水平连续铸造Al-Si合金组织及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Si系合金是铸造铝合金中品种最多,用量最大的合金,广泛应用于航空、汽车、仪表及机械等工业领域。但水平连续铸造Al-Si合金铸锭存在Si相粗大、组织不均匀和缩孔等缺陷,严重损害了材料的力学性能。本文从金属组织遗传性原理出发,使用同种成分的细晶组织材料(Fine-grained Structural Materials,简称FSM)作为中间合金来优化水平连铸Al-Si合金组织,得到了组织均匀、细化、无缩孔缺陷,力学性能良好的合金铸锭。研究讨论了FSM中间合金含量和工艺参数对合金组织和力学性能的影响,并利用电子背散射衍射(EBSD)、扫描电镜(SEM)、透射电镜(TEM)、高分辨电镜(HRTEM)、差式扫描热分析(DSC)等手段探讨了FSM中间合金对共晶Si相的变质机理。
     通过对Al-12%Si和Al-18%Si合金进行DSC分析确定了水平连铸Al-12%Si和Al-18%Si合金FSM中间合金的加入温度分别为720℃和740℃,并确定了制备FSM Al-12%Si和Al-18%Si中间合金的工艺参数,即将Al-12%Si和Al-18%Si合金熔体分别过热到900℃和950℃后水冷铜模铸造加二次水冷,得到了初晶Si细化、共晶Si高度分枝的凝固组织。
     加入同种成分FSM中间合金制备的水平连铸Al-12%Si和Al-18%Si合金铸锭铸锭横截面上缩孔面积减少,显微组织细化,组织均匀性得到改善,力学性能也有所提高。其中初晶a-A1二次枝晶臂间距减小,共晶Si由粗大的针片状转变为高度分枝的纤维状,初晶Si尺寸减小。DSC分析可知中间合金的加入可以明显改善合金凝固过程对冷却速度的敏感性,铸锭合金表面和中心凝固曲线上过冷度差异明显减小。但是,中间合金存在最佳加入量,在结晶器一次冷却条件下,Al-12%Si和Al-18%Si的最佳加入量为30%,二次水冷却条件下Al-18%Si最佳加入量为15%。
     对共晶Si变质前后的生长机理进行了分析,结果表明未变质共晶Si深腐蚀后表面和侧面都呈明显的板片状特征,生长端面以凸角特征为主,可以观察到少量的凹角端面。并且生长端面能够观察到比较规则的生长台阶。大量TEM观察并未发现Si晶体内部有典型的孪晶缺陷,因此未变质共晶Si中孪晶凹角生长机制(TPRE)并不是共晶Si生长的主要机制,而是台阶生长机制导致Si的板片状形貌。Si中的位错分解产生两个不完位错,并且位错中间夹着一定宽度的层错便可以成为Si生长有效的台阶源。
     EBSD分析较大范围显示了Al、Si两相的共晶结构。FSM中间合金变质后,共晶Si形貌由针片状转变为纤维状,相邻两相间由大角度晶界转变为小角度亚晶界为主。共晶Si形核的位置由初晶a-Al枝晶转变为熔体中弥散分布的Si原子集团,共晶团中Si相与Al相显示出更为紧密的耦合生长关系,{110}Si和{100}Al的择优取向关系变得明显。
     FSM中间合金不仅使共晶Si形貌发生了变化,也改变了共晶Si内在晶体缺陷的性质及分布。共晶Si内部出现两套斜交的孪晶系,密度和孪晶间距存在明显差异。其中一套厚孪晶密度较大,并且一直延伸到生长末端。而另一套则为微孪晶,或堆垛层错。Si枝晶的结合处可以明显观察到堆垛层错的存在,并且与Si分枝的方向垂直。即共晶Si中高密度层错决定了Si的高密度分枝,Si分枝则以另一套厚孪晶TPRE机制继续长大。
     对纤维状共晶Si进行HRTEM分析发现FSM中间合金变质后的Si中不仅出现了大量的孪晶和层错,还弥散分布着许多黑色小颗粒,尺寸在10到20nm之间。对纳米颗粒进行FFT变换,发现纳米颗粒面间距约为正常Si相的3倍。从能量和晶体学角度分析,确定纳米颗粒为加入的中间合金未完全熔化形成的Si-Si原子集团。
     通过对共晶Si形貌和内部缺陷分析确定FSM中间合金变质共晶Si的生长机理为组织细化的Al-12%Si合金加入熔体后吸收热量熔化,由于Si-Si键能较大,因此形成大量的Si-Si原子集团弥散分布在熔体中。从金属组织遗传角度来看,这些原子集团就是Al-Si合金的遗传因子,它们保留了中间合金的细晶组织特征,使得最终得到组织细化的凝固组织。从形核和生长理论分析,这些原子集团中晶格畸变最小的,与Si晶体结构最为接近的原子集团可以成为Si形核时的最佳衬底。大量过剩的原子团簇富集在固液界面前沿,阻碍了台阶的部分运动。并且由于结构有所差异,因此Si原子面在堆垛过程中需要通过层错、孪晶等缺陷来协调与原子集团的取向差异。而层错、孪晶等缺陷的产生使得共晶Si不断调整结晶位向,从而形成三维空间上高密度分枝的珊瑚状形态。
Al-Si alloys are the most species and the largest amount of casting aluminium alloys, which are widely used in aerospace, automotive, instrumentation, and machinery industries. However, casting defects such as coarse Si phase, macrosegregation and porosity are usually present in the horizontal continuous casting (HCC) Al-Si microstructure. It is detrimental to the mechanical properties of the alloys. This paper use fine-grained structural materials (FSM for short) of the same composition as the master alloy to optimize the microstructure of HCC Al-Si alloys because of the structural heredity. Alloys with fine and uniform microstructure and good mechanical properties have been obtained in present work. The effect of FSM master alloy amount and parameters on microstructure and mechanical properties were studied systematically. The mechanism of modification of FSM mater alloy was also discussed via EBSD, SEM, TEM, HRTEM and DSC.
     The addition temperatures of Al-12%Si and Al-18%Si FSM master alloy were determined by DSC analysis, which are 720 and 740℃, respectively. FSM Al-12%Si and Al-18%Si master alloys were prepared by thermal speed treatment. The overheating temperatures were 900 and 950℃according to the DSC curves. Water-cooled copper mold and jet water were used to get rapid cooling rate. The microstructure of FSM master alloy consisted of fine primary silicon and fibrous eutectic silicon.
     HCC Al-12%Si and Al-18%Si billets have fine and uniform microstructure with less center-line shrinkage and better mechanical properties after FSM master alloy addition. The secondary dendrite arm spacing of a-Al and size of primary Si decreased, the morphology of eutectic Si changed from neeld-like shape to fibrous shape. The addition of FSM master alloy made the alloys less sensitive to cooling rate by DSC analysis. However, the optimum of addition amount is 30% for Al-12%Si and Al-18%Si under first cooling condition and 15% for Al-18%Si under second cooling condition.
     The surface and side face of unmodified eutectic silicon show a flake-like feature after deep etching. The tips of silicon are mainly salient with regular growth steps. Few re-entrant features have been found. There are no obvious SAD patterns for twin spots during TEM observation. It means TPRE is not the dominating mechanism for flake Si, whereas growth steps induced by defects are responsible for the eutectic Si. Stacking fault between two partial dislocations disassemble from a perfect dislocation can be the available growth steps.
     EBSD may show the crystallographic orientation of the Al-Si eutectic in a large range of sight field. The boundry between two adjacent phases changes from high-angle grain boundry to low-angle grain boundry after modified by FSM master alloy. The nucleation position of eutectic silicon is the primary a-Al in unmodified alloy, while the dispersed Si clusters can be the nuclei for eutectic Si in modified Al-Si alloy. Moreover, Si and Al phase in eutectic grain show more closely coupled growth combination. It shows visible preferred orientation between {110} Si and {100}Al.
     FSM master alloy changes not only the morphology of the Si phase but also the nature and distribution of the defects inside Si crystals. It usually contains two oblique crossing sets of twins. However, the density and twin distance are of big difference. One set is thick twin, which extend along the growth direction to the growing tip. The other set is density stacking fault perpendicular to the growth direction of the branch. In other words, density stacking fault dominate the branching and the thick twin is responsible for the growth of Si branch by TPRE mechanism.
     Observed using HRTEM at the fibrous Si, there are not only defects but also dark paticles with the size of from 10 to 20 nm. It is revealed by Fourier transform analysis that the lattice within the nanoclusters is modulated with a period of three times the plane spacing in the regular Si lattice. It is argured that the lattice-modulatied characteristics should be Si-Si cluster resulted from unmelt FSM master alloy.
     Above the analysis of morphology and defects of eutectic Si, the modification mechanism of FSM Al-Si alloy can be concluded as the unmelt Si-Si nanoclusters after added into HCC melt. From the point of view of structural heredity, these clusters are the genetic factors which reserve the fine-grained microstructural features resulting in the fine solidification structure. From the nucleation and growth mechanism side, the lattice-modulatied Si clusters which have the closest structure with Si can be act as the best nuclei of eutectic Si. The other excess Si clusters enrich on the front of solid-liquid interface which hinder the step growth. Stacking faults and twins are emerged during the Si atoms stacking on the growth plane to adjust the the orientation difference. These defects cause the change of Si crystal orientation, which result in the fibrous morphology of modified eutectic Si.
引文
1. X. G. Song, X. F. Bian, J. X. Zhang, J. Zhang. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P. Journal of Alloys and Compounds,2009,479:670-673.
    2. A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, H.W. Doty. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design,2009,30:3943-3957.
    3. H. Liao, Y. Sun, G. Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Material Science and Engineering A,2002,335:62-66.
    4. H. Singh, A. M. Gokhale, A. Tewari, S. Zhang, Y. Mao. Three-dimensional visualization and quantitative characterization of primary silicon particles in an Al-Si base alloy. Scripta Materialia,2009,61:441-444.
    5. C. L. Xu, Q. C. Jiang. Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Materials Science and Engineering A,2009,437: 451-455.
    6. C. L. Xu, H. Y. Wang, C. Liu, Q. C. Jiang. Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys. Journal of Crystal Growth,2006,291:540-547.
    7. S. Z. Lu, A. Hellawell. Modification of Al-Si alloys:microstructure, thermal analysis, and mechanisms. Journal of Materials,1996,2:36-40.
    8.姚书芳,毛卫民,赵爱民,钟雪友.铸造铝硅合金细化变质处理的研究进展.铸造,2000, 49:512-515.
    9.徐振湖.对旋转磁场作用下的Al-18%Si合金的研究.铸造,2000,49(2):115-117.
    10.毛卫民,李树索,赵爱民.电磁搅拌对过共晶Al-Si合金初生硅长大过程和形貌的影响.材料科学与工艺,2001,9(2):117-121.
    11.张志国,于溪凤,王向阳.超高压下凝固Al-Si合金的非平衡组织.金属学报,1999,35(3):43-46.
    12.坚增运,杨根仓,周尧和.Al-18%Si合金的温度处理.中国有色金属学报,1995,4:133-135.
    13.董光明,廖恒成,孙国雄韩正同.Sb在Al-Si合金中的变质行为.铸造,2008,57(3):211-213.
    14.亓效刚,,陈俊华,江旭彪.锑变质共晶硅的异质形核.特种铸造及有色合金,2000,(1):13-17.
    15. A. Knuutinen, K. Nogita, S. D. McDonald, A. K. Dahle. Modification of Al-Si alloys with Ba, Ca, Y and Yb. Journal of Light Metals,2001,1:229-240.
    16. B. Li, H. W. Wang, J. C. Jie, Z. J. Wei. Microstructure evolution and modification mechanism of the ytterbium modified Al-7.5%Si-0.45%Mg alloys. Journal of Alloys and Compounds,2011,509:3387-3392.
    17. W. Prukkanona, N. Srisukhumbowornchaia, C. Limmaneevichitr. Modification of hypoeutectic Al-Si alloys with scandium. Journal of Alloys and Compounds,2009,477: 454-460.
    18.杨伏良,甘卫平,陈招科.高硅铝合金几种常见制备方法及其细化机理.材料导报,2005,19(5):42-46.
    19.胥锴,刘徽平,袁帮谊,王甫.过共晶铝硅合金变质处理的研究进展.金属铸锻焊技术,2009,2:32-35.
    20. C. Li, X. F. Liu, Y. Y. Wu. Refinement and modification performance of Al-P master alloy on primary Mg2Si in Al-Mg-Si alloys. Journal of Alloys and Compounds,2008,465: 145-150.
    21. Y. P. Wu, S. J. Wang, H. Li, X. F. Liu. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy. Journal of Alloys and Compounds,2009,477:139-144.
    22.刘相法,乔进国,刘玉先,李士同,边秀房.Al-P中间合金对共晶和过共晶Al-Si合金的变 质机制.金属学报,2004,40(5):471-476.
    23.刘相法,乔进国,宋西贵,边秀房,朱利民,张屹林.A1-P中间合金在A1-Si活塞合金中的应用.特种铸造及有色合金,2002,6:43-45.
    24.齐广慧,刘相法,杨志强,柳延辉,边秀房.“绿色”高效A1-Si合金变质剂A1-P中间合金.材料科学与工艺,2001,9(2):211-214.
    25. H. S. Park, J. H. Kim, K. M. Kim, E. P. Yoon. A study on the simultaneous refinement of primary and eutectic Si and the mechanical properties in B390 alloys. Journal of the Korean Institute of Metals and Materials,1997,35 (10):1332-1340.
    26. J. M. Lee, S. B. Kang. A study on the change of microstructures with phosphorus and/or strontium treatment in A390 alloy. Journal of the Korean Institute of Metals and Materials, 1995,33 (11):1406-1413.
    27. J. I. Park, B. J. Yoo, Y. S. Kim, G. Kim. Effects of melt treatment conditions on the simultaneous refinement of primary and eutectic silicon in hypereutectic Al-Si alloys. Journal of the Korean Institute of Metals and Materials,1994,32 (6):665-672.
    28.姚书芳,毛卫民,赵爱民,钟学友.过共晶铝硅合金细化变质剂的研究.特种铸造及有色合金,2000,5:1-3.
    29.任书坤,张英才.过共晶Al-Si合金双相变质剂及变质工艺的研究.汽车工艺与材料,1993,8:9-12.
    30.张金同,许春香,韩富根.复合变质对过共晶高硅铝合金组织和性能的影响.中国有色金属学报,2002,12:107-109.
    31.梁国萍,苏勇,刘福东,孙林,章高伟,王爱珍,金梅.P+RE变质对过共晶Al-Si合金组织的影响,特种铸造及有色合金,2010,30(3):273-275.
    32.赵品,逯允海.P+Sr+Ce复合变质对高硅耐热铝合金组织与性能的影响.中国稀土学报,2005,23(4):471-475.
    33.刘英,曾建民.A1-7Si-0.3Mg合金的RE和Sb复合变质.特种铸造及有色合金,2008,28(8):587-590.
    34. J. Seifert, F. Fischer. Horizontal continuous casting of metals with mould excited by ultrasonic waves. Ultrasonics,1977,15 (4):154-158.
    35. B. J. Zhang, J. Z. Cui, G. M. Lu. Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy. Material Science and Engineering A,2003,355:325-330.
    36. R. Nadella, D. G. Eskin, Q. Du, L. Katgerman. Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science,2008,50:421-480.
    37. A. Chaijaruwanich, P. D. Lee, R. J. Dashwood, Y. M. Youssef, H. Nagaumi. Evolution of pore morphology and distribution during the homogenization of direct chill cast Al-Mg alloys. Acta Materialia,2007,55:285-293.
    38. Y. B. Zuo, H. Nagaumi, J. Z. Cui. Study on the sump and temperature field during low frequency electromagnetic casting a superhigh strength Al-Zn-Mg-Cu alloy. Journal of Materials Processing Technology,2008,197:109-115.
    39. I. Nowak, J. Smolka, A. J. Nowak. An effective 3-D inverse procedure to retrieve cooling conditions in an aluminium alloy continuous casting problem. Applied Thermal Engineering, 2010,30:1140-1151.
    40. G. Heiberg, K.Nogita, A. K. Dahle, L. Arnberg. Columnar to equiaxed transition of eutectic in hypoeutectic aluminium-silicon alloys. Acta Materialia,2002,50:2537-2546.
    41. J. S. Ha, J. R. Cho, B. Y. Lee, M. Y. Ha. Numerical analysis of secondary cooling and bulging in the continuous casting of slabs. Journal of Materials Processing Technology,2001, 113:257-261.
    42. B. C. H. Venneker, L. Katgerman. Modelling issues in macrosegregation predictions in direct chill casting. Journal of Light Metals,2002,2:149-159.
    43.赵建强.功率超声作用下A1-1%Si合金水平连铸实验研究.大连理工大学,硕士学位论文,2006.
    44.潘复生,张丁非等.铝合金及应用.北京:化学工业出版社,2006.
    45.张北江.低频电磁场作用下铝合金半连续铸造工艺与理论研究.东北大学,博士学位论文,2002.
    46. R. Nadella, D. G. Eskin, Q. Du, L. Katgerman. Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science,2008,53:421-480.
    47. C. W. Chang, G. C. Jin, S. Y. Chen and X. D. Yue. Research on the formation mechanism of internal crack in the continuous casting slab. Acta Metallurgica Sinica,2007,20:35-39.
    48. Z. H. Zhao, J. Z. Cui, J. Dong, B. J. Zhang. Effect of low frequency magnetic field on microstuctures and macrosegregation of horizontal direct chill casting 7075 aluminum alloy. Journal of Materials Processing Technology,2007,182:185-190.
    49. Z. M. Yan, X. T. Li, Z. Q. Cao, X. L. Zhang, T. J. Li. Grain refinement of horizontal continuous casting of the CuNilOFelMn alloy hollow billets by rotating magnetic field (RMF), Materials Letters,2008,62:4389-4392.
    50. D. Y. Lee, S. W. Kang, D. H. Cho, K. B. Kim. Effects of casting speed on microstructure and segregation of electro-magnetically stirred Aluminum alloy in continuous casting process. Rare Metal,2006,25:118-123.
    51. J. Dong, J. Z. Cui, Q. C. Le, G. M, Lu. Liquidus semi-continuous casting, reheating and thixoforming of a wrought aluminum alloy 7075. Material Science and Engineering A,2003, 345:234-242.
    52.王岩.铝硅合金筒类铸件的连铸工艺研究.辽宁工学院,硕士学位论文,2007.
    53.温景林,管仁国,石路,李英龙,曹富荣.连续挤铸成形技术的发展及应用.轻合金加工技术,2005,33(4):12-15.
    54. R. Vertnik, M. Zaloznik, B. Sarler. Solution of transient direct-chill aluminium billet casting problem with simultaneous material and interphase moving boundaries by a meshless method. Engineering Analysis with Boundary Elements,2006,30:847-855.
    55. D. G. Eskin, Q. Du, L. Katgerman. Relationship between shrinkage-induced macrosegregation and the sump profile upon direct-chill casting. Scripta Materialia,2006,55:715-718.
    56. J. Sengupta, S. L. Cockcroft, D. Maijer, M. A. Wells, A. Larouche. The effect of water ejection and water incursion on the evolution of thermal field during the start-up phase of the direct chill casting process. Journal of Light Metals,2002,2:137-148.
    57. M. G. Fa, X. Y. Liu, Z. J. Zhu, H. W. Wang, Effects of chill casting processes on secondary dendrite arm spacing and densification of Al-Si-Mg alloy, Transactions of Nonferrous Metals Society of China,2007,17:1012-1017.
    58. X. F. Yu, Y. M. Zhao, X. Y. Wen, T. Zhai. A study of mechanical isotropy of continuous cast and direct chill cast AA5182 Al alloys. Material Science and Engineering A,2005,394: 376-384.
    59. R. C. Kerr, A. W. Woods, M. G. Worster, H. E. Huppert. Disequilibrium and macrosegregation during solidification of a binary melt. Nature,1989,340:357-362.
    60. S. R. Coriell, G. B. Mcfadder, W. F. Mitchell, B. T. Murray, J. B. Andrews, Y. Arikawa. Effect of flow due to density change on eutectic growth, Journal of Crystal Growth,2001, 224:145-154.
    61. D. Kessler. Sharp interface limits of a thermodynamically consistent solutal phase field model, Journal of Crystal Growth,2001,224:175-186.
    62. A. Mortensen. On the rate ofdendrite arm coarsening, Metallurgical Transactions,1991,224: 569-574.
    63. W. Yang, W. Chen, K. Chang, S. Mannan, J. Debarbadillo. Freckle criteria for the upward directional solidification of alloys, Metallurgical and Materials Transactions,2001,32A: 397-406.
    64. C. Y. Wang, C. Beckermann C. A multiphase solute diffusion model for dendritic alloy solidification, Metallurgical Transactions,1993,24A:2787-2802.
    65. M. E. Glicksman, R. N. Smith, S. P. Marsh, R. Krklinski. Mushy zone modeling with microstructural coarsening kinetics, Metallurgical Transactions,1992,23A:659-667.
    66. C. Y. Wang, C. Beckermann C. Equiaxed dendritic solidification with convection:part Ⅰ Multiscale/multiphase modeling, Metallurgical and Materials Transactions,1996,27A: 2754-2764.
    67.单长智,王立娟,王得满.实心圆锭的应力分析及防止裂纹的措施.轻合金加工技术,1997,25:1-4.
    68. Vives C. Electromagnetic refining of aluminum alloys by the CREM process:part Ⅱ. Specific practical problems and their solutions. Metallurgical Transactions,1989,20B:631-643.
    69.张北江,崔建忠,路贵民,张勤,班春燕.电磁场频率对电磁铸造7075铝合金微观组织的影响.金属学报,2002,38(2):215-218.
    70.张北江,崔建忠,路贵民,张勤.外加电磁场对连续铸造7075铝合金宏观偏析规律的影响.东北大学学报,2002,23(10):63-65.
    71.关绍康,沈宁福,汤亚力.快凝Al-Fe-M-Si合金的显微结构对熔体热历史的敏感性.金属学报,1996,32(8):823-828.
    72.关绍康,汤亚力,沈宁福.熔体热历史对快凝铝铁基合金显微组织不均匀性的影响.航空学报,1994,15(11):1395-1397.
    73.侯兆阳,刘丽霞,刘让苏,田泽安Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.物理学报,58(7):4817-4825.
    74.王丽,李辉,边秀房,孙民华,刘相法,刘洪波,陈魁英.纯铝熔体微观结构演变及液固相关性研究.物理学报,2000,49(1):45-48.
    75.张蓉,沈淑娟,刘林.过热处理对A1-Si过共晶合金耐磨性能的影响.摩擦学学报,2000,205(5):344-347.
    76.张蓉.熔体过热处理对Al-Si过共晶合金凝固组织及耐磨性的影响.西北工业大学,博士学位论文,2000.
    77.李顺朴,陈熙琛.A1-Si合金凝固过程中的生核与分枝.物理学报,1995,44(2):233-237.
    78. V. P. Manov, S. I. Popel, P. I. Buler, A. B. Manukhin, D. G. Komlev. Influence of quenching Temperature on the structure and properties of amorphous alloys. Materials Science and Engineering A,1991, A133 (1):535-540.
    79.裴忠冶,李俊涛,田彦文,赵明汉.合金熔体过热处理的研究进展.材料导报,2006,20(9):83-85.
    80.王焕荣,叶以富,闵光辉,滕新营,石志强,秦敬玉.共晶Ga-In合金的液态结构与粘度研究.金属学报,2001,37(8):801-804.
    81.边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社,1999.
    82. V. Sidorov, P. Popel, M. Calvo-Dahlborg, U. Dahlborg, V. Manov. Heat treatment of iron based melts before quenching. Materials Science and Engineering A,2001,304-306:480-486.
    83. J. Namkung, M. C. Kim, C. G Park. Magnetic properties of melt quenched Ni-Fe alloy strips. Materials Science and Engineering A,375-377:1116-1120.
    84.桂忠楼.镍基高温合金BTOP工艺的发展.航空工程与维修,1995,4:12-14.
    85. L. H. Liang, J. C. Li, Q. Jiang. Superheating thermodynamics of nanocrystals based on the interface effect. Physica B:Condensed Matter,2002,322:188-192.
    86.周正有,王铁兵,程兆年.分子动力学模拟研究熔态硅的局部结构.物理学报,1999,48(12):2228-2240.
    87.陈小华.Al-Si合金的熔体处理结构研究.重庆大学,硕士学位论文,2006.
    88.冯端.凝聚态物理学新论.上海:上海科学技术出版社,1994.
    89.赵岩.二元合金熔体凝固过程中的结构演变及团簇行为.山东大学,博士学位论文,2007.
    90. B. G. Moore, A. A. Al-Quraishi. The structure of liquid clusters of Lennard-Jones atoms. Chemical Physics,2000,252:337-347.
    91.陈莹,边秀房,孙民华,王丽.铝原子Bernal多面体团簇的理论研究.物理化学学报, 2003,19 (3):242-245.
    92.李贵发,彭平,仇治勤,杨峰,韩绍昌.A1。(n=2-24,55)团簇结构特性的第一原理计算.中国有色金属学报,2006,15(6):823-828.
    93. R. Pushpa, S. Narasimhan, U. Waghmare. Symmetries, vibrational instabilities and routes to stable structures of clusters of Al, Sn, and As. Journal of Chemistry Physics,2004,121 (11): 5211-5220.
    94. B. K. Rao, P. Jena. Evolution of the electronic structure and properties of neutral and charged aluminum cluster:a comprehensive analysis. Journal of Chemistry Physics,1999,111 (5): 1890-1904.
    95.刘让苏,刘凤翔,董科军,郑采星,刘海蓉,彭平,李基永.液态金属A1凝固过程中的团簇结构与幻数特性.物理化学学报,2004,20(9):1039-1098.
    96.王丽,衣粟,边秀房Ni3Al合金液态与非晶中的原子团簇.物理化学学报,2002,18(4):297-301.
    97.潘学民,边秀房,孙景芹.液态CuAlNi合金的微观不均匀性.稀有金属材料与工程,2002,32(7):494-497.
    98.王广厚.原子团簇科学.科技导报,1994,51(10):9-11.
    99.王广厚.关于团簇之我见.科技导报,1994,22(10):12-13.
    100. Y. Kita, J. B. Van Zytveld, Z. Movrita, T. Iida. Covalencyn in liquid transition-meat Si alloy. Condnes Matter,1994,33 (6):811-820.
    101.张承甫,龚建森,黄杏蓉,王凯歌.液态金属的净化与变质.上海:上海科学出版社,1980.
    102. S. J. Cheng, X. F. Bian, J. X. Zhang, Z. H. Wang, X. P. Sui. Effect of thermal history on viscosity of In-55wt%Sb hypoeutectic alloy melt. Rare Metal Materials and Engineering, 2006,35(7):1113-1116.
    103. V. A. Izmailov, A. A. Vertman. State of silicon in aluminium. Metally,1971,6:217-220.
    104. G. M. Kuznetsov, V. A. Rotenberg. Structure of molten alloys of silicon metal systems near the liquidus temperature. Materialy,1971,7 (11):1909-1913.
    105. M. Singh, R. Kumar. Structure of liquid aluminium-silicon alloys. Journal of Materials Science,1973,8:317-323.
    106.关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究.北京科技大学,博士学位 论文,1995.
    107.刘相法,边秀房,马家骥,刘玉先,荣福荣.铝合金组织遗传现象及其利用的研究.铸造,1994,10:18-23.
    108.李培杰,桂满昌.A1-16%Si合金的液态相结构转变.铸造,1995,23(9):15-20.
    109.关绍康.熔体热历史对快凝铝铁基合金显微结构影响的研究.材料导报,1995,11(4):321-325.
    110.桂满昌,贾均,李庆春.A1-Cu合金液态过热处理的研究.材料工程,1995,2:16-19.
    111.刘让苏,李基永.液态金属高温结构转变特性的模拟研究.物理学报,1995,44(10):1582-1586.
    112.孙民华,耿浩然,边秀房.A1熔体粘度的突变点及与熔体微观结构的关系.金属学报,2000,36(11):1134-1138.
    113.边秀房,王伟民,潘学民,秦绪波.A1-TM合金熔体中的中程有序结构及其演化规律.化学学报,2002,60(7):12]5-1219.
    114.张忠华,边秀房,秦敬玉,王伟民,刘相法.铝的熔体结构与氢含量.金属学报,2000,36(1):33-36.
    115.桂满昌,宋广生,贾均,李庆春.A1-18%Si过共晶合金熔体结构特征及磷的影响.金属学报,1995,31(4):177-182.
    116.王兆昌.铝硅合金的结晶与钠变质机制.特种铸造及有色合金,1990,4:13-17.
    117.李培杰.Al-Si合金的结构及结构遗传研究.哈尔滨工业大学,博士学位论文,1995.
    118.张瑞林.固体与分子经验电子理论.长春:吉林科学出版社,1993.
    119.李培杰,陈岗,余瑞璜,贾均,李庆春,里豪森.Al-Si合金熔体的价电子结构及其结构遗传.吉林大学自然科学学报,1997,3:61-63.
    120.陈光,蔡英文,李建国,傅恒志.熔体热处理研究及其应用.河北科技大学学报,1998,41(3):21-26.
    121. P. Li, V. I. Nikitin, E.G. Kandalove, K. V. Nikintin. Effect of melt overheating, cooling and solidification rates on Al-16wt.%Si alloy structure. Materials Science and Engineering A, 2002,332:371-374.
    122. M. M. Haque, A. F. Ismail. Effect of superheating temperatures on microstructure and properties of strontium modified aluminium-silicon eutectic alloy. Journal of Materials Processing Technology,2005,162-163:312-316.
    123. J. Wang, S. X. He, B.D. Sun, Q. X. Guo, M. Nishio. Grain refinement of Al-Si alloy (A356) by melt thermal treatment. Journal of Materials Processing Technology,2003,141:29-34.
    124.陈振华.A1-Si合金固液混合铸造.中国有色金属学报,2000,10(3):349-352.
    125.桂满昌,李庆春,贾均.液态过热对亚共晶Al-Si合金凝固组织与凝固过程的影响.特种铸造及有色合金,1995,13(1):62-69.
    126.何树先,王俊,孙保德,周尧和.熔体温度处理细化亚共晶Al-Si合金组织.上海交通大学学报,2002,36(1):52-54.
    127.张林,边秀房,马家骥.铝硅合金的液相结构转变.铸造,1995,51(10):7-12.
    128.坚增运.净化和熔体温度处理对铝合金凝固过程、组织和性能的影响.西北工业大学,博士学位论文,1995.
    1. X. G. Song, X. F. Bian, J. X. Zhang, J. Zhang. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P. Journal of Alloys and Compounds,2009,479:670-673.
    2. A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, H. W. Doty. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design,2009,30:3943-3957.
    3. H. Liao, Y. Sun, G. Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Material Science and Engineering A,2002,335:62-66.
    4. H. Singh, A. M. Gokhale, A. Tewari, S. Zhang, Y. Mao. Three-dimensional visualization and quantitative characterization of primary silicon particles in an Al-Si base alloy. Scripta Materialia,2009,61:441-444.
    5. C. L. Xu, Q. C. Jiang. Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Materials Science and Engineering A,2009,437: 451-455.
    6. C. L. Xu, H. Y. Wang, C. Liu, Q. C. Jiang. Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys. Journal of Crystal Growth,2006,291:540-547.
    7.陶静梅.Al-Si系合金的熔体温度处理及其凝固过程研究.重庆大学,硕士学位论文,2004.
    8.李培杰,曾大本,贾均,李庆春.铝硅合金中的结构遗传及其控制.铸造,1999,6:10-14.
    9.孙民华,耿浩然,边秀房.Al熔体粘度的突变及与熔体微观结构的关系.金属学报,2000,36:1134-1138.
    10.桂满昌,宋广生,贾均,李庆春.Al-18%Si过共晶熔体结构特征及磷的影响.金属学报, 1995.31:177-182.
    11.杨志怀,张蓉.A357合金熔体结构变化的DSC分析.铸造技术,2009,30:528-531.
    12.姚允斌.物理化学手册.上海,上海科学技术出版社,1985.
    13.王丽,李辉,边秀房,孙民华,刘相法,刘洪波,陈魁英.纯铝熔体微观结构演变及液固相关性研究.物理学报,2000,36:1134-1138.
    14.边秀房,王伟民,李辉,马家骥.金属熔体结构.上海,上海交通大学出版社,2003.
    15.边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社,1999.
    16.李小平,陈振华,曹标,傅定发.高硅铝合金悬浮铸造的组织细化.特种铸造及有色合金,1996,6:20-21.
    17.任政,张兴国,房灿峰,郝海.电磁-悬浮铸造对变形镁合金晶粒细化的影响.材料研究学报,2007,21:491-495.
    18.周春明,冯建华,龙文元.悬浮浇注对铝铜合金组织遗传性的影响.南昌航空工业学院学报,1998,13:11-15.
    19.张蓉.熔体过热处理对Al-Si过共晶合金凝固组织及耐磨性的影响,西北工业大学,博士学位论文,2000.
    1. Z. Ma, E. Samuela, A. M. A. Mohameda, A. M. Samuela, F. H. Samuela, H. W. Doty. Parameters controlling the microstructure of Al-11Si-2.5Cu-Mg alloys. Materials and Design, 2010,31:902-912.
    2. X. G. Song, X. F. Bian, J. X. Zhang, J. Zhang. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P. Journal of Alloys and Compounds,2009,479:670-673.
    3. A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, H.W. Doty. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design,2009,30:3943-3957.
    4. H. Liao, Y. Sun, G. Sun. Correlation between mechanical properties and amount of dendritic a-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Material Science and Engineering A,2002,335:62-66.
    5. M. Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys. Journal of Materials Processing Technology,2005,169:292-298.
    6. S. Z. Lu, A. Hellawell. Growth mechanisms of silicon in Al-Si alloys. Journal of Crystal Growth, 1985,73:316-328.
    7. S. Z. Lu, A. Hellawell. Modification of Al-Si alloys:microstructure, thermal analysis, and mechanisms. Journal of Materials,1996,2:36-40.
    8.姚书芳,毛卫民,赵爱民,钟雪友.铸造铝硅合金细化变质处理的研究进展.铸造,2000,49:512-515.
    9.董光明,孙国雄,廖恒成.共晶硅的变质.铸造,2005,4:1-5.
    10.边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社,1999.
    11.李培杰,曾大本,贾均,李庆春.合金熔体遗传现象的热力学分析.铸造,1999,10:12-15.
    12.李培杰,曾大本,贾均,李庆春.铝硅合金中的结构遗传及其控制.铸造,1999,6:10-14.
    13.张蓉.熔体过热处理对A1-Si过共晶合金凝固组织及耐磨性的影响,西北工业大学,博士学位论文,2000.
    14.李顺朴,陈熙琛.A1-Si合金的共晶共生区及组织形成规律.金属学报,1995,02:47-55.
    15.安阁英.铸件形成理论.北京:机械工业出版社,1990.
    16.张北江.低频电磁场作用下铝合金半连续铸造工艺与理论研究.东北大学,博士学位论文,2002.
    17. R. Nadella, D. G. Eskin, Q. Du, L. Katgerman. Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science,2008,50:421-480.
    18.于化顺.金属基复合材料及其制备技术.北京:化学工业出版社,2006.
    19.陈小华.A1-Si合金熔体处理结构分析,重庆大学,硕士学位论文,2006.
    1. H. Singh, A. M. Gokhale, A. Tewari, S. Zhang, Y. Mao. Three-dimensional visualization and quantitative characterization of primary silicon particles in an Al-Si base alloy. Scripta Materialia,2009,61:441-444.
    2. C. L. Xu, Q. C. Jiang. Morphologies of primary silicon in hypereutectic Al-Si alloys with melt overheating temperature and cooling rate. Materials Science and Engineering A,2009,437: 451-455.
    3. C. L. Xu, H. Y. Wang, C. Liu, Q. C. Jiang. Growth of octahedral primary silicon in cast hypereutectic Al-Si alloys. Journal of Crystal Growth,2006,291:540-547.
    4.何力佳,王博.过共晶铝硅合金磷变质处理的价电子理论分析.特种铸造及有色合金,2009,29:179-180.
    5.张金山,许春香,韩富银.复合变质对过共晶高硅铝合金组织和性能的影响.中国有色金属学报,2002,12:107-109.
    6. J. Guo, Y. Liu, P. X. Fan, H. X. Qu, T. Quan. The modification of electroless deposited Ni-P master alloy for hypereutectic Al-Si alloy. Journal of Alloys and Compounds,2010,495: 45-49.
    7. X. F. Yu, Y. M. Zhao, X. Y. Wen, T. Zhai. A study of mechanical isotropy of continuous cast and direct chill cast AA5182 Al alloys. Materials Science and Engineering A,2005,394: 376-384.
    8. M. Zuo, X. F. Liu, Q. Q. Sun, K. Jiang. Effect of rapid solidification on the microstructure and refining performance of an Al-Si-P master alloy. Journal of Materials Processing Technology. 2009,209:5504-5508.
    9. H. H. Zhang, H. L. Duan, G. J. Shao, L. P. Xu. Microstructure and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P. Rare Metals,2008,27:59-63.
    10. W. J. Kyffin, W. M. Rainforth, H. Jones. Effect of phosphorus additions on the spacing between primary silicon particles in Bridgman solidified hypereutectic Al-Si alloy. Journal of Materials Science,2001,36:2667-2672.
    11.李小平,陈振华,曹标,傅定发.高硅铝合金悬浮铸造的组织细化.特种铸造及有色合金,1996,6:20-21.
    12.李建国,马洪涛,张柏清,方鸿生,马晓华Al-3Ti-4B细化剂和A1-10Sr变质剂对ZL104合金的联合作用.金属学报,2000,36:579-583.
    13.边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社,1999.
    14.李培杰,曾大本,贾均,李庆春.合金熔体遗传现象的热力学分析.铸造,1999,10:12-15.
    15.李培杰,曾大本,贾均,李庆春.铝硅合金中的结构遗传及其控制.铸造,1999,6:10-14.
    16.许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制.吉林大学,博士学位论文,2007.
    1. M. Zuo, X. F. Liu, Q. Q. Sun, K. Jiang. Effect of rapid solidification on the microstructure and refining performance of an Al-Si-P master alloy. Journal of Materials Processing Technology. 2009,209:5504-5508.
    2. H. H. Zhang, H. L. Duan, G. J. Shao, L. P. Xu. Microstructure and mechanical properties of hypereutectic Al-Si alloy modified with Cu-P. Rare Metals,2008,27:59-63.
    3. W. J. Kyffin, W. M. Rainforth, H. Jones. Effect of phosphorus additions on the spacing between primary silicon particles in Bridgman solidified hypereutectic Al-Si alloy. Journal of Materials Science,2001,36:2667-2672.
    4. S. Z. Lu, A. Hellawell. Modification of Al-Si alloys:microstructure, thermal analysis, and mechanisms. Journal of Materials,1996,2:36-40.
    5.姚书芳,毛卫民,赵爱民,钟雪友.铸造铝硅合金细化变质处理的研究进展.铸造,2000,49:512-515.
    6. Z. Ma, E. Samuela, A. M. A. Mohameda, A. M. Samuela, F. H. Samuela, H. W. Doty. Parameters controlling the microstructure of Al-11Si-2.5Cu-Mg alloys. Materials and Design,2010,31:902-912.
    7. X. G. Song, X. F. Bian, J. X. Zhang, J. Zhang. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P. Journal of Alloys and Compounds,2009,479:670-673.
    8. A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, H. W. Doty. Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design,2009,30:3943-3957.
    9. H. Liao, Y. Sun, G. Sun. Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium. Material Science and Engineering A,2002,335:62-66.
    10. M. Zeren. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys. Journal of Materials Processing Technology,2005,169:292-298.
    11. S. Z. Lu, A. Hellawell. Growth mechanisms of silicon in Al-Si alloys. Journal of Crystal Growth,1985,73:316-328.
    12.董光明,孙国雄,廖恒成.共晶硅的变质.铸造,2005,4:1-5.
    13. A. K. Dahle, K. Nogita K, S. D. McDonald. Eutectic solidification in hypoeutectic Al-Si alloys and its effect on porosity. Advanced in Aluminum Casting Technology,2002,2:1-10.
    14. K. Nogita, A. K. Dahle. Eutectic solidification in hypoeutectic Al-Si alloys:electron backscatter diffraction analysis. Materials Characterization,2001,46:305-310.
    15.黄良余,王玉琮,翟春泉,丁文江Al-Si合金加Sr和加Sb变质的研究.金属学报,1986,22(4):310-316.
    16.孙瑜.铝硅合金共晶生长与沉淀强化研究.东南大学,博士学位论文,2007.
    17. H. A. H. Steen, A. Hellawell. The growth of eutectic silicon-contributions to undercooling. Acta Materialia,1975,23:529-535.
    18. E. Bauser. Analysis of dislocations creating monomolecular growth steps. Journal of Crystal Growth,1981,51:362-366.
    19. E. Bauser E, H. P. Strunk. Microscopic growth mechanisms of semiconductors:experiments and models. Journal of Crystal Growth,1984,69:561-580.
    20.杨德庄.位错与金属强化机理.哈尔滨:哈尔滨工业大学出版社,1981.
    21.李培杰,陈岗,余瑞璜,贾均,李庆春,里豪森.Al-Si合金熔体的价电子结构及其结构遗传.吉林大学自然科学学报,1997,3:61-63.
    22.李培杰.A1-Si合金的结构及结构遗传研究.哈尔滨工业大学,博士学位论文,1995.
    23.安阁英.铸件形成理论.北京:机械工业出版社,1990.
    24.坚增运,周晶,常芳娥,高玉社,吕士勇,郑超.熔体过热处理影响合金凝固特性的机制.西安工业大学学报,2009,29(2):138-142.
    25.张蓉.熔体过热处理对Al-Si过共晶合金凝固组织及耐磨性的影响.西北工业大学,博士学位论文,2000.
    26.边秀房,刘相法,马家骥.铸造金属遗传学.济南:山东科学技术出版社,1999.
    27.李培杰,曾大本,贾均,李庆春.合金熔体遗传现象的热力学分析.铸造,1999,10:12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700