圆锥动脉干畸形遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分 非综合征性圆锥动脉干畸形中染色体22q11.2缺失调查
     [目的] 调查中国人非综合征性圆锥动脉干畸形患者染色体22q11.2微缺失发生情况。
     [方法] 运用荧光原位杂交方法对36名非综合征性圆锥动脉干畸形患儿血液标本染色体22q11.2微缺失进行检查,其中男性23例、女性13例,年龄2.74±2.50岁(0.03-11.00岁),病种为法乐氏四联征21例、右室双出口9例、先天性校正性大动脉转位1例、肺动脉闭锁合并室间隔缺损1例、完全性大动脉转位4例。探针为N25/N85A3探针。
     [结果] 3名患儿(8.33%)存在染色体22q11.2微缺失,其中2例为法乐氏四联征,1例为右心室双出口合并肺动脉狭窄。
     [结论] 染色体22q11.2微缺失为部分非综合征性圆锥动脉干畸形患者的致病原因。
     第二部分 短串联重复序列基因分型行22q11.2缺失调查的方法学研究
     [目的] 研究短串联:重复序列基因分型染色体22q11.2微缺失筛查方法的可行性。
     [方法] 研究对象同第一部分。选取22q11.2中D22S1638、D22S1648、D22S941、D22S944、D22S1623、D22S264、D22S311、D22S1709等8个短串联重复序列,通过PCR方法对该8个短串联重复序列进行基因分型。计算各短串联重复序列杂合度和纯合度以及按杂合度大小依次引入短串联重复序列后不同短串联重复序列组合纯合状态发生率和与FISH相比染色体22q11.2微缺失诊断特异性。
     [结果] 各短串联重复序列杂合度、纯合度分别为:D22S1638 0.3333 0.6667、D22S1648 0.4848 0.5152、D22S941 0.3333 0.6667、D22S944 0.2424 0.7576、D22S1623 0.4545 0.5455、D22S264 0.6061 0.3939、D22S311 0.4545 0.5455、D22S1709 0.0606 0.9394;按杂合度大小依次引入短串联重复序列D22S264、
Section 1 22q11.2 Deletion In Patients With Conotruncal Heart Defects
    Objective: To study the incidence of chromosome 22q11.2 deletion in Chinese pediatric non-syndromic conotruncal heart defects patients.
    Methods: A total of 36 Chinese pediatric non-syndromic conotruncal heart defects patient (21 with tetralogy of fallot, 9 with double outlet right ventricle, 1 with pulmonary artery atresia with ventricular septal defect, 1 with congenitally corrected transposition of the great arteries and 4 with transposition of the great arteries), 13 females and 23 male ranging in age from 0.03 to 11 years, were included in our study. We did fluorescence in-situ hybridization with N25/N85A3 probe to find the chromosome 22q11.2 deletion in peripheral blood cells of patients.
    Results: 3 patients (8. 33%), 2 with tetralogy of fallot and 1 with double outlet right ventricle, have chromosome 22q11.2 deletion.
    Conclusion: Chromosome 22q11.2 deletion is an important cause of non-syndromic conotruncal heart defects.
    Section 2
    Genotyping Of Short Tandem Repeat In Detection Of 22q11.2
    Deletion
    Objective: To explore an economical and efficient approach for molecular detection of chromosome 22q11.2 deletion.
引文
[1] Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1992; 50: 924-933.
    [2] Scambler PJ, Kelly D, Lindsay E, et al. Velocardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet 1992; 339: 1138-1139.
    [3] Burn J, Takao A, Wilson D, et al. Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22q11. J Med Genet 1993; 30: 822-824.
    [4] Wamagishi H. The 22q11.2 deletion syndrome. Keio J Med 2002; 51: 77-88.
    [5] Lindsay E A. Chromosome microdeletions: dissecting de122q11 syndrome. Nat Rev Genet 2001; 2: 858-868.
    [6] Shaikh T H, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 2000; 9: 489-501.
    [7] Heller J. CATCH22. 1st eds London: Jonathan Cape 1992: 1-12.
    [8] Greenberg F. DiGeorge syndrome: an historical review of clinical and cytogenetic features. J Med Genet 1993; 30: 803-806.
    [9] Goldberg R, Motzkin B, Marion R, et al. Velo-cardio-facial syndrome: a review of 120 patients. Am J Med Genet, 1993; 45: 313-319.
    [10] Matsuoka R, Takao A, Kimura M, et al. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22911.2. Am J Med Genet 1994; 53: 285-289.
    [11] Driscoll DA, Salvin J, Sellinger B, et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Cenet 1993; 30: 813-817.[12] Desmaze C, Scambler P, Prieur M, et al. Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum Genet 1994; 90: 663-665.
    [13] Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 1997; 34: 798-804.
    [14] Jawad AF, McDonald-McGinn DM, Zackai E, et al. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J Pediatr 2001, 139: 715-723.
    [15] Elder DA, Kaiser-Rogers K, Aylsworth AS, et al. Type Ⅰ diabetes mellitus in a 682 Allergy, immunology, and related disorders patient with chromosome 22q11.2 deletion syndrome. Am J Med Genet 2001, 101: 17-19.
    [16] Kawame H, Adachi M, Tachibana K, et al. Graves' disease in patients with 22q11.2 deletion. J Pediatr 2001, 139: 892-895.
    [17] Davies K, StiehmER, Woo P, et al. Juvenile idiopathic polyarticular arthritis and IgA deficiency in the 22q11 deletion syndrome. J Rheumatol 2001, 28: 2326-2334.
    [18] Garabedian M. Hypocalcemia and chromosome 22q11 microdeletion. Genet Couns 1999; 10: 389-394.
    [19] Elena Perez, Kathleen E Sullivan. Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Current Opinion in Pediatrics 2002; 14: 678-683.
    [20] Vantrappen G, Rommel N, Cremers CW, et al. The velo-cardio-facial syndrome: the otorhinolaryngeal manifestations and implications. Int J Pediatr Otorhinolaryngol 1998; 45: 133-141.
    [21] Ford LC, Sulprizio SL, Rasgon BM. Otolaryngological manifestations of velocardiofacial syndrome: a retrospective review of 35 patients. Laryngoscope 2000; 110: 362-367.
    [22] Swillen A, Devriendt K, Legius E, et al. Intelligence and??psychosocial adjustment in velocardiofacial syndrome: a study of 37 children and adolescents with VCFS. J Med Genet 1997; 34: 453-458.
    
    [23] Moss EM, Batshaw ML, Solot CB, et al. Psychoeducational profile of the 22q11.2 microdeletion: A complex pattern. J Pediatr 1999; 134:193-198.
    
    [24] Karayiorgou M, Morris MA, Morrow B, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 1995; 92: 7612-7616.
    
    [25] Sugama S, Namihira T, Matsuoka R, et al. Psychiatric inpatients and chromosome deletions within 22q11.2. J Neurol NeurosurgP sychiatry 1999;67: 803-806.
    
    [26] Scambler PJ. The 22qll deletion syndromes. Hum Mol Genet 2000; 9:2421-2426.
    
    [27] Driscoll DA, Salvin J, Sellinger B, et al. Prevalence of 22qll microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet 1993; 30:813-817.
    
    [28] Desmaze C, Scambler P, Prieur M, et al. Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum Genet 1994;90: 663-665.
    
    [29] YI-RU SHI, KAI-SHENG HSIEH, JER-YUARN WU, et al. Molecular analysis of syndromic congenital heart disease using short tandem repeat markers and semiquantitative polymerase chain reaction method. Pediatrics International 2002; 44: 264-268.
    
    [30] Gania Kessler-Icekson, Einat Birk, Ari Y Weintraub, et al. Association of Tetralogy of Fallot With a Distinct Region of del22qll. 2. American Journal of Medical Genetics 2002; 107: 294-298.
    
    [31] Yi-Ru Shi, Kai-Sheng Hsieh, Jer-Yuarn Wu, et al. Genetic Analysis of Chromosome 22q11.2 Markers in Congenital Heart Disease. Journal ofClinical Laboratory Analysis 2003; 17: 28-35.
    [32] 徐让,陈树宝,顾学范登。中国人22q11区微卫星多态性及在法洛四联症/肺动脉闭锁基因诊断中的应用。上海医学2000;10:585-588。
    [33] 金润铭,吴小艳,熊安秀等。多重PCR对22q11缺失综合征的检测。中国妇幼保健 2003;18:612-614。
    [34] Bonnet D, Cormier-Daire V, Kachaner J, et al. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions. Am J Med Genet 68(2): 182-184.
    [35] Kessler-lcekson G, Birk E, Weintraub AY, et al. Association of tetralogy of Fallot with adistinct region of de122q11.2. Am J Med Genet 107(4): 294-298.
    [36] Shi YR, Hsieh KS, Wu JY, et al. Molecular analysis of syndromic congenital heart disease using short tandem repeat markers and semiquantitative polymerase chain reaction method. Pediatr Int 44(3): 264-268.
    [37] Yamagishi H. The 22q11.2 deletion syndrome. Keio J Med 2002; 51: 77-88.
    [38] Lindsay E A. Chromosome microdeletions: dissecting de122q11 syndrome. Nat Rev Genet 2001; 2: 858-868.
    [39] Lindsay E A, et al. Submicroscopic deletions at 22q11.2: variability of the clinical picture and delineation of a commonly deleted region. Am J Med Genet 1995; 56: 191-197.
    [40] Gong W, et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region On 22q11. Hum Mol Genet 1996; 5: 789-800.
    [41] Carlson C, et al. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 1997; 61: 620-629.
    [42] Matsuoka R, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet 1998; 103: 70-80.[43] Yamagishi H, et al. Phenotypic discordance in monozygotic twins with 22q11.2 deletion. Am J Med Genet 1998; 78: 319-321.
    
    [44] Lindsay E A. Chromosome microdeletions: dissecting del22qll syndrome. Nat Rev Genet 2001; 2: 858-868.
    
    [45] Lindsay, E. A. et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999; 401: 379-383.
    
    [46] Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo - cardio - facial/DiGeorge syndrome. Cell 2001; 104: 619-629.
    
    [47] Lindsay, E. A. et al. TBX1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410:97-101.
    
    [48] Jerome, L. A. and Papaioannou, V. E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, TBX1. Nat Genet 2001; 27: 286-291.
    
    [49] Plageman TF J r, Yutzey KE. T-box genes and heart development:Putting the "T" in heart. Dev Dynamic 2005; 232: 11-20.
    
    [50] Chieffol C, Garvey N, Gong WL, et al. Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse TBX1. Gene Genomics 1997; 43: 267-277.
    
    [51] Jerome LA, Papaioannou VE. Digeorge syndrome phenotype in mice mutant for the T2box gene, TBX1. Nat Genet 2001; 27: 286-291.
    
    [52] Vitelli F, Morishima M, Taddei I, et al. TBX1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nervemigratory pathways. Hum Mol Genet 2002; 11: 915-922.
    
    [53] Kochilas L, Merscher2Gomez S, Lu MM, et al. The role of Neural crest during Cardiac Development in a Mouse Model of Digeorge Syndrome. Dev Biol 2002; 251: 157-166.
    
    [54] Merscher S, Funke B, Ep stein JA, et al. TBX1 is responsible for cardiovascular defects in velo2cardio2facial/Digeorge syndrome. Cell 2001; 104: 619-629.
    [55] Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development 2001; 128: 3179-3188.
    [56] Xu H, Morishima M, Wylie JN, et al. TBX1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 2004; 131: 3217-3227.
    [57] Weilong Gong, Shoshanna Gottlieb, Joelle Collins, et al. Mutation analysis of TBX1 in non-deleted patients wish features of DGS/VCFS or isolated cardiovascular defects. JMG 2001; 38: e45.[1] Scambler PJ. The 22q11 deletion syndromes. Hum Mol Genet 2000; 9: 2421-2426.
    [2] Yamagishi H. The 22q11. 2 deletion syndrome. Keio J Med 2002; 51: 77-88.
    [3] Driscoll DA, Budarf ML, Emanuel BS. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1992; 50: 924-933.
    [4] Scambler PJ, Kelly D, Lindsay E, et al. Velocardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet 1992; 339: 1138-1139.
    [5] Burn J, Takao A, Wilson D, et al. Conotruncal anomaly face syndrome is associated with adeletionwithin chromosome 22q11. J Med Genet 1993; 30: 822-824.
    [6] Wilson DI, Burn J, Scambler P, et al. DiGeorge syndrome: part of CATCH??22. J Med Genet 1993; 30: 852-856.
    
    [7] Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical features associated with interstitial chromosome 22qll deletions: a European collaborative study. J Med Genet 1997; 34: 798-804.
    
    [8] Jawad AF, McDonald-McGinn DM, Zackai E, et al. Immunologic features of chromosome 22qll.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J Pediatr 2001, 139: 715-723.
    
    [9] Elder DA, Kaiser-Rogers K, Aylsworth AS, et al. Type I diabetes mellitus in a 682 Allergy, immunology, and related disorders patient with chromosome 22q11.2 deletion syndrome. Am J Med Genet 2001, 101: 17-19.
    
    [10] Kawame H, Adachi M, Tachibana K, et al. Graves' disease in patients with 22qll.2 deletion. J Pediatr 2001, 139:892-895.
    
    [11] Davies K, Stiehm ER, Woo P, et al. Juvenile idiopathic polyarticular arthritis and IgA deficiency in the 22qll deletion syndrome. J Rheumatol 2001, 28: 2326-2334.
    
    [12] Garabedian M. Hypocalcemia and chromosome 22qll microdeletion. Genet Couns 1999; 10: 389-394.
    
    [13] Elena Perez, Kathleen E Sullivan. Chromosome 22qll.2 deletion syndrome (DiGeorge and velocardiofacial syndromes). Current Opinion in Pediatrics 2002; 14: 678-683.
    
    [14] Maeda J, Yamagishi H, Matsuoka R, et al. Frequent association of 22qll.2 deletion with tetralogy of Fallot. Am J Med Genet 2000; 92:269-272.
    
    [15] Matsuoka R, KimuraM, ScamblerPJ, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet 1998;103: 70-80.
    
    [16] Vantrappen G, Rommel N, Cremers CW, et al. The velo-cardio-facial syndrome: the otorhinolaryngeal manifestations and implications. Int J Pediatr Otorhinolaryngol 1998; 45: 133-141.
    [17] Ford LC, Sulprizio SL, Rasgon BM. Otolaryngological manifestations of velocardiofacial syndrome: a retrospective review of 35 patients.Laryngoscope 2000; 110: 362-367.
    
    [18] Albery EH, Bennett JA, Pigott RW, et al. The results of 100 operations for velopharyngeal incompetence-selected on the findings of endoscopic and radiological examination. Br J Plast Surg 1982; 35: 118-126.
    
    [19] Swillen A, Devriendt K, Legius E, et al. Intelligence and psychosocial adjustment in velocardiofacial syndrome: a study of 37 children and adolescents with VCFS. J Med Genet 1997; 34: 453-458.
    
    [20] Moss EM, Batshaw ML, Solot CB, et al. Psychoeducational profile of the 22qll.2 microdeletion: A complex pattern. J Pediatr 1999; 134:193-198.
    
    [21] Karayiorgou M, Morris MA, Morrow B, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22qll. Proc Natl Acad Sci USA 1995; 92: 7612-7616.
    
    [22] Sugama S, Namihira T, Matsuoka R, et al. Psychiatric inpatients and chromosome deletions within 22qll. 2. J Neurol Neurosurg Psychiatry 1999;67: 803-806.
    
    [23] Lindsay E A. Chromosome microdeletions: dissecting del22qll syndrome.Nat Rev Genet 2001; 2: 858-868.
    
    [24] Shaikh T H, et al. Chromosome 22-specific low copy repeats and the 22qll.2 deletion syndrome: genomic organization and deletion endpointanalysis. Hum Mol Genet 2000; 9: 489-501.
    
    [25] Lindsay E A, et al. Submicroscopic deletions at 22qll.2: variability of the clinical picture and delineation of a commonly deleted region. Am J Med Genet 1995; 56: 191-197.
    
    [26] Gong W, et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22qll. Hum Mol Genet 1996; 5: 789-800.
    [27] Carlson C, et al. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 1997; 61: 620-629.
    [28] Matsuoka R, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet 1998; 103: 70-80.
    [29] Yamagishi H, et al. Phenotypic discordance in monozygotic twins with 22q11.2 deletion. Am J Med Genet 1998; 78: 319-321.
    [30] Graham A, Smith A. Patterning the pharyngeal arches. Bioessays 2001; 23: 54-61.
    [31] Kirby M L, Waldo K L. Neural crest and cardiovascular patterning. Circ Res 1995; 77: 211-215.
    [32] Epstein D J, et al. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991; 67: 767-774.
    [33] Kurihara Y, et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 1995; 96: 293-300.
    [34] Thomas T, et al. A signaling cascade involving endothelin-1, dHAND and msxl reguiates development of neural-crest-derived branchial arch mesenchyme. Development 1998; 125: 3005-3014.
    [35] Lindsay EA, Botta A, Jurecic V, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999; 401: 379-383.
    [36] Lindsay EA, Vitelli F, Su H, et al. TBX1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410: 97-101.
    [37] Schinke M, Izumo S. Deconstructing DiGeorge syndrome. Nat Genet 2001; 27: 238-240.
    [38] Kimber WL, Hsieh P, Hirotsune S, et al. Deletion of 150 kb in the minimal DiGeorge/velocardiofacial syndrome critical region in mouse. Hum Mol Genet 1999; 8: 2229-2237.[39] Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001; 04: 619-629.
    
    [40] Taddei I, Morishima M, Huynh T, et al. Genetic factors are major determinants of phenotypic variability in a mouse model of the DiGeorge/del22qll syndromes. Proc Natl Acad Sci USA 2001; 98:11428-11431.
    
    [41] Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, TBX1. Nat Genet 2001; 27: 286-291.
    
    [42] Gong W, Gottlieb S, Collins J, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 2001; 38: E45.
    
    [43] Guris DL, Fantes J, Tara D, et al. Mice lacking the homologue of the human 22qll. 2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 2001; 27: 293-298.
    
    [44] Botta A, Tandoi C, Fini G, et al. Cloning and characterization of the gene encoding human NPL4, a protein interacting with the ubiquitin fusiondegradation protein (UFD1L). Gene 2001; 275: 39-46.
    
    [45] Yamagishi H, Garg V, Matsuoka R, et al. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999;283: 1158-1161.
    
    [46] Wadey R, McKie J, Papapetrou C, et al. Mutations of UFD1L are not responsible for most cases of DiGeorge Syndrome/velocardiofacial syndrome without deletions within chromosome 22qll. Am J Hum Genet 1999;65: 247-249.
    
    [47] Heller J. CATCH22. 1st eds London: Jonathan Cape 1992: 1-12.
    
    [48] Greenberg F. DiGeorge syndrome: an historical review of clinical and cytogenetic features. J Med Genet 1993; 30: 803-806.
    
    [49] Goldberg R, Motzkin B, Marion R, et al. Velo-cardio-facial syndrome:??a review of 120 patients. Am J Med Genet, 1993; 45: 313-319.
    [50] Matsuoka R, Takao A, Kimura M, et al. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2. Am J Med Genet 1994; 53: 285-289.
    [51] Wilson DI, Bum J, Scambler P, et al. DiGeorge syndrome: part of CATCH 22. J Med Genet 1993: 852-856.
    [52] Driscoll DA, Salvin J, Sellinger B, et al. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet 1993; 30: 813-817.
    [53] Desmaze C, Seambler P, Prieur M, et al. Routine diagnosis of DiGeorge syndrome by fluorescent in situ hybridization. Hum Genet 1994; 90: 663-665.
    [54] Debrus S, Berger G, de Meeus A, et al. Familial non-syndromic conotruncal defects are not associated with a 22q11 microdeletion Hum Genet 1996; 97: 138-144.
    [55] Van Hemell JO, Schaap C, Van Opstal D, et al. Recurrence of DiGeorge syndrome: prenatal detection by FISH of a molecular 22q11 deletion. J Med Genet 1995; 32: 657-658.
    [56] Hall C, Nelson DM, Ye X, et al. HIRA, the Human Homologue of Yeast Hirlp and Hir2p, Is a Novel Cyelin-cdk2 Substrate Whose Expression Blocks S-Phase Progression. Mol Cell Biol 2001; 21: 1954-1865.
    [57] Roberts C, Sutherland HF, Farmer H, et al. Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivaties prior to early embryonic lethality. Mol Cell Biol 2002; 22: 2318-2328.
    [58] Berti L, Mittler G, Przemeck GK. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit. Genomics 2001; 74: 320-332.[59] De Luca A, Conti E, Grifone N, et al. Association study between CAG trinucleotide repeats in the PCQAP gene (PC2 Glutamine/Q-Richassociated protein) and schizophrenia. Am J Med Genet 2003; 116B: 32-35.[1] Lindsay E A and Baldini A. Congenital heart defects and 22q11 deletions: which genes count? Mol Med Today 1998; 4: 350- 357.
    [2] Yamagishi H. The 22q11.2 deletion syndrome. Keio J Med 2002; 51: 77-88.
    [3] Lindsay E A. Chromosome microdeletions: dissecting de122q11 syndrome. Nat Rev Genet 2001; 2: 858-868.
    [4] Shaikh T H, et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 2000; 9: 489-501.
    [5] Lindsay E A, et al. Submicroscopic deletions at 22q11.2: variability of the clinical picture and delineation of a commonly deleted region. Am J Med Genet 1995; 56: 191-197.
    [6] Gong W, et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum Mol Genet 1996; 5: 789-800.
    [7] Carlson C, et al. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am J Hum Genet 1997; 61: 620-629.
    [8] Matsuoka R, et al. Molecular and clinical study of 183 patients with conotruncal anomaly face syndrome. Hum Genet 1998; 103: 70-80.
    [9] Yamagishi H, et al. Phenotypic discordance in monozygotic twins with 22q11.2 deletion. Am J Med Genet 1999; 78: 319-321.[10] Graham A and Smith A. Patterning the pharyngeal arches. Bioessays 2001; 23: 54-61.
    
    [11] Kirby M L and Waldo K L. Neural crest and cardiovascular patterning.Circ Res 1995; 77, 211-215.
    
    [12] Epstein DJ, et al. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 1991; 67, 767-774.
    
    [13] Kurihara Y, et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 1995; 96,293 - 300.
    
    [14] Thomas T, et al. A signaling cascade involving endothelin-1, dHAND and msxl regulates development of neural-crest-derived branchial arch mesenchyme. Development 1998; 125, 3005-3014.
    
    [15] Lamour V, et al. A human homolog of the S. cerevisiae HIR1 and HIR2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum Mol Genet 1995; 4, 791-799.
    
    [16] Wilming L G, et al. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients. Hum Mol Genet 1997; 6, 247-258.
    
    [17] Roberts C, et al. Cloning and developmental expression analysis of chick Hira (Chira), a candidate gene for DiGeorge syndrome. Hum Mol Genet 1997; 6, 237-245.
    
    [18] Farrell M J, et al. HIRA, a DiGeorge syndrome candidate gene, is required for cardiac outflow tract septation. Circ Res 1999; 84, 127 - 135.
    
    [19] Pizzuti A, et al. UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome. Hum Mol Genet 1997; 6, 259-265.
    
    [20] Yamagishi H, et al. A molecular pathway revealing a genetic basis for human cardiac and craniofacial defects. Science 1999; 283,1158- 1161.
    [21] Yamagishi C, et al. Functional attenuation of Ufdll, a 22qll.2 deletion syndrome candidate gene, leads to cardiac outflow septation defects in chicken embryos. Pediatr Res 2003; 53, 546-553.
    
    [22] Lindsay E A, et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999; 401, 379-383.
    
    [23] Lindsay E A, et al. TBXl haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410, 97-101.
    
    [24] Guris D L, et al. Mice lacking the homologue of the human 22qll.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 2001; 27, 293-298.
    
    [25] Merscher S, et al. TBXl is responsible for cardiovascular defects in velo - cardio - facial/DiGeorge syndrome. Cell 2001; 104, 619-629.
    
    [26] Jerome L A and Papaioannou V E. DiGeorge syndrome phenotype in mice mutant for the T-box gene, TBXl. Nat Genet 2001; 27, 286-291.
    
    [27] Chapman D L, et al. Expression of the T-box family genes, TBXl-Tbx5,during early mouse development. Dev Dyn 1996; 206, 379-390.
    
    [28] Garg V, et al. TBXl, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 2001; 235, 62-73.
    
    [29] Trumpp A, et al. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev 1999; 13, 3136-3148.
    
    [30] Wendling 0, et al. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 2000;127, 1553-1562.
    
    [31] Schneider R A and Helms J A. The cellular and molecular origins of beak morphology. Science 2003; 299, 565-568.
    
    [32] Abu-Issa R, et al. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002; 129,4613-4625.
    
    [33] Frank D U, et al. An Fgf8 mouse mutant phenocopies human 22qll deletion syndrome. Development 2002; 129, 4591-4603.
    
    [34] Vitelli F, et al. A genetic link between TBXl and fibroblast growth factor signaling. Development 2002; 129, 4605-4611.
    
    [35] Farrell M J, et al. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation. J Clin Invest 2001; 107, 1509-1517.
    
    [36] Schneider R A, et al. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 2001; 128, 2755 - 2767.
    
    [37] Alsan B H and Schultheiss T M. Regulation of avian cardiogenesis by Fgf8 signaling. Development 2002; 129, 1935-1943 .
    
    [38] Reifers F, et al. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 2000; 127, 225-235.
    
    [39] Vitelli F, et al. TBXl mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum. Mol Genet 2002; 11, 915-922.
    
    [40] Kochilas, L. et al. The role of neural crest during cardiac development in a mouse model of DiGeorge syndrome. Dev Biol 2002; 251,157-166.
    
    [41] Mjaatvedt C H, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001; 238, 97-109 .
    
    [42] Waldo K L, et al. Conotruncal myocardium arises from a secondary heart field. Development 2001; 128, 3179-3188.
    
    [43] Kelly R G, et al. The arterial pole of themouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001; 1,435 - 440.
    [44] Yamagishi H, et al. TBX1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev 2003; 17, 269-281.
    [45] Britto JM, et al. Life, death and Sonic hedgehog, gioessays 2000; 22, 499-502.
    [46] Chiang C, et al. Cyclopia and defective axial patterning inmiee lacking Sonic hedgehog gene function. Nature 1996; 383, 407-413.
    [47] Helms J A, et al. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 1997; 187, 25-35.
    [48] Kaufmann E and Knochel W. Five years on the wings of fork head. Mech Dev 1996; 57, 3-20.
    [49] Kaestner K H, et al. Unified nomenclature for the winged helix/ forkhead transcription factors. Genes Dev 2000; 14, 142-146.
    [50] Weinstein D C, et al. The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 1994; 78, 575-588.
    [51] Ang S L and Rossant J. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 1994; 78, 561-574.
    [52] Winnier G E, et al. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev 1997; 11, 926-940.
    [53] Iida K, et al. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 1997; 124, 4627-4638.
    [54] gume T, et al. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998; 93, 985-996.
    [55] Winnier G E, et al. Roles for the winged helix transcription factors??MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev Biol 1999; 213, 418-431.
    
    [56] Kume T, et al. The murine winged helix transcription factors, Foxcl and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 2001; 15, 2470-2482.
    
    [57] Fang I, et al. Mutations in F0XC2 (MFH-1). A forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 2000; 67, 1382-1388.
    
    [58] Stalmans I, et al. VEGF: A modifier of the del22qll (DiGeorge) syndrome? Nat Med 2003; 9, 173-182.
    
    [59] Lawson N D, et al. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 2002;3, 127-136.
    
    [60] Gong W, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 2001;38, E45.
    
    [61] Gogos J A, et al. Catechol-O-methyltransferase- deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 1998;95, 9991-9996.
    
    [62] Gogos J A, et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 1999; 21, 434-439.
    
    [63] Paylor R, et al. Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments. Hum Mol Genet 2001; 10, 2645 - 2650.
    
    [64] Plageman TF J r, Yutzey KE. T-box genes and heart development: Putting the "T" in heart. Dev Dynamic 2005; 232: 11-20.
    
    [65] McQuade L, Christodoulou J, Budarf M, et al. Patient with a 22qll. 2 deletion with no overlap of the minimal DiGeorge syndrome critical region (MDGCR). Am J Med Genet 1999; 86: 27-33.
    [66] Yagi H, Furutani Y, Hamada H, et al. Role of TBXI in human de122qll. 2 syndrome. Lancet 2003; 362: 1366-1373.
    [67] Conti E, Grifone N, Sarkozy A, et al. Digeorge subtypes of nonsyndromic conotruncal defects: evidence against a major role of TBX1 gene. Eur J Hum Genet 2003; 11 (4): 349-351.
    [68] Kochilas L, Merscher2Comez S, Lu MM, et al. The role of Neural crest during Cardiac Development in aMouseModel of Digeorge Syndrome. Dev Biol 2002; 251: 157-166.
    [69] Vitelli F, Morishima M, Taddei I, et al. TBX1 mutation causes multiple cardiovascular defects and disrup ts neural crest and cranial nervemigratory pathways. Hum Mol Genet 2002; 11: 915-922.
    [70] Merscher S, Funke B, Ep stein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/ Digeorge syndrome. Cell 2001: 104: 619-6129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700