植物抗菌蛋白GmPGIP3和BvGLP1转基因小麦的分子检测和抗病性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GmPGIP3是大豆多聚半乳糖醛酸酶抑制蛋白3,能够抑制一些真菌内切多聚半乳糖醛酸活性,从而减弱真菌对植株的侵害。BvGLP1是甜菜中的一类萌发素蛋白,萌发素催化草酸氧化产生过氧化氢,过氧化氢能够诱导与抗性有关的基因表达,从而使植物产生相关抗性。本研究利用基因工程技术构建了GmPGIP3和BvGLP1基因的单子植物表达载体pA25-GmPGIP3和pA20-BvGLP1,通过基因枪介导法将其转入推广的小麦品种扬麦18和扬麦19中,成功的获得了转基因小麦植株。经过多代的鉴定和选育,最终挑选出了抗小麦纹枯病、赤霉病和根腐病的小麦新种质,主要研究工作如下:
     1.抗小麦纹枯病扬麦19种质的获得。对转GmPGIP3基因扬麦19的T0至T4代植株,进行PCR、Southern blot、半定量RT-PCR、荧光定量Q-RT-PCR分析,人工接种致病菌禾谷丝核菌后进行抗性鉴定。分子检测结果表明,GmPGIP3已转入扬麦19,已验证在部分转基因小麦不同株系中以一至二个拷贝存在,并在转录水平上表达;不同转基因株系的抗病性对比受体材料有明显提高而且可以稳定遗传。同时调查主要农艺性状与受体材料没有明显差异,说明外源基因对小麦正常生长基本没有影响。
     2.抗小麦赤霉病扬麦19种质的获得。对转GmPGIP3基因扬麦19的T0至T4代植株,进行上述分子检测,在江苏省农业科学院生物技术研究所网室内,采用人工接种致病菌禾谷镰刀菌后进行抗性鉴定。分子检测结果表明,GmPGIP3已转入扬麦19,已验证在部分转基因小麦不同株系中以一至二个拷贝存在,并在转录水平上表达;不同转基因株系的抗病性对比受体材料有明显提高而且可以稳定遗传。
     3.抗小麦根腐病扬麦18种质的获得。对转GmPGIP3和BvGLP-1基因扬麦18的T0至T2代植株进行上述分子检测,人工接种混合致病菌后进行抗性鉴定。分子检测结果表明,GmPGIP3和BvGLP-1已分别转入不同株系的扬麦18。已验证在部分转基因小麦不同株系中以一至二个拷贝存在,并在转录水平上表达;不同转基因株系的抗病性对比受体材料有明显提高而且可以稳定遗传。同时调查主要农艺性状与受体材料没有明显差异,说明外源基因对小麦正常生长基本没有影响。
GmPGIP3 is soybean polygalacturonase-inhibiting protein 3, could inhibition of fungal endo-polygalacturonase acid activity, which weakened pathogen fungi to plant Infection. BvGLP1 is a kind of sugar beet Germin-like protein(GLP), GLP catalytic oxalic acid oxidation to produce hydrogen peroxide, hydrogen peroxide can induce resistance gene expression so that the plants associated with resistance. In this study, the use of genetic engineering technology to build the GmPGIP3 and BvGLP1 genes monocots expression vector pA25-GmPGIP3 and pA20-BvGLP1, by gene gun-mediated and related molecular detection techniques that GmPGIP3 and BvGLP1 into wheat varieties have been promoted Yangmai 18 and Yangmai 19. After several generations of identification and selection, finally picked Enhanced-resistance to Sharp Eyespot, Fusarium Head Blight and wheat root rot new species, the main research work are as follows:
     1. Access of enhanced-resistance Yangmai 19 to Sharp Eyespot. We characterized the GmPGIP3 transgenic wheat plants in T0 to T4 generations by PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. We also evaluated the disease resistance in these GmPGIP3 transgenic plants through inoculating R. cerealis. The results show that, GmPGIP3 in different transgenic wheatlines with one to two copies, and the alien gene GmPGIP3 was over-expressed in seven transgenic wheat lines; different transgenic lines disease resistance contrast with Yangmai 19 showed significantly-enhanced resistance to R. cerealis.The ability of disease resistance can be stably inherited, the main agronomic index with no significant differences with receptor material Yangmai 19.
     2. Access of enhanced-resistance Yangmai 19 to Fusarium Head Blight. We characterized the GmPGIP3 transgenic wheat plants in T0 to T4 generations by PCR, Southern blot, RT-PCR, and Q-RT-PCR analyses. We also evaluated the disease resistance in these GmPGIP3 transgenic plants through inoculating F. graminearum. The results show that, GmPGIP3 in different transgenic wheatlines with one to two copies, and the alien gene GmPGIP3 was over-expressed in seven transgenic wheat lines; different transgenic lines disease resistance contrast with Yangmai 19 showed significantly-enhanced resistance to F. graminearum.The ability of disease resistance can be stably inherited.
     3. Access of enhanced-resistance Yangmai 18 to wheat root rot. We characterized the GmPGIP3 and BvGLP1 transgenic wheat plants in T0 to T2 generations by PCR, RT-PCR, and Q-RT-PCR analyses. We also evaluated the disease resistance in these GmPGIP3 and BvGLP1 transgenic plants through inoculating Bipolaris sorokiniana. The results show that, the alien gene GmPGIP3 and BvGLP1 was over-expressed in seven transgenic wheat lines; different transgenic lines disease resistance contrast with Yangmai 18 showed significantly-enhanced resistance to Bipolaris sorokiniana.The ability of disease resistance can be stably inherited, the main agronomic index with no significant differences with receptor material Yangmai 18.
引文
[1]杨雪,乔娟.世界小麦的生产与贸易[J].生命世界.2007:22-25.
    [2]路妍,张增艳,任丽娟,等.转Rs-AFP2基因小麦的分子分析及其纹枯病抗性[J].作物学报,2009,35(4):640-646.
    [3]刘欣,蔡士宾,张伯桥,等.抗纹枯病、赤霉病的转TaPIEP1基因小麦的分子鉴定与选育[J].作物学报, 2011,37(7):1144-1150.
    [4] Joanna ?a?niewska,Violetta K.Macioszek,Christopher B.Lawrence,et al. Fight to the death:Arabidopsis thaliana defense response to fungal necrotrophic pathogens[J]. Acta Physiol Plant,2010,32:1–10.
    [5]潘以楼,吴汉章.江苏小麦纹枯病菌CAG1群菌株的特性和致病力分化[J].江苏农业科学,增刊, 1993,35-39.
    [6]吴帮承,颜思齐.四川小麦纹枯病病原物系研究[J].西南农业大学学报,1993, 15 (2), 125-129.
    [7]史建荣,王裕中,沈素文,等.江苏省小麦纹枯病菌致病力研究[J].江苏农业学报, 1997,13(3), 188-190.
    [8]岳红宾,王守正,袁红霞,等.用非致病丝核菌株防治小麦纹枯病的初步研究[J].河南农业大学学报,1997, 31(1), 35-38.
    [9]赵洪义,郭凤芝.小麦纹枯病发生规律和防治技术[J].河南农业科学, 1998,1, 12-14.
    [10]张会云,陈荣振,冯国华,等.中国小麦纹枯病的研究现状与展望[J].麦类作物学报, 2007,27(6).
    [11]王裕中,吴志凤,史建荣,等.江苏省小麦纹枯病发生规律与病害消长因素分析[J].植物保护学报,1994, 21(2), 109-114.
    [12]李斯深,王洪刚,李宪彬,等.小麦种质抗纹枯病性的鉴定和遗传分析[J].西北植物学报, 2001,21(5), 1001-1008.
    [13]刘朝晖,张旭,李浩兵.小麦品质纹枯病抗性遗传的初步研究[J].南京农业大学学报, 1999,22(1), 5-8.
    [14]张怀琼,任正隆.小麦纹枯病抗性及抗性遗传的初步研究[J].植物病理学报, 1999,29(3), 199-202.
    [15]任丽娟,蔡士宾,汤,等.小麦纹枯病抗性的SSR标记研究[J].扬州大学学报, 2004,25(4), 16-19.
    [16]孙乃恩.分子遗传学[M].南京:南京大学出版社,1990.
    [17]张小村,李斯深,赵新华.小麦纹枯病抗性的QTL分析和抗病基因的分子标记[J].植物遗传资源学报, 2005,6(3), 276-279.
    [18]吴纪中,颜伟,蔡士宾,等.小麦纹枯病抗性的主基因+多基因遗传分析[J].江苏农业学报, 2005,21(1), 6-11.
    [19] Boshoff WHP,Swart W J,Pretorius ZA.Isozyme characterization of Fusarium graminearum isolates associated with head blight of irrigated wheat in South Africa[J].South African Journal of Botany,1999,65(4):281-286.
    [20]李小勋,顾乃杰,张玉松.小麦抗赤霉病育种研究进展[J].作物研究,2011, 25(3):264-268.
    [21]周晓彬,庄世界,鄢又国,等.小麦赤霉病危害及处理策略[J].中国种业,2011,7.
    [22]陈华保,肖方琼,谢婷,等.小麦内生菌对小麦赤霉病菌的抑制活性[J].西北农业学报,2011, 20(7): 46-49.
    [23]李峰,徐大勇,王光利,等.一株拮抗赤霉病的小麦内生细菌的筛选和抑菌活性[J].生态学杂志,2011,30( 8) : 1738-1743.
    [24]张庆平,李子钦,张建平,等.国内外小麦根腐病研究概况[J].内蒙古农业科技,1996,(4):7-8.
    [25]白金铠,陈其本.东北春小麦根腐病研究[J].植物保护学报,1982.9(4):251-256.
    [26]白金铠,张景春,陈其本.长蠕孢一新种[J].植物学研究通报,1989.9(1):59-60.
    [27]王欢,刘彦群,董辉,等.昆虫病原线虫共生菌对小麦根腐病菌和小麦赤霉病菌的抑菌活性[J].麦类作物学报,2011,31(3): 549 553.
    [28] De Lorenzo G and Ferrari S. Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi[J]. Current Opinion in Plant Biology, 2002,5:1-5.
    [29] Ferrari S, Vairo D, Ausubel FM, Cervone F,et al. Arabidopsis polygalacturonase-inhibiting proteins (PGIP) areregulated by diVerent signal transduction pathways during fungalinfection[J].Plant Cell,2003,15:93–106.
    [30] Manfredini C, Sicilia F, Ferrari S,et al. Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenic plants from infection[J]. Physiol Mol Plant Pathol,2006,67:108–115.
    [31] Jones D A, Jones J D G.. The roles of leucine rich repeats in plant defences[J]. Adv Bot Res Adv Plant Pathol,1997,24:90–167.
    [32] Leckie F, Mattei B, Capodicasa C, et al. The speciWcity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposedβ-strand/β-turn region of the leucine-rich repeats (LRRs) conferconfers a new recognition capability[J]. The EMBO,1999,18:2352–2363.
    [33] Di Matteo A, Federici L, Mattei B, et al.The crystal structure of PGIP (polygalacturonase-inhibiting protein), a leucine-rich repeatprotein involved in plant defense[J]. Proc Natl Acad Sci,2003, 100:10124–10128.
    [34] D’Ovidio R, Raiola A, Capodicasa C, et al. Characterization of the complex locus of Phaseolus vulgaris encoding polygalacturonase-inhibiting proteins (PGIPs) reveals sub-functionalization for defense against fungi and insects[J]. Plant Physiol, 2004,135:2424–2435.
    [35] Desiderio A, Aracri B, Leckie F, et al. Polygalacturonase-Inhibiting Proteins (PGIPs) with Different Specificities Are Expressed in Phaseolus vulgaris[J]. Molecular Plant-Microbe Interactions ,1997, 10(7):852- 860.
    [36] Turner J G, Hoffman R M. Effect of the PGIP from Pea on the hydrolysis Pea cell walls by the edno-PG from Ascochyta pisi[J]. Plant Pathol, 1985,34:54-60.
    [37] Bent A. F. Plant disease resistance genes: Function meets structure[J]. Plant Cell, 1996,8:1757-1771.
    [38] Lafitte C, Barthe J P, Montillet J L, et al. Glycoprotein inhibitors of Colletotrichum lindemuthianum endopolygalacturonase in near isogenic lines of Phaseolus vulgaris resistant and susceptible to anthracnose[J]. Physiologial Plant Pathology, 1984,25:39-53.
    [39] Bergmann C W, Ito Y, Singer D. Ploygalacturcuase-inhibing protein accumulates in Phaseouls Vulgaris, L., response to Wounding elicitors and fungal infection[J]. Plant Journal, 1994,5(5):625-634.
    [40] Cervone F, De Lorenzo, Darvll A. Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants[J]. Phytochemistry,1990, 29(2):447-449.
    [41] Frediani M, Cremonini R, Salvi G, et al. Cytological localization of thePGIP genes in the embryo suspensor cells ofPhaseolus vulgavis L[J]. Theoretical And Applied Genetics, 1993,87:369-373.
    [42] GeVroy V, Sévignac M, De Oliveira J C F, et al. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in speciWc resistance[J]. Mol Plant Microbe Interact,2000, 13:287–296.
    [43] Farina A, Rocchi V, Janni M, et al. The bean polygalacturonase-inhibiting protein 2 (PvPGIP2)is highly conserved in common bean (Phaseolus vulgaris L.)germplasm and related species[J]. Theoretical And Applied Genetics, 2009,118:1371-1379.
    [44] R.D’Ovidio,S.Roberti,M.Di Giovanni,et al. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues[J]. Planta ,2006,224:633-645.
    [45]刘娥娥,郭振飞.小麦种子成熟和萌发过程中的假萌发素活性[J].植物生理与分子生物学学报, 2004,30(6): 671-674.
    [46] Zaleski W, Reinhard A. Uber die ferm entive oxidation der oxalsaüre[J]. Biochem ische Ze itschrift,1912,33:449-455.
    [47] Thompson E W, Lane B G. Relation of protein synthesis inimbibing wheat embryos to the cell free translational capacities of bulk mRNA from dry and imbibing wheat embryos[J]. Biol Chem, 1980, 255: 5965-5970.
    [48] Lane B G. Germin, a novel growth-related protein. In lipmann symposium: cellular regulation and malignant growth[M]. Japan: Japan Scientific Societies Press,1985: 311-319.
    [49] Dumas B, Sailland A, Cheviet J P, et al. Identification of barley oxalate oxidase as a Germin- like protein[J]. CRA cad Sci III,1993,316( 8):793-798.
    [50] Lane B G, Dunwell J M, Rag J A, et al. Germin, a protein marker of early plant development, is an oxalate oxidase[J]. Biol Chem,1993,268(15):12239-12242.
    [51] Baumlein H, Braun H, Kakhovskaya I A,et al. Seed storage proteins of sperm atophytes share a common ancestor with desiccation proteins of fungi[J].Mol Evo,l,1995,41:1070-1075.
    [52] Dunwell J M. Cupins: a new superfamily of functionally diverse proteins that include Germins and plant storage proteins[J]. Biotechnol Genet Eng Rev, 1998,5:1-32.
    [53] Fry S C. Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals[J].Biochem,1998,332:507-515.
    [54] Caliskan M, Cuming A C. Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination[J]. Planta,1998,15:165-171.
    [55] Caliskan M, Turet M, Cuming A C. Formation of wheat (Triticum aestivum L.) embryogenic callusinvolves peroxide-generating Germin-like oxalate oxidase[J]. Planta,2004,219:132-140.
    [56] Carpitan N C. Structure and biogenesis of the cell walls o f grasses[J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:445-476.
    [57] Chen Z, Silvah H, Klessig D F. Active oxygen species in the induction of plant system ic acquired resistance by salicylic acid[J]. Science,1993,262:1883-1886.
    [58] Dumasb, Freysinnet G, Pallett K E. Tissuespecific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings[J]. Plant Physiol,1995,107:1091-1096.
    [59]郭泽建,李德葆.活性氧与植物抗病性[J].植物学报,2000,42(9):881-891.
    [60]景岚,康振生,孙燕飞,等.草酸盐氧化酶基因转化烟草的研究[J].西北植物学报, 2004, 24(10):1845-1849.
    [61] Thurhan H. Salinity response of transgenic potato genotypes expressing the oxalate oxidase gene[J]. Turk J Agric,2005,29:187-195.
    [62] Patrick S, Andreas C, Robert D. Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance[J]. The Plant Journal,1999,20(5):541-552.
    [63] Bernard D, Ceorges F, Kenneth E P. Tissue-Specific Expression of Cermin-Like Oxalate Oxidase during Development and Funga1 lnfection of Barley Seedlings[J]. Plant Physiol,1995,107:1091-1096.
    [64] Grit Z, Helmut B, Hans-Peter M,et al. The Multigene Family Encoding Germin-Like Proteins of Barley. Regulation and Function in Basal Host Resistance[J]. Plant Physiology,2006,(9)142: 181–192.
    [65] William J H, H. Peggy Tao, Charlene K T. Germin-Like Polypeptides Increase in Barley Roots during Salt Stress[J]. Plant Physiol,1991,(97):366-374.
    [66]王俊美,孙燕飞,刘红彦,等.白粉菌诱导的小麦类萌发素蛋白的克隆、定位及表达分析[J].中国农业科学,2009,42(9):3104-3111.
    [67]唐源江,闵伶俐,高桂兰,等.拟南芥GLP13基因在植物抗氧化胁迫响应中的作用[J].植物学报,2011,46(2):147-154.
    [68] Ziguo Zhang, David B, Collinge, et al. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus,The Plant Journal,1995,8(1),139-145.
    [69]冯洁,Takanom A.水稻抗稻瘟病防御系统中草酸氧化酶的鉴定[J].农业生物技术学报,2004,12(3):312-315.
    [70] Katrin K, Monique S, Christine D,et al. Expression of BvGLP-1 Encoding a Germin-Like Protein from Sugar Beet in Arabidopsis thaliana Leads to Resistance Against Phytopathogenic Fungi[J]. MPMI,2010,23(4):446-457.
    [71] Yin G X, WANG Y L, She M Y, et al. Establishment of a Highly Efficient Regeneration System for the MatureEmbryo Culture of Wheat[J]. Agricultural Sciences in China, 2011,10(1): 101-105.
    [72] Sharp P J, Kries M, Shewry P R,et al. Location ofβ-amylase sequences in wheat and its relatives[J]. Theor Appl Genet,1988, 75: 286–290.
    [73]张增艳,许景升,刘耀光,等.利用中间偃麦草抗病基因同源序列分离黄矮病抗性候选基因克隆[J].作物学报, 2004, 30(3): l 89–195.
    [74]蔡士宾,任丽娟,颜伟,等.小麦抗纹枯病种质创新及QTL定位的初步研究[J].中国农业科学, 2006,39(5): 928–934.
    [75] Zhou M P,Hayden M J,Zhang Z Y,et al.Saturation and mapping of a major Fusarium head blight resistance QTL on chromosome 3BS of Sumai 3 wheat[J].J Appl Genet,2010,51:19-25.
    [76] Dong N,Liu X,Lu Y,et al. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat,confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana[J]. Func Integr Genomics, 2010, 10: 215–226.
    [77] Fradin E F, Zhang Z, Juan C.et al. Genetic Dissection of Verticillium Wilt Resistance Mediated by Tomato Ve1[J]. Plant Physiology, 2009,150: 320-332.
    [78] Willamson B,Johnston D J,Ramanathan V,et al.A polygalacturonase inhibitor from immature raspberry fruit:a possible new app roach to grey mould control[J].Acta Horticultuarae,1993,352:601-606.
    [79] Cecilia B. Agüero,Sandra L. Uratsu,Carl Greve,et al. Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L.expressing the pear PGIP gene[J].Molecular Plant Pathology,2005,6(1):43-51.
    [80] Michela Janni, Luca Sella,Francesco Favaron, et al. The Expression of a Bean PGIP in Transgenic Wheat Confers Increased Resistance to the Fungal Pathogen Bipolaris sorokiniana[J].American Phytopathological Society,2008,21(2): 171-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700