detection[J]. Journal of theElectrochemical Society,2008,155:B391-B399.
    121Weber A Z, Newman J. Effects of microporous layers in polymer electrolytefuel cells[J]. Journal of the Electrochemical Society,2005,152:A677-A688.
    122Yan W M, Soong C Y, Chen F, et al. Effects of flow distributor geometry anddiffusion layer porosity on reactant gas transport and performance of protonexchange membrane fuel cells[J]. Journal of power sources,2004,125(1):27-39.
    123Roshandel R, Farhanieh B, Saievar-Iranizad E. The effects of porositydistribution variation on PEM fuel cell performance[J]. Renewable energy,2005,30(10):1557-1572.
    124Wang X, Zhang H, Zhang J, et al. A bi-functional micro-porous layer withcomposite carbon black for PEM fuel cells[J]. Journal of power sources,2006,162(1):474-479.
    125Zhan Z, Xiao J, Li D, et al. Effects of porosity distribution variation on theliquid water flux through gas diffusion layers of PEM fuel cells[J]. Journal ofpower sources,2006,160(2):1041-1048.
    126Gostick J T, Ioannidis M A, Fowler M W, et al. Pore network modeling offibrous gas diffusion layers for polymer electrolyte membrane fuel cells[J].Journal of Power Sources,2007,173(1):277-290.
    127Park S, Lee J W, Popov B N. Effect of carbon loading in microporous layer onPEM fuel cell performance[J]. Journal of power sources,2006,163(1):357-363.
    128Tang H, Wang S, Pan M, et al. Porosity-graded micro-porous layers for polymerelectrolyte membrane fuel cells[J]. Journal of power sources,2007,166(1):41-46.
    129Kannan A M, Cindrella L, Munukutla L. Functionally graded nano-porous gasdiffusion layer for proton exchange membrane fuel cells under low relativehumidity conditions[J]. Electrochimica Acta,2008,53(5):2416-2422.
    130Han M, Xu J H, Chan S H, et al. Characterization of gas diffusion layers forPEMFC[J]. Electrochimica Acta,2008,53(16):5361-5367.
    131Santoro C, Agrios A, Pasaogullari U, et al. Effects of gas diffusion layer (GDL)and micro porous layer (MPL) on cathode performance in microbial fuel cells(MFCs)[J]. International Journal of Hydrogen Energy,2011,36(20):13096-13104.
    132Tugtas A E, Cavdar P, Calli B. Continuous flow membrane-less air cathodemicrobial fuel cell with spunbonded olefin diffusion layer[J]. BioresourceTechnology,2011,102(22):10425-10430.
    133Noponen M, Ihonen J, Lundblad A, et al. Current distribution measurements ina PEFC with net flow geometry[J]. Journal of applied electrochemistry,2004,34(3):255-262.
    134Natarajan D, Van Nguyen T. Effect of electrode configuration and electronicconductivity on current density distribution measurements in PEM fuel cells[J].Journal of power sources,2004,135(1):95-109.
    135Sui P C, Djilali N. Analysis of coupled electron and mass transport in the gasdiffusion layer of a PEM fuel cell[J]. Journal of power sources,2006,161(1):294-300.
    136Freunberger S A, Reum M, Evertz J, et al. Measuring the current distribution inPEFCs with sub-millimeter resolution[J]. Journal of the ElectrochemicalSociety,2006,153:A2158-A2165.
    137Qi Z, Kaufman A. Improvement of water management by a microporoussublayer for PEM fuel cells[J]. Journal of Power Sources,2002,109(1):38-46.
    138Kannan A M, Veedu V P, Munukutla L, et al. Nanostructured gas diffusion andcatalyst layers for proton exchange membrane fuel cells[J]. Electrochemical andsolid-state letters,2007,10:B47-B50.
    139HaoYu E, Cheng S, Scott K, et al. Microbial fuel cell performance with non-Ptcathode catalysts[J]. Journal of Power Sources,2007,171(2):275-281.
    140Cheng S, Logan B E. Ammonia treatment of carbon cloth anodes to enhancepower generation of microbial fuel cells[J]. Electrochemistry Communications,2007,9(3):492-496.
    141Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbialcommunity analysis of alcohol powered microbial fuel cells[J]. Bioresourcetechnology,2007,98(13):2568-2577.
    142Liu H, Logan B E. Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchangemembrane[J]. Environmental science&technology,2004,38(14):4040-4046.
    143Reimers C E, Leonard M, Fertig S, et al. Harvesting energy from the marinesediment-water interface[J]. Environmental science&technology,2001,35(1):192-195.
    144Biffinger J C, Ray R, Little B, et al. Diversifying biological fuel cell designs byuse of nanoporous filters[J]. Environmental science&technology,2007,41(4):1444-1449.
    145王超,薛安,赵华章,等.单室型微生物燃料电池处理黄姜废水的性能研究[J].环境科学,2009,30(10):3093-3098.
    146毛艳萍,蔡兰坤,张乐华,等.微生物燃料电池处理模拟含硫废水的初步研究[J].水处理技术,2010,36(2):105-111.
    147Rabaey K, Van de Sompel K, Maignien L, et al. Microbial Fuel Cells forSulfide Removal[J]. Environmental Science&Technology,2006,40(17):5218-5224.
    148Rozendal R A, Hamelers H V M, Rabaey K, et al. Towards practicalimplementation of bioelectrochemical wastewater treatment[J]. Trends inBiotechnology,2008,26(8):450-459.
    149Liu H, Logan B E. Electricity generation using an air-cathode single chambermicrobial fuel cell in the presence and absence of a proton exchangemembrane[J]. Environmental science&technology,2004,38(14):4040-4046.
    150Lovley D R, Phillips E J P. Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron ormanganese[J]. Applied and Environmental Microbiology,1988,54(6):1472-1480.
    151Bard A J, Faulkner L R. Electrochemical methods: fundamentals andapplications[M].Wiley New York,1980.
    152He Z, Wagner N, Minteer S D, et al. An upflow microbial fuel cell with aninterior cathode: assessment of the internal resistance by impedancespectroscopy[J]. Environmental science&technology,2006,40(17):5212-5217.
    153Cooper K R, Smith M. Electrical test methods for on-line fuel cell ohmicresistance measurement[J]. Journal of Power Sources,2006,160(2):1088-1095.
    154曹楚南,张鉴清.电化学阻抗谱导论[G].科学出版社,2002.
    155Shao M H, Huang T, Liu P, et al. Palladium monolayer and palladium alloyelectrocatalysts for oxygen reduction[J]. Langmuir,2006,22(25):10409-10415.
    156Feng L, Yan Y, Chen Y, et al. Nitrogen-doped carbon nanotubes as efficient anddurable metal-free cathodic catalysts for oxygen reduction in microbial fuelcells[J]. Energy Environ. Sci.,2011,4(5):1892-1899.
    157Pietrzak R. XPS study and physico-chemical properties of nitrogen-enrichedmicroporous activated carbon from high volatile bituminous coal[J]. Fuel,2009,88(10):1871-1877.
    158Magnuson T S, Isoyama N, Hodges-Myerson A L, et al. Isolation,characterization and gene sequence analysis of a membrane-associated89kDaFe (III) reducing cytochrome c from Geobacter sulfurreducens.[J]. BiochemicalJournal,2001,359(Pt1):147.
    159Tugtas A E, Cavdar P, Calli B. Continuous flow membrane-less air cathodemicrobial fuel cell with spunbonded olefin diffusion layer[J]. Bioresourcetechnology,2011:10425-10430.
    160Yilanci A, Dincer I, Ozturk H K. Performance analysis of a PEM fuel cell unitin a solar-hydrogen system[J]. International Journal of Hydrogen Energy,2008,33(24):7538-7552.
    161Cheng S, Liu H, Logan B E. Increased performance of single-chambermicrobial fuel cells using an improved cathode structure[J]. ElectrochemistryCommunications,2006,8(3):489-494.
    162Chu H S, Yeh C, Chen F. Effects of porosity change of gas diffuser onperformance of proton exchange membrane fuel cell[J]. Journal of powersources,2003,123(1):1-9.
    163Gostick J T, Fowler M W, Ioannidis M A, et al. Capillary pressure andhydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells[J].Journal of Power Sources,2006,156(2):375-387.
    164彭红建,谢佑卿,陶辉锦.金属Pt的电子结构和物理性质[J].材料导报,2005,19(9):121-123.
    165Harnisch F, Wirth S, Schroder U. Effects of substrate and metabolite crossoveron the cathodic oxygen reduction reaction in microbial fuel cells: platinum vs.iron (II) phthalocyanine based electrodes[J]. Electrochemistry Communications,2009,11(11):2253-2256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700