纳米结构硬质合金磨削理论和工艺实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高硬度、高韧性和高耐磨损性的纳米结构硬质合金,在各种对材料有高耐磨损性和高热稳定性要求的工程领域具有广泛的应用前景。纳米结构硬质合金优异的物理机械性能有助于该类材料在工程中的应用,但高硬度、高耐磨损的性能也使得对它的磨削加工变得非常困难。现阶段,对纳米结构硬质合金的研究多集中在如何改善其物理机械性能、保持其质量的稳定性和对其耐磨损性能的评价等材料学研究领域。还未对这类新型材料的机械加工理论(特别是磨削理论)和相关加工工艺展开系统的研究。本文旨在通过理论建模和磨削工艺实验,对纳米结构硬质合金的磨削理论和工艺进行了深入系统的研究:
     首先,介绍了纳米结构硬质合金的制备技术、应用领域和应用中的问题;回顾了工程陶瓷磨削的主要研究成果,包括硬质合金的磨削机理和磨损机理研究成果;进而提出了本文的研究结构和内容。
     然后,分析了材料物理机械性能与磨削力和磨削损伤之间的关系;在磨粒与工件相互干涉的运动学和几何学基础上,建立了基于断裂力学理论的磨削力数学模型,并进一步建立了比磨削能数学模型。数学模型说明磨削力和比磨削的大小与磨削工艺参数和材料的物理机械性能相关。
     接着,选用了四种具有不同WC晶粒度(从微米级到纳米级)的硬质合金进行磨削工艺实验,分析磨削工艺参数和WC晶粒度对纳米结构硬质合金磨削性能的影响规律。实验过程中采用实时测力系统采集三向磨削力;工艺实验后用扫描电子显微镜、能谱仪、原子力显微镜、表面轮廓仪和X射线衍射仪分析磨削后试样的表面形貌、表面粗糙度和材料去除机理;采用端面研磨腐蚀法、直接腐蚀法和表面研磨法制备了亚表面磨削损伤观察的试样,观察了试样亚表面的形貌和磨削损伤;采用X射线衍射法,分析残余应力在亚表面深度方向的变化规律。
     最后,比较了磨削工艺实验和理论模型预测的结果,揭示了材料的物理机械性能和磨削工艺参数对磨削力、比磨削能、材料去除机理、表面形貌、表面粗糙度和磨削损伤的影响规律。磨削力数学模型的预测结果与工艺实验结果相吻合,证明本文中建立的磨削力数学模型正确。随之,比磨削能数学模型的正确性也被证实。在本文工艺实验条件下,虽然随着单颗磨粒最大未变形切屑厚度增加,纳米结构硬质合金以脆性断裂方式去除的比例增加,但是非弹性变形方式仍然是纳米结构硬质合金磨削主要的材料去除方式。纳米结构硬质合金的表面粗糙度值随单颗磨粒最大未变形切屑厚度增加而单调递增。磨削表面形貌和粗糙度值证实,树脂结合剂金刚石砂轮比陶瓷结合剂金刚石砂轮更适合磨削纳米结构硬质合金。理论计算和工艺实验结果均表明,本文工艺实验条件下在纳米结构硬质合金的磨削表面和亚表面中未发现宏观磨削裂纹。纳米结构硬质合金亚表面中存在明显的磨削变质层,变质层的组织结构和平均厚度与磨削工艺参数和合金的物理机械性能密切相关。在X射线透射深度范围内,磨削表面的残余应力沿表面层深度方向存在明显的梯度变化,其分布和大小与工艺实验参数有关。非弹性变形的材料去除方式是产生表面残余应力的主要原因。
     本文的数学模型和工艺实验研究成果揭示了纳米结构硬质合金的磨削机理,其研究成果有助于推动该类新型材料在工程中更为广泛的应用。
Due to their high hardness, high toughness and high wear resistance, nanostructured tungsten carbide materials have been widely used in the engineering fields where high wear resistance and thermal stability are required. Although the preeminent mechanical properties of nanostructured tungsten carbides facilitate their wide applications, they also create a challenging problem in grinding. Nowadays, most researches on nanostructurd tungsten carbides are focussed on how to improve the material physical-mechanical properties, maintain the material stability, evaluating the material wear resistance, etc. Very few studies are found on precision processing of such materials, especially on grinding mechanisms and related technologies. In this dissertation, the grinding theory and experiment of nanostructured tungsten carbide are investigated deeply through experimental analysis and theoretical modeling. It is expounded as follow:
     Firstly, it introduces preparation technologies, application fields, and challenging problems for nanostructured tungsten carbides. Then the section reviews major academic research achievements in grinding hard-brittle materials, which includes grinding mechanisms and wear mechsnisms of tungsten carbides. This sections also briefly introduces the general structure and contents of this dissertation.
     Secondly, the effect of physical-mechanical properties on grinding force and grinding damage are dicussed. A new mathematical model on grinding force is built based on fracture mechanics of brittle solids, with the geometric and kinematics of grinding process considered. Based on the mathematical model, a specific grinding energy mathematic model is then built. These mathematical models show that grinding force and specific grinding energy not only relate to grinding process parameters but also to physical-mechanical properties of materials.
     Thirdly, in order to analyze the effects of grinding process parameters, diamond wheel characteristics, and the physical-mechanical properties of nanostructued tungsten carbides on its grindability, four different tungsten carbides of various grain sizes (from the nanometer level to the micrometer level) were selected as grinding experimental samples. Grinding forces in three directions are measured with a force dynamometer. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), atomic force microscopy (AFM), profilometery and X-ray diffractometry (XRD) are used to evaluate the ground workpiece surfaces for information on surface integrity and material-removal mechanisms, etc. Three methods are applied to prepareing workpiece samples for observing surface and subsurface damage induced by grinding. One of the methods is to grinding the side plane perpendicular to ground surface, and polish the ground side plan with diamond powders, and then etch the same plane with chloroazotic acid. Another method is to polish and etch the ground surface layer by layer. Surface residual stress is evaluated by the X-ray diffraction method.
     Lastly, in terms of physical-mechanical properties and grinding process parameters of nanostructued tungsten carbides, both the experimental and theoretical results on grinding force, specific grinding energy, material-removal mechanisms, ground surface topography, surface roughness and grinding damage are compared. Grinding forces predicted based on the mathematical model shows a good agreement with the experimental results, which validates the mathematical model. Whereafter, the mathematic model on specific grinding energy is validated. Qualitative analysis and quantitative calculations of the experimental results demonstrate that brittle fracture gradually becomes more obvious with the increase in the maximum underformed chip thickness. However, inelastic deformation is the main material-removal mechanism when grinding nanostructured tungsten carbides in this study. Surface roughness also increases with the maximum underformed chip thickness. The resin bond diamond wheel is more suitable for grinding nanostructured tungsten carbides than the vitrified bond diamond wheel. Both the theoretical calculations and the experimental observations demonstrate no grinding cracks in the ground surface and subsurface of the nanostructured tungsten carbides. However, grinding-induced surface integrity problems, such as inelastic deformation and residual stress, are found in the subsurface of the ground workpieces, and are associated with grinding process parameters and workpiece material properties. Surface residual stress is found to have a depth gradient in the ground surface. Inelastic deformation is a primary factor causing surface residual stress in the ground nanostructured tungsten carbides. Based the results of theoretical modeling and experimental analysis, the grinding mechanism of nanostructured tungsten carbide is exposited, which contributes to promote a wider application in the engineering field.
引文
[1]郭庚辰.液相烧结粉末冶金材料.北京:化学工业出版社:2003, 1-60
    [2] Yao Z G, Stiglich J J, Sudarshan T S. Nano-grained Tungsten Carbide-Cobalt (WC/Co). www. matmod. com, 1997
    [3]王振延,陈华辉.纳米WC-Co硬质合金的研制及发展.云南冶金, 2005, 34 (1):37-41
    [4]王辉平,胡茂中.纳米技术与硬质合金.中国钨业, 2001, 16 (2):30-32
    [5]林晨光.中国超细和纳米晶WC-Co硬质合金的研究开发概况.中国钨业, 2005, 20 (2):19-24
    [6]张法明,沈军,孙剑飞,等.纳米WC-Co硬质合金的微观组织特征.有色金属, 2005, 57 (1):4-9
    [7]谭国龙,吴希俊,王彦起,等.纳米WC硬质合金的制备、结构和力学性能.材料科学与工程学报, 1998, 16 (1):8-13
    [8]刘寿荣. WC-Co硬质合金的性能与成分和显微结构的关系.理化检验-物理分册, 2003, 39 (2):70-75
    [9]王社权.影响超细硬质合金性能的几个因素.硬质合金, 2000, 17 (1):9-12
    [10] Liu B H, Zhang Y, Ouyang S X. Study on the Relation between Structural Parameters and Fracture Strength of WC-Co Cemented Carbides. Materials Chemistry and Physics, 2000, 62:35-43
    [11]李晨辉,余立新,熊惟皓. WC的粒度对WC-Co硬质合金断裂韧性的影响.硬质合金, 2001, 18 (3):138-142
    [12]刘寿荣. WC-Co硬质合金的显微结构参数.材料热处理学报, 2005, 26 (1):62-64
    [13] Jia K, Fischer T E, Gallois B.Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites Nanostructured Materials, 1998, 10 (5):875-891
    [14] Shi X L, Shao G Q, Duan X L, et al. Research on Ultrafine Tungsten Carbide-Cobalt (WC-Co) Cemented Carbide Rods of Miniature Drills for Highly Integrated Printed Circuit Board (PCB). Journal of Material Science and Technology, 2005, 21 (3):353-356
    [15] Liu X B, Zhang B. Grinding of Nanostructured Ceramic Coatings: Surface Observations and Material Removal Mechanisms. International Journal of Machine Tools & Manufacture, 2002, 42 (15):1665-1676
    [16]邓朝晖,张璧,孙宗禹.纳米结构金属陶瓷(n-WC/Co)涂层材料精密磨削的实验研究.湖南大学学报(自然科学版), 2003, 30 (2):12-17
    [17] Yin L, Spowage A C, Ramesh K, et al. Influence of Microstructure on Ultraprecision Grinding of Cemented Carbides. International Journal of Machine Tools & Manufacture, 2004, 44:533-543
    [18]王兴庆,郭海亮,何宝山.纳米硬质合金制备技术的研究.硬质合金, 2003, 20 (1): 1-6
    [19]邵刚勤,吴伯麟,魏明坤,等.超细晶粒WC硬质合金的研制动态.武汉工业大学学报, 1999, 21 (6):18-20
    [20]张立, Schubert W D,黄伯云.超细硬质合金混合料的制备与制粒技术.硬质合金, 2003, 20 (3): 129-132
    [21]曹顺华,高海燕,李元元,等.利用反应热处理制备纳米晶WC-10Co复合粉末.中南工业大学学报(自然科学版), 2003, 34 (15):480-483
    [22]吴伯麟,邵刚勤,段兴龙,等.纳米晶复合碳化钨-钴粉末的工业化制备技术.材料导报, 2000, 14 (7): 55-58
    [23] Shao G Q, Wu B L, Duan X L, et al. Low Temperature Carbonization of WC-Co Salts Powder. Ceramic Engineering & Science Proceedings 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A. Ohio : The American Ceramic Society, 1999:45-50
    [24]陈民芳,赵乃勤,由臣,等. WC-Cu复合材料粉末冶金烧结工艺研究.机械工程材料, 1998, 22 (3):28-30
    [25]黎樵燊,谢致薇,李瑜煜,等.纳米硬质合金粉末压制过程的研究.粉末冶金技术, 1999, 17 (2):94-98
    [26]范景莲,黄伯云,张传福,等.纳米钨合金粉末的制备技术与烧结技术.硬质合金, 2001, 18 (1):225-231
    [27]曹顺华,林信平,李炯义,等.纳米晶WC210Co复合粉末的烧结致密化行为.中国有色金属学报, 2004, 14 (5):797-801
    [28]史晓亮,邵刚勤,段兴龙,等.抑制剂对纳米WC-10Co复合粉末烧结性能的影响.硅酸盐学报, 2004, 32 (12):1511-1515
    [29]余晓华,邵刚勤,段兴龙,等.纳米复合WC-Co粉末的热压烧结.硅酸盐通报, 2004, 2:8-10
    [30]王冲,邵刚勤,段兴龙.纳米复合WC-Co粉末成型与烧结研究进展.硅酸盐通报, 2005, 1:97-100
    [31]曹顺华,李炯义,林信平,等.纳米晶WC-10Co硬质合金复合粉末的烧结行为及性能.稀有金属材料与工程, 2005, 34 (11):1703-1707
    [32]高勇,唐振方,黄景清.纳米WC-Co复合材料制备及其烧结过程.硬质合金, 2000, 17 (1):18-20
    [33]张立,黄伯云,吴恩熙.纳米WC-Co复合粉的烧结特征.硬质合金, 2001, 18 (2):65-69
    [34]沈军,张法明,孙剑飞.高能球磨-快速热压烧结工艺制备纳米晶粒WC-Co硬质合金.矿冶工程, 2003, 23 (5):89-92
    [35]谢迎芳,王兴庆,陈立东,等.放电等离子烧结纳米硬质合金的研究.硬质合金, 2003, 20 (3):138-142
    [36]史晓亮,王学广,邵刚勤,等.纳米晶WC-Co硬质合金的烧结.材料导报, 2004, 18 (2):29-32
    [37]赵海锋,朱丽慧,黄清伟.放电等离子技术快速烧结纳米WC-10%Co-0.8%VC硬质合金.稀有金属材料与工程, 2005, 34 (1):82-85
    [38]范景莲,艾宪平,马运柱.高能球磨和放电等离子体烧结制备超细WC-8Co硬质合金.稀有金属, 2005, 29 (2):129-133
    [39]李炯义,曹顺华,林信平.硬质合金中的晶粒长大抑制剂.硬质合金, 2004, 21 (1):56-60
    [40]曹顺华,林信平,李炯义,等.一种新型晶粒长大抑制剂对YG10硬质合金烧结行为的影响.中南大学学报(自然科学版), 2005, 36 (4):533-538
    [41]李志希,范景莲,缪群. WC-10Co硬质合金热压工艺与晶粒抑制剂的研究.粉末冶金工业, 2005, 15 (1):7-11
    [42]史晓亮,邵刚勤,段兴农,等. VC, Cr3C2对WC-Co纳米粉烧结性能的影响.北京科技大学学报, 2004, 26 (6):612-614
    [43]张卫兵. WC-Co质量对超细硬质合金性能影响的研究.硬质合金, 2003, 20 (3):157-161
    [44] Shi X L, Yang H, Wang S, et al. Influences of Carbon Content on the Properties and Microstructure of Ultrafine WC-10Co Cemented Carbide. Journal of Wuhan University of Technology (Materials Science Edition), 2007, 22 (3):473-477
    [45]邵刚勤,段兴龙,谢济仁,等. WC - Co非金属-金属纳米复合结构的形成与控制.硅酸盐学报, 2002, 30 (1):40-45
    [46]马淳安,褚有群,黄辉,等. WC-Co硬质合金的相组成及其相变.浙江工业大学学报, 2003, 31 (1):1-6
    [47] Jia K, Fischer T E.Abrasion Resistance of Nanostructured and Conventional Cemented Carbides. Wear, 1996, 200:206-214
    [48] Stewart D A, Shipway P H, Mc Cartney D G. Abrasive Wear Behaviour of Conventional and Nanocomposite HVOF-sprayed WC–Co Coatings. Wear, 1999,225-229:789-798
    [49] Yang Q Q, Senda T, Ohmori A. Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF-sprayed WC–12%Co Coatings. Wear, 2003, 254:23-34
    [50] Pirso J, Letunovit? S, Viljus M.Friction and Wear Behaviour of Cemented Carbides. Wear, 2004, 257:257-265
    [51] Engqvist H, Ederyd S, Hogmark S, et al. Grooving Wear of Single-crystal Tungsten Carbide. Wear, 1999, 230:165-174
    [52] Wu P, Du H M, Chen X L, et al.Influence of WC Particle Behavior on the Wear Resistance Properties of Ni–WC Composite Coatings. Wear, 2004, 257:142-147
    [53] Shipway P H, Howell L. Microscale Abrasion–corrosion Behaviour of WC–Co Hardmetals and HVOF Sprayed Coatings. Wear, 2005, 258:303-312
    [54] Gant A J, Gee M G. Wear of Tungsten Carbide–cobalt Hardmetals and Hot Isostatically Pressed High Speed Steels under Dry Abrasive Conditions. Wear, 2001, 251:908-915
    [55] Jia K, Fischer T E. Sliding Wear of Conventional and Nanostructured Cemented Carbides. Wear, 1997, 203-204:310-318
    [56]李伯民,赵波.现代磨削技术.北京:机械工业出版社:2003, 1-70
    [57]任敬心,华定安.磨削原理.西安:西北工业大学出版社:1988, 1-91
    [58]傅杰才.磨削原理与工艺.长沙:湖南大学出版社:1986, 179-180
    [59] Malkin S.磨削技术理论与应用.蔡光起译.沈阳:东北大学出版社:2002
    [60]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社:1999,
    [61] T?nshoff H K, Peters J, Inasaki I, et al. Modeling and Simulation of Grinding Processes. Annals of the CIRP, 1992, 41 (2):677-688.
    [62]王西彬,任敬心.结构陶瓷磨削表面损伤的研究.硅酸盐学报, 1997, 25 (1):101-105
    [63]王西彬,任敬心.结构陶瓷磨削表面微裂纹的研究.无机材料学报, 1996, 11 (4):658-664
    [64] Zhang B, Zheng X L, Tokura H, et al. Grinding Induced Damage in Ceramics. Journal of Material Processing Technology, 2002, 132:353-364
    [65] Liu X B, Zhang B. Grinding of Nanostructured Ceramic Coatings: Damage Evaluation. International Journal of Machine Tools & Manufacture, 2003, 43:161-167
    [66] Ren Y H, Zhou Z X, Deng Z H. Microgrinding of Nanostructured Carbide Coatings: Ground surface and Subsurface Damage Observations. KeyEngineering Materials, 2006, 304-305:276-280
    [67] Wu H, Roberts S G, Derby B. Residual Stress and Subsurface Damage in Machined Alumina and Alumina/Silicon Carbide Nanocomposite Ceramics. Acta Material, 2001, 49 (1):501-507
    [68] Xu H H K, Jahamir S. Simple Technique for Observing Subsurface Damage in Machining of Ceramic. Journal of American Ceramic Society, 1994, 95:911-918
    [69] Li K, Liao T W. Surface/subsurface Damage and the Fracture strength of Ground ceramics. Journal of Materials Processing and Technology, 1996, 57:207-220
    [70] Liu X B, Zhang B, Deng Z H. Effects of Grinding Process on Residual Stresses in Nanostructured Ceramic Coatings. Journal of Materials Science, 2002, 37:3229-3239
    [71]邓朝晖,张璧,周志雄,等.陶瓷磨削的表面/亚表面损伤.湖南大学学报(自然科学版), 2002, 29 (5):61-71
    [72] Malkin S, Ritter J E. Grinding Mechanisms and Strength Degradation for Ceramics. Transaction of the ASME, Journal of Engineering for Industry, 1989, 111 (5):167-174
    [73] Hegeman J B J W, DeHosson J T M, With G de. Grinding of WC-Co Hardmetals. Wear, 2001, 248:187-196
    [74]朱波,袁哲俊,赵清亮,等.钢结硬质合金ELID磨削表面的AFM分析.机械工艺师, 2000, 11:7-9
    [75]关佳亮,郭东明,袁哲俊.钢结硬质合金的精密镜面磨削技术的研究.中国机械工程, 2000, 11 (3):288-290
    [76]高筠,贾晓鸣,杜明华.磨削硬质合金刀具时钴浸出机理的研究.工具技术, 2001, 35 (1):9-11
    [77] Liu K, Li X P. Ductile Cutting of Tungsten Carbide. Journal of Materials Processing Technology, 2001, 113:348-354
    [78]邓朝晖.纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究:[湖南大学博士学位论文].长沙:湖南大学, 2003, 9-49
    [79] Liu X B. Microgrinding of Nanostructured Materials: Experimentation and Theoretical modeling:[dissertation]. Storrs: The University of Connecticut, 2002,
    [80]王盘鑫.粉末冶金学.北京:冶金工业出版社:1997, 1-54
    [81]刘寿荣,郝建民,褚连青,等.硬质合金的断裂韧性及其无损评估.有色金属, 2000, 52 (2):83-87
    [82]李力钧,付杰才.磨削力的数学模型的研究.机械工程学报, 1981, 17 (4):31-41
    [83] Tonshoff H K, Peters J, Inasaki I, et al. Modeling and Simulation of Grinding Processes. Annals of the CIRP, 1992, 1 (2):677-688
    [84] Malkin S. Grinding Technology: Theory and Applications of Machining with Abrasives. New York: SME:1996,
    [85] Chen X, Rowe W B. Analysis and simulation of the Grinding Process. Part I: Generation of the Grinding Wheel Surface. International Journal of Machine Tools & Manufacture, 1996, 36 (8):871-882
    [86] Malkin S, Hwang T W. Grinding Mechanisms for Ceramics. Annals of the CIRP, 1996, 45 (2):569-580
    [87] Chen X, Rowe W B. Analysis and simulation of the Grinding Process. Part II: Mechanics of Grinding. International Journal of Machine Tools & Manufacture, 1996, 36 (8):883-896
    [88] Brinksmeier E, Aurich J C, Govekar E, et al. Advances in Modeling and Simulation of Grinding Processes. Annals of the CIRP, 2006, 55 (2):667-696
    [89] Zhang B, Tokura H. Study on Surface Cracking of Alumina Scratched by Single-point Diamond. Journal of Materials Science, 1988, 23:3214-3224
    [90] Xu H H K, Jahamir S. Microfracture and Material Removal in Scratching of Alumina. Journal of Materials Science, 1995, 30:2235-2247
    [91] Ruff A W, Shin H, Evans C J. Damage Processes in Ceramics Resulting from Diamond tool Indentation and Scratching in Various Environments. Wear, 1995, 181-183 (2):551-562
    [92] Kanematsu W. Subsurface Damage in Scratch Testing of Silicon Nitride. Wear, 2004, 256:100-107
    [93] Subhash G, Loukus J E, Pandit S M. Application of Data Dependent Systems Approach for Evaluation of Fracture Modes during a Single-Grit Scratching. Mechanics of Materials, 2002, 34:25-42
    [94] Yoshino M, Ogawa Y, Aravinda S. Machining of Hard-Brittle Materials by a Single Point Tool under External Hydrostatic Pressure. Transactions of the ASME, Journal of Manufacturing Science and Engineering, 2005, 127 (10):837-845
    [95] Kannapan S, Malkin S. Effects of Grain Size and Operationg Parameters on the Mechanics of Grinding. Trans. ASME, J. of Eng. for Ind, 1972, 94:833-842
    [96] Malkin S, Cook N H. The Wear of Grinding Wheels, Part I: Attritious Wear. Trans. ASME, J. of Eng. for Ind, 1971, 93:1120-1128
    [97]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨.纳米技术与精密工程, 2003, 1 (1):48-57
    [98] Marshall D B, Lawn B R. Residual stress Effects in Sharp Contact Cracking: Part 1: Indentation Fracture Mechanics. Journal of Material Science and Technology, 1979, 14:2001-2012
    [99] Marshall D B, Lawn B R, Chantikul P. Residual stress Effects in Sharp Contact Cracking: Part 2: Strength Degradation. Journal of Material Science, 1979, 14:2225-2235
    [100] Lawn B R, Evans A G, Marshall D B. Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System. Journal of American Ceramic Society, 1980, 63 (9-10):574-581
    [101]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社:2001,
    [102] Marshall D B, Lawn B R, Evans A G. Elastic/Plastic Indentation Damage in Ceramics: The Latered Crack System. Journal of American Ceramic Society, 1982, 65 (11):561-566
    [103] Lawn B R. Fracture of Brittle Solids. Cambridge University Press: 1993, 249-306
    [104] Bifano T G, Dow T A, Scattergood R O. Ductile Regime Grinding: A New Technology for Machining Brittle Materials. Transactions of the ASME, Journal of Engineering for Industry, 1991, 113 (2):184-189
    [105]Lawn B R, Swain W V. Microfracture Beneath Point Indentations in Brittle Solids. Journal of Material Science, 1975, 10:113-122
    [106]张定铨.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社:1999, 74-79
    [107] Winter P M, Mc Donald W J. Biaxial Residual Surface Stress from Grinding and Finish Machining 304 Strainless Steel Detemined by a New Dissection Technique. Transactions of the ASME, Journal of Basic Engineering, 1969, 91:15-23
    [108] Subramanian K, Ramanath S, Tricard M. Mechanisms of Material Removal in Precision Production Grinding of Ceramics. Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1997, 119 (4):509-519
    [109] Zhang B, Howes T D. Material Removal Mechanisms in Grinding Ceramics. Annals of the CIRP, 1994, 43 (1):305-308
    [110] Kirchner H P. Damage Penetration at Elongated Machining Grooves in Hot-Pressed Si3N4. Journal of American Ceramic Society, 1984, 67:127-132
    [111] Maksoud T M A, Mokbel A A, Morgan J E. Evaluation of Surface and Subsurface Cracks of Ground Ceramics. Journal of Materials Processing Technology, 1999, 88:222-243
    [112] Blake P N, Scattergood R O. Ductile Regime Machining of Germanium andSilicon. Journal of American Ceramic Society, 1990, 73 (4):949-957
    [113] Blackly W S, Scattergood R O. Chip Topography for Ductile Regime Machining of Germanium.Transactions of the ASME. Journal of engineering for Industry, 1994, 116 (2):263-266
    [114] Shimida S, Ikawa N, Inamura T, et al. Brittle /Ductile Transition Phenomena in Microindentation and Micromachining. Annals of the CIRP, 1995, 44 (1):523-526
    [115] Zhang B, Howes T D. Subsurface Evaluation of Ground Ceramics. Annals of the CIRP, 1995, 44 (1):263-266
    [116]陈日曜.金属切削原理.北京:机械工业出版社:1992, 178-214
    [117]张嗣伟.基础摩擦学.东营:石油大学出版社:2001, 1-66
    [118] Murthy J K N, Rao D S, Venkataraman B. Effect of Grinding on the Erosion Behaviour of a WC-Co-Cr Coating Depostited by HVOF and Detonation Gun Spray Processes. Wear, 2001, 249:592-600
    [119] Mayer jr J E, Fang G P. Effect of Grit Depth of Cut on Strength of Ground Ceramics. Annals of the CIRP, 1994, 43 (2):309-312
    [120] Lawn B R, Marshall D B. Hardness, Toughness, and Brittleness: an Indentation Analysis. Journal of American Ceramic Social, 1979, 62:347-350
    [121] Laugier M T. Comparison of Toughness in WC-Co Determined by a Compact Tensile Technique with Model Predictions. Journal of Materials Science Letter, 1987, 6:779-780
    [122] Liao T W, Li K. Wear Mechanisms of Diamond Abrasives during Transition and Steady Stages in Creep-Feed Grinding of Structural Ceramics. Wear, 2000, 242:28-37
    [123] Liao T W, Li K. Wear of Diamond Wheels in Creep-Feed Grinding of Ceramic Materials: I: Mechanisms. Wear, 1997, 211:94-103
    [124] Li K, Liao T W. Wear of Diamond Wheels in Creep-feed Grinding of Ceramic Materials: II: Effects on process responses and strength. Wear, 1997, 211:104-112
    [125]杜学礼,潘子昂.扫描电子显微镜分析技术.北京:化学工业出版社:1986, 1-54
    [126]廖乾初.扫描电镜分析技术及应用.北京:机械工业出版社:1990, 1-112
    [127]白春礼,田芳,罗克.扫描力显微术.北京:科学出版社:2000, 1-150
    [128]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析.第一版.哈尔滨:哈尔滨工业大学出版社:1998, 158-206
    [129]黄德欢.纳米技术与应用.上海:中国纺织大学出版社:2001, 66-102
    [130]曾志新,吕明.机械制造技术基础.武汉:武汉理工大学出版社:2001, 216-219
    [131]漆璿,戎泳华. X射线衍射和电子显微分析.上海:上海交通大学出版社:1992, 12-26
    [132]李树棠.晶体X射线衍射学基础.北京:冶金工业出版社:1995, 158-175
    [133]徐国平,尹志民,黄继武,等. X射线衍射测试PDC表面残余应力的实验研究.金刚石磨料与磨具, 2007, 161 (5):40-43
    [134]沈邦兴.工程实验设计.第一版.北京:测绘出版社:1990, 87-153
    [135] Douglas C, Montgomery.实验设计与分析.北京:中国统计出版社:1998, 1-150
    [136] Liao T W, Li K. Wear of Diamond Wheels in Creep-feed Grinding of Ceramic Materials: I: Mechanisms. Wear, 1997, 211:94-103
    [137] Xu H H K, Wei L H, Jahamir S. Grinding Force and Microcrack Density in Abrasive Machining of Silicon Nitride. Journal of Material Research, 1995, 10 (12):3204-3224
    [138] Zhang B. Surface Integrity in Machining Hard-brittle Materials. Journal of Japan Society for Abrasive Technology, 2003, 47 (3):131-134
    [139] Zhang B, Tokura H, Yoshikawa M. Study on Surface Cracking of Alumia Scratched by Single-point Diamond. Journal of Material Science, 1988, 23:3214-3224
    [140]袁巨龙.功能陶瓷的超精密加工技术.哈尔滨:哈尔滨工业大学出版社:2000, 56-66
    [141]邱道益. X射线衍射仪技术.四川科学技术, 1994:2-5
    [142]王先逵.机械制造工艺学.北京:机械工业出版社:2000, 1-9
    [143]林晨光,袁冠森.纳米晶WC-Co硬质合金中WC晶粒度的定量测量.中国有色金属学报, 2005, 15 (6):823-828
    [144] Kear B H, Mc Candlish L E. Chemical Processing and Properties of Nanostructured WC-Co Materials. Nanostructured Materials, 1993, 3 (1-6):19-30
    [145] Von Turkovich B E. Shear Stress in Metal Cutting. Trans. ASME, J. of Eng, For Ind, 1970, 94:151-157
    [146]吴刚.材料结构表征及应用.北京:化学工业出版社:2001, 221-278
    [147] Guo Y B, Barkey M E. FE-Simulation of the Effects of Machining-Induced Residual Stress Profile on Rolling Contact of Hard Machined Components. International Journal of Mechanical Sciences, 2004, 46:371-388
    [148] Guo J K. The Frontiers of Research on Ceramics Science. Jounal of Solid State Chemistry, 1992, 69 (1):108-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700