筑路机群多智能主体系统混杂控制与信息融合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筑路机群的智能化、动态优化调度和筑路质量在线预测是未来筑路机械行业发展的必然趋势,也是解决目前筑路过程中物料断流、积压、施工设备配置不合理、筑路质量难以在线预测以及劳动强度大等问题的必要手段。本文利用多主体技术建立了分布式机群体系结构,并在多主体平台MAGE上实现,这种结构充分体现了单机的自主性和机群的灵活性。选择合理的动态调度是筑路机群系统中的难题,应用混杂控制理论,结合优化调度算法,分析了施工机群的物料供应以及动态调度问题。信息融合技术是信息在线预测的有力工具,本文利用模糊神经网络等手段对影响筑路质量的各种参数进行融合,实现了筑路质量的实时预测。本文取得了以下成果:
     (1)首次通过多主体平台MAGE建立了筑路机群的分布式系统体系结构,这种开放式的分布体系可以灵活的增减单机数量。提出了多主体智能化的筑路机群实施方案,包括中央控制主体的体系结构、综合决策支持系统、知识库构建,单机的施工规范、人机交互以及机群无线通讯实施方案。
     (2)首次将基于时间序列的神经网络信息融合、基于SVM的信息融合、基于随机梯度的信息融合和基于MARS的信息融合的方法应用到筑路质量的预测中,仿真试验证明了该方法的有效性。
     (3)针对机群在筑路过程中的沥青混合料的供需关系,首先确定系统阈值,通过对拌和机的混杂切换控制,构建筑路机群的层次模型和MLD模型,实现了沥青混合料的供需平衡。
     (4)在沥青混合料供需平衡的基础上,运用排队调度法和基于信息素的算法等手段,实现自卸车的动态调度。根据不同的施工任务和主导机械的工作能力,从自卸车的利用率和使用数量两个方面进行了分析,减少不必要的机车闲置。
     (5)应用上述算法,借助Vc++面向对象的可视化编程技术,完成了筑路机群智能化可视化动态仿真软件的开发。
The intelligence, dynamic scheduling and online prediction of construction quality of construction clusters are inevitable tendency of the future construction machinery industry.These study will deal with interception, backlogging and separation of the asphalt mixture. The problems of machinery allocation irrationality, needless waste of the mixture, hardness to guarantee construction quality and labor intersity will also be solved. In this thesis, MAS (multi-agent systems) is used to build a distributed architecture for the construction clusters and it is realized on the platform of MAGE. This architecture thoroughly represents the autonomy of the single machine and the flexibility of the clusters. The choice of a rational dynamic scheduling is a puzzle in construction clusters. In this paper, dynamic switching trategy of hybrid control and optimizing arithmetic are applied in analyzing material supply and dynamic scheduling of construction clusters. Information fusion is a useful tool to online forcast construction quality and four different methods of forcasting are used to predict the construction quality real-time.
     The main research contents of this thesis are listed here:
     1) For the first time, the platform of MAGE is applied to build the distributed architecture for construction clusters. This model gives attention to distributed and centric architecture and it can add and reduce single machine flexibly. The actualization project of intelligent construction clusters is provided. It includes the structure of center control agent, IDSS, knowledge base, construction criterion of single machine, man-machine alternation and wireless communication.
     2) Information fusion based on time series NN, SVM, stochastic gradient, and MARS are studied to forcast the construction quality. The simulation results show that these methods are effective.
     3) Based on the coupling relation of supplication and requirement of the asphalt mixture in construction, the system thresholds are given and hierarchical model and MLD model of the system are built to analyze the
引文
[1]冯忠绪,机群智能化工程机械,工程机械,2003,34(10):1~2
    [2]陈放,机械化施工机群配置优化问题的研究,筑路机械与施工机械化,1996,64(13):6~8
    [3]李战慧,李自光,王顺星,基于排队论的沥青混凝土路面施工机群的优化配置,筑路机械与施工机械化,2004,21(8):23~25
    [4]邓录社,高等级公路路基施工机群的微机最优配置系统,电子机械工程,2000,86(4):35~37
    [5]Muller.K Sebastian.H.J,Intelligent systems for engineering design and configuration problems, European Journal of Operational Research,1997,100(2):315~326
    [6]Goh.W.T,Zhang.Z,An intelligent and adaptive modelling and configuration approach to manufacturing systems control,Journal of Materials Processing Technology,2003,139(1-3):103~109
    [7]韦华颖等,机群系统的智能配置管理,计算机工程与应用,2004,9(29):29~31
    [8]OMG,Common Object Request Broker Architecture:Core Specification,Version 3.0,2002
    [9]Anukul Mandal,S.G.Deshmukh,Vendor Selection Using Interpretive Structural Modeling,IJOPM,1994,14(6):52~59
    [10]Christine Harland,International Comparision of Supply Chain Relationships,Logistics Information Management,1996,9(4):35~38
    [11]Cipriano Forza, Andrea Vinelli,Quick Response in the Textile-apparel Industry and the Support of Information Technology,Intergrated Manufacturing Systems,1997,8(3):125~136
    [12]D.J.Wu,Software agent for knowledge management:coordination in multi-agent supply chains and auctions,Expert Systems with Application,2001,20,51~62
    [13]卓先领,中国工程机械需打造一流供应链,机电信息,2004,68(8):23~24
    [14]王许斌等,影响机械行业供应链多阶响应周期的关键因素分析,中国软件学,2004,6:67~71
    [15]龚勇等,一种基于多智能体的企业供应链系统开发平台研究,计算机应用,2003,23(6):20~22 16]年劲飞,黄道,供应链环境下基于 Agent 的协商决策,华东理工大学学报,2004,30(3):474~477
    [17]路兆强,张怀存,嵌入式系统的人机交互界面设计,北京机械工业学院学报,2003,18(4):33~37
    [18]牛占文等,基于网络移动作业机群工程机械故障智能化诊断系统,CN1417961
    [19]Karacapilidis,Nikos,Modeling discourse in collaborative work support systems: A knowledge representation and configuration perspective,Knowledge-Based Systems,2002,15(7):413~422
    [20]Beka Be Nguema et al,Design of a human-eror~tolerant interface using fuzzy logic,Engineering Applications of Artificial Intelligence,2000,13(3):279~292
    [21]陈殿生、王田苗、吴长青,压路机嵌入式监控器的人机界面开发,工程机械,2005,36(2):1~3
    [22]黄建兵,人机工程学在工程机械驾驶室布置设计的应用研究,硕士论文,长春,吉林大学,2004
    [23]龚报钧,王树青,支持人机协同的智能用户界面体系结构,控制与决策,2001,16(6):890~893
    [24]范志舟,费敏锐,一种采用智能方法的新型 VR 人机交互界面,上海大学学报(自然科学版),2004,10(B10):239~242
    [25]F Peyret et al,The computer integrated road construction project, Automation Construction,2000,9(5~6):447~461
    [26]任炜,工程机械机群多智能主体系统混杂控制研究,博士论文,天津,天津大学,2003
    [27]李冰等,沥青混凝土路面施工机群智能调度与监控系统,路面机械与施工技术,2003,20(6):29~31
    [28]张树东等,机群环境中基于信度模型的作业调度算法,北京航空航天大学学报,2004,30(11):1098~1100
    [29]史春雪,何涛,王莉娟,基于自卸车的沥青混凝土路面施工智能化监控系统调度问题研究,甘肃科技,2005,21(2):76~79
    [30]傅小华,黎志成,基于多主体的智能调度系统研究,华中科技大学学报,2001,29(10):99~101
    [31]Kutlu a,Ekiz b,Powner E T,Wireless Control Area Network,IEE Colloquium on Networking Aspects of Radio Communication Systems,1996,3(1):3~4
    [32]胡志刚,张晓斌,路面施工机械机群智能控制系统,计算机工程,2003,29(19):32~34
    [33]魏洪星,王田苗,陈殿生,智能化工程机械及其关键技术研究,工程机械,2004,35(5):1~3,49
    [34]王福山等,沥青混凝土路面施工机群施工过程智能化控制研究,工程机械,2003,34(5):7~12
    [35]李学忠等,智能化路面施工机群的数据通讯方法与数据链协议,工程机械,2003,34(4):4~9
    [36]张启君,机群智能化工程机械,建筑机械化,2004,25(3):46~48
    [37]Stuart Russell, Peter Norvig, Artificial Intelligence: A Modern Approach. Posts & Telecommunications Press, 2002
    [38] Wooldridge M, N.R.Jennings, Agents Theories, Architectures and languages: a Survey, Intelligent Agents, Berlin: Springer~Verlag, 1995
    [39] Minsky Marvin, the Society of Mind, New York: Simon and Schuster, 1985
    [40] Bates J., the role of emotion in believable agents, communications of the ACM, 37(7),1994
    [41] Bates J., et al, an architecture for action, emotion, and social behavior, Technical Report CMU~CS~92~144, School of Computer Science, CMU, Pittsburgh, 1992
    [42] D M Lane, A G Mcfadzean. Distributed probelm solving and real~time mechanisms in robot architectures. Engineering Application Intelligence, 1994,7(2):105~117
    [43] G Cohen. Concurrent system to resolve real~time conflicts in multi~robot systems[J]. Engineering Application Artificial Intelligence, 1995,8(2):169~175
    [44] B Burmeister, A Haddadi, G Matylis. Applications of multi~agent systems in traffic and transportation. IEEE Trans on Software Engineering, 1997,144(1):51~60
    [45] C V Goldman, J S Rosenschein. Mutual supervised learning in multiagent systems. Proc of UCAI’95 Workshop. Berlin, 1996,85~96
    [46] Y C P Jeff, J M Tenenbaum. An intelligent agent framework for enterprise integration. IEEE Trans on Systems, Man and Cyberrnetics, 1991,21(6):1391~1408
    [47] F Sprumont, J P Muller. AMACOIA: A multiagent system for designing flexible assembly lines. Applied Artificial Intelligence, 1997,11(6):573~589
    [48] N R Jennings, L Z Varga, R P Aarnts et al. Transforming standalone expert systems into a community of cooperating agents. Engineering Application Artificial Intelligence, 1993,6(4):317~331
    [49] S J Russell. Provably bounded optimal agents[A]. Proc of the 13th Int Joint Conf on Artificial Intelligence. USA, 1993.40~48
    [50] H Wang, C Wang. APACS: A multi~agent system with respository support[J]. Knowledge~based Systems, 1996,9(3):329~337
    [51] N M Avouris. Cooperating knowledge~based systems for environmental decision support. Knowledge~based Systems, 1995,8(1):39~54
    [52] V Sahasrabudhe. A multiagent control system framework for smart structures. AIAA, USA, 1998. 4202~4215
    [53] W Kohn, A Nerode. Multiple agent autonomous hybrid control systems[A]. Proc of the IEEE Conf on Decision and Control. Tucson, 1992. 16~18
    [54] 王珑,章毅,吴跃,MAS 环境下实现 Agent 交互协作的关键技术,电子科技大学学报,2003,32(2):159-163
    [55] M. Athans, Command and Control (C2) Theory: A Challenge to Control Science, IEEE Transactions on AC, 1987, 32(4), 286~293
    [56] J.L. Bial, H. Alla, and R. David, Hybrid Petri Nets, European Control Conference, France, 1991, 1472~1477
    [57] R. Alur, et al, Hybrid automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems, Workshop on Theory of Hybrid Systems, Lecture Notes in Computer Science 736, Denmark, 1992, 209~229
    [58] R. Alur, et al, The Algorithmic Analysis of Hybrid Systems, Proceedings of the 11th International Conference on DES, France, 1994, 331~351
    [59] Alur R, Dill D. A theory of timed automata. Theoretical and Computer Science. 1991, 126(2):183~235
    [60] Van der Schaft A, Schumacher H. An Introduction to Hybrid Dynamical Systems[M]. Berlin:Springer~Verlag, 2000
    [61] Le Bail J, Alla H, David R. Hybrid Petri nets[A]. Proc 1st Int European Control Conf[C]. Grenoble, 1991. 1472~1477
    [62] Febbraro A D, Giua A, Menga G. Special issur on hybrid Petri nets[J]. Discrete Event Dynamical Systems: Theory and Applications. 2001,11(1/2):5~8
    [63] Caradec M, Prunet F. Modeling of hybrid flexible production systems by colored batches Petri nets[J]. European J of Automation APII~JESA,1998,32(9/10):1255~1269
    [64] Grossman R I, Nerode A, Ravn A P, et al. Hybrid Systems Lecture Notes in Computer Science[M]. Berlin:Springer~Verlag,1993
    [65] Ilya Kolmanovsky, Elmer G Gilbert. Multimode regulators for systems with state and control constrains and disturbance inputs[A]. Control Using Logic Based Switching~Lecture Notes in Control and Information Sciences[C]. Berlin: Springer~verlag,1996,105~117
    [66] Di Benedetto M D. Sangiovanni Vincentelli A. Hybrid Systems: Computation and Control~Lecture Notes in Computer Science. Berlin: Springer~Verlag.2001
    [67] Morse A, Pantelides C, Sastry S, et al. A special issue on hybrid systems[J]. Automatica, 1999,35(3):347~355
    [68] Lemmon M. Antsaklis P. Inductively inferring valid logical models of continuous~state dynamical systems. Theoretical Computer Science,1995,138(1):201~210
    [69] Tavernini L. Differential automata and their discrete simulators. Nonlinear Analysis Theory. Methods and Applications,1987,11(6):665~683
    [70] Matveev A, Savkin A. Qualitative Theory of Hybrid Dynamical Systems. Boston:Birkhauser,1999
    [71] Lygeros J, Godbole D N, Sastry S. Multi~agent hybrid system design using game theory and optimal control.Proc 35th CDC. Kobe,1996.1190~1195
    [72] Cassandras C D, Pepyne D L. Optimal control of a class of hybrid systems. IEEE Trans on Automatic Control,2001,46(3):398~415
    [73] Antsaklis P J, Nerode A. Special issue on hybrid systems. IEEE Trans on Automatic Control,1998,43(4):457~479
    [74] Branicky M S, Borkar V, Mitter S. A unified framework for hybrid control: Model and optimal control theory. IEEE Trans on Automatic Control. 1998,43(1):31~45
    [75] 箫德云,莫以为, 混合系统德验证与控制综合,第 21 届中国控制会议论文集,杭州,浙江大学出版社,2002,635~641
    [76] Deshpande A. Varaiya P. Viable control of hybrid systems. Proc 35th CDC. kobe,1996.1196~1201
    [77] Kolmanovsky I, McClamroch N H. Hybrid feedback laws fro a class of nonlinear cascade systems. IEEE Trans on Automatic Control,1996,41(11):1271~1281
    [78] Antsaklis P J, Kohn W, Nerode A, et al. Hybrid systems Ⅱ: Lecture Notes in Computer Science. Berlin; Springer~Verlag.1995
    [79] Pepyne D L, Cassandras C G. Optimal control of hybrid systems in manufacturing. Proc of the IEEE. 2000,88(7):1108~1123
    [80] Hedlund S, Rantzer A. Optimal control of hybrid systems. Proc 38th CDC. Phoenix,1999,3972~3977
    [81]董苗波,吴铁军,学习自动机在混杂系统切换控制上的初步应用,控制理论与应用,2003,20(1):153~156
    [82] 胡伟等,东北电网混杂自动电压控制的研究,电力系统自动化,2004,28(1):69~73,
    [83] 杨昆等,混杂理论在有载调压器建模中的应用,继电器,2004,32(10):19~23
    [84] 张明镰等,拟人智能控制,北京航空航天大学自动化系智控课题组,1994,44~66
    [85] 秦世引和宋永华,混杂控制系统的结构体系分析,电力系统自动化,2000,24(11):5~9
    [86] 高强,王洪礼,郭龙,沥青混凝土路面施工机群物料供应与供料设备调配,机械设计,2006,23(4):10~13
    [87] 高强,王洪礼,利用多主体通讯技术实现混杂系统切换控制,吉林大学学报(工学版),2004,34(7):79~82
    [88] 王洪礼,任炜,高强,路面施工机群沥青混合料的混杂控制研究,动力学与控制学报,2005,3(3):92~95
    [89] 静景红和宋永华,基于学习自动化的混杂电力系统紧急频率控制,电力系统自动化,2000,24(18):8~12
    [90] Ramadge P J, Wonham W M. The Control of Discrete Event Systems. Proc of the IEEE,1989,77(1):81~97
    [91] 公路沥青路面施工技术规范 JTG F4002004,中华人民共和国交通部,北京:人民交通出版社,2005-01-01
    [92] 牛开民,拌和-运输-摊铺系统的排队网络分析,公路交通科技,1999,16(3):17~21
    [93] Albert Bemporad, Morari A M. Control of Systems Integrating Logic,Dynamics, and Constraint. Automatic, 1999,35(3):407~427
    [94]李秀改,高东杰,一类混杂系统的模型预测控制,信息与控制,2002,31(1):1~4
    [95] Sebastian Engell, Stefan Kowaleskl, Christian Schule. Continuous~Discrete Interactions in Chemical Processing Plants. Proceedings of IEEE,2000,88(7):1050~1068
    [96] Olav Slupphaug, Jostein Vada, Foss B A. MPC in Systems with Continuous and Discrete Control Inputs. In:Proc. American Control Conference. NM:Alberquerque,1997
    [97] Branicky M S, Borkar V S, Mitter S K. A Unified Framework for Hybrid Control: Model and Optimal Control Theory. IEEE.Trans. Autom. Control, 1998,43(1):31~45
    [95] Chang S S L Peng T K C. Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans on Automatic Control, 1972,17(4):474~483
    [99] Park J H. Robust guaranteed cost control for uncertain linear differential systems of neutral type. Applied Mathematics and Computation, 2003,140(2~3):523~535
    [100] 孙希明,齐丽,赵军,一类不确定线性系统的混杂状态反馈保成本控制,控制与决策,2005,20(4):421-425
    [101] Gao Qiang,Wang Hongli,Guo Long, Xiang Jianping,Dynamic scheduling study on engineering machinery of clusters using multi-agent system ant algorithm,Proceedings of SPIE-The International Society for Optical Engineering,2005,Vol.60421,ICMIT 2005:Control Systems and Robotics
    [102] 黄德中,土方工程机械选型配套德排队论网络分析,农业机械学报,2004,35(3):79-82
    [103]孟玉珂,排队论基础及应用,同济大学出版社,1989
    [104] 郭小宏,沥青混凝土“拌和-摊铺”系统的机械配置。筑路机械与施工机械化,1990(4)
    [105] 靳凯文,李春葆,秦前清,基于蚁群算法的最短路径搜索方法研究,公路交通科技,2006,23(3):128-130
    [106] 刘燕燕,基于模糊神经网络的信息融合在电网故障诊断中的应用,继电器,2005,33(9):9-11
    [107] B Zhou, N K BOSE. Multiagent Tracking in clutter: Fast Algorithms for Data Association. IEEE Trans on Aerospace and Electronic System, 2003,29(2)
    [108] 钮永胜,赵新民,孙金玮。采用基于神经网络的时间序列预测器的传感器故障诊断新方法。仪器仪表学报,1998,19(4):383-387
    [109] Vapnik V. The nature of statistical learning theory. New York: Springer~Verlag, 1995
    [110] Gunn S. Support vector machine for classification and regression. Jsis Report, Image Speech & Intelligent System Group, University of Southampton, 1998
    [111] 周鸣争,汪军,基于 SVM 的多传感器信息融合算法,仪器仪表学报,2005,26(4):407-410
    [112] Freund Y. Boosting a Weak Learning Algorithm by Majority. Information and Computation, 1995,121(2):256~285
    [113] Breiman. L Bagging Predictors, Machine Learning, 1996,40(2):123~140
    [114] 李新,何华灿,单窗口嵌入式 GUI 的页面管理研究,计算机应用研究,2002,19(6):35-37
    [115]罗强,游大海,何红艳,基于嵌入式 GUI 的电力自动化设备人机界面设计,电力自动化设备,2004,24(9):63-66
    [116]Yasushi Nakauchi, Toyoshi Okada, Nobuyuki Yamasaki et al. Multi~agent interface architecture for human~robot cooperation. Proc of the 1992 IEEE Int Conf on Robotics and Automation. NJ:IEEE Service Center, 1992.2786~2788
    [117] Noriyuki Kushiro, Koichi Sato, Noriyuki Komiya et al. Agent based graphical user interface architecture for consumer products. IEEE Transon Consumer Electronics, 1999,42(4):1044~1049
    [118] 戚建等,智能化工程机械机群监控中心软件系统,制造业自动化,2003,25(12):55-57
    [119] 李玺,胡志刚,戚建,路面施工机群智能化管理及通信方法研究,计算机工程与应用,2003,27,220-223
    [120] 冯悦,李小民,冯振声,GSM 技术在 GPS 车辆监控系统中的应用,微计算机信息,1999,15(6):29-32
    [121] 王洪礼,郭龙,高强,向建平,基于 MAS 的蚁群算法在机械机群路面施工动态调度中的研究,制造业自动化,2005,27(12):4~7
    [122] 李金洪,王洪礼,高强,微分 Petri 网在工程机械机群混杂系统建模中的应用,吉林大学学报(工学版),2004,34(12):76~78
    [123]王洪礼,李金洪,高强,用 Petri 网对基于多智能主体的工程机械机群工作流研究,机械设计,2005,22(6):29~32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700