流域梯级大规模水电站群多目标优化调度与多属性决策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域梯级大规模水电站群是一个开放的复杂巨系统,其联合优化运行不是孤立的,而是处在一定的自然环境和社会经济环境之中,受水文过程、用水需求、发电控制等因素影响,是一类高维、时变的大规模复杂决策优化问题,非线性、不确定性、多目标、多属性、多层次、多阶段是其根本特征,一直是水利科学与系统科学交叉发展的前沿问题之一。流域梯级电站群不仅担负着流域生活、生产、生态供水等重要任务,而且在防洪减灾、充分利用水能资源发电、流域水量调度以及缓解局部地区生态环境退化中发挥了关键作用,联合调度的潜力与效益巨大。然而,随着梯级水电站群规模的扩大、梯级拓扑结构的日趋复杂化以及调度目标的多元化,梯级电站之间的水力、电力联系日趋复杂,不同调度需求、调度目标之间存在的相互制约与竞争关系日益凸显,传统优化调度的理论与方法已难以适应有效发挥大规模梯级水电站群综合效益的工程需求,因此,亟需研究并发展新的优化理论与方法。本文围绕长江流域水能资源快速开发背景下大规模梯级水电站群的联合优化调度决策问题,以梯级枢纽综合效益的充分发挥为目标,通过引入复杂系统建模理论、群智能优化理论以及Pareto多目标优化与决策技术,对流域梯级大规模水电站群的多目标优化调度与多属性决策问题进行了深入的研究,取得了一些具有理论意义及工程应用价值的研究成果。通过系统集成和实地部署,部分研究成果在三峡梯调中心获得了工程应用。主要研究工作及创新成果如下:
     (1)围绕流域梯级大规模水电站群联合优化调度的工程需求,建立了长江中上游大规模控制性水电站群联合优化调度模型、金沙江下游梯级与三峡梯级联合蓄水优化调度模型以及区域电网水火电联合优化调度模型,并针对已有理论和模型应用于工程实际时模型求解方法的制约,首先研究了一种改进差分进化优化方法,实现了多重变量耦合和复杂约束优化模型求解技术的突破。该方法在差分进化寻优的理论框架中引入了混沌算子,实现了参数的自适应调整以及二次局部寻优,以此提高了算法的优化能力,有效避免了“早熟收敛”现象的发生。以长江中上游梯级水电能源系统为研究对象进行了实例研究,调度结果以及对比分析表明,该方法无论是在求解效率、求解精度还是处理多重复杂约束的能力等方面与现有方法相比,性能均有显著改善,为梯级水电站群联合优化调度问题的求解提供了一条新途径。
     (2)考虑到流域梯级电站群联合优化调度需要综合考虑多个调度目标,从本质上而言是一类复杂的多目标约束优化问题,研究工作通过引入Pareto优化的相关概念,研究并论述了多目标联合调度建模的理论基础,并针对多重约束优化模型的特点,提出了适用于多目标调度问题的智能优化方法。通过对改进差分进化算子的多目标拓展,研究了一种循环更新策略实现多目标非劣外部种群的规模控制,设计了一种基于Pareto向量对比的多目标混沌搜索策略,实现多目标优化问题的高效求解。为测试所提出方法的优化性能,采用一组模态各异的测试函数对其进行了性能测试与对比分析研究,数值仿真结果验证了所提出方法具有优异的多目标并行优化性能。
     (3)综合考虑金沙江下游梯级以及三峡梯级多目标运用的工程需求,通过分析梯级水电站群防洪、发电以及生态调度模式下各调度目标间的竞争与冲突关系,建立了流域梯级水电站群联合多目标防洪、发电以及生态调度模型,并运用改进多目标差分进化算法对模型进行了高效求解,快速得到了关于不同目标的非劣调度方案集,在此基础上,对各调度目标间的相互影响规律进行了解析,为调度方案最终的决策会商优选提供了技术支撑与数据支持。
     (4)为快速、科学、合理的评价各非劣调度方案,以确定多目标均衡调度的最优实施方案,研究工作将联合调度方案决策会商过程中的主、客观偏好信息纳入决策模型,同时结合Vague集理论对模糊信息的描述能力,研究了一种新的多属性决策方法。该方法通过构建属性重要性差异度矩阵实现了主观偏好的集结,提出一种改进熵权公式,从而准确计算出决策指标的客观权重;此外,通过计算各候选方案相对正、负理想方案综合贴近程度的Vague值,实现各候选方案的优劣排序。以所提出方法为决策评价的数学工具,对流域梯级水电站群的多目标联合防洪、发电以及生态非劣调度方案的评价优选问题进行了研究,实现了不同决策偏好、不同决策情景下各候选方案快速、科学的评价优选。
As a complex nonlinear large scale system, the optimal operation of large scale cascade hydroelectric stations is a high dimensional constrained optimal multi-objective problem with complex characteristics such as strong-coupling of the decision variables and nonlinear objective functions. This problem is affected by large amount of complex hydrological and electrical factors, thus it is an interdisciplinary research field in hydro science and complex system engineering, which is also attracting more and more attention of the researchers. Nowadays, cascade hydroelectric stations not only undertake the water supply responsibility for the area, but also play an important in power generation, ecological improvement of the river basin area and flood control. Hence, there are great benefits if the joint operation can be implemented by those large scale cascade hydroelectric stations. However, along with the rapidly exploitation of hydropower resources, the topological structure as well as the hydraulically and electrical relationship among cascade hydroelectric stations become more and more complex, moreover, the conflicts among multiple operational objective are more obliviously. Traditional optimal operation theories and techniques can not fully exert the comprehensive benefit of the large-scale cascade hydroelectric stations, and new joint operation and decision-making theories and methods are necessitated in present. In this thesis, aiming at the joint optimal operation problems of large-scale cascade hydroelectric stations, we adopt complex system modeling, multi-objective optimization and decision-making theory as well as intelligent evolutionary optimal method into our research, and a series of research results in joint optimal operation and decision-making of large-scale cascade hydroelectric stations are obtained, The main content of the innovation and contribution in this thesis are listed as follows:
     (1) Considering the complex characteristics of the joint optimal operation of large-scale cascade hydroelectric stations, we establish optimal models of large-scale cascade hydropower stations of upstream cascaded reservoirs of Yangtze River and Impounding dispatch for the lower cascade reservoirs as well as optimal dispatch of hydro-thermal system. Meanwhile, in order to overcome the limitation of existing theories and models when applied to solve practical constrained operational problems, a modified differential evolution method (MDE) which is designed for solving the optimal operation of cascade hydropower stations with coupled decision variables while avoiding " curse of dimensionality " efficiently is proposed. The proposed method adopts differential evolution as the basic framework for solving the problem, and dynamic parameter adjust strategy as well as local search operator based on chaotic sequences are introduced into the modified method to improve the optimal capacity. The obtained results show that MDE can solve those problem with fast convergence rate and high precision while handing the complex constraints effectively, thus we provide a new efficient way to solve optimal operation problems of large-scale cascade hydroelectric stations.
     (2) By analyzing the complex features of the optimization problem with multiple objectives, this thesis introduce the concept of Pareto optimal to discusses the theoretical basis of the multi-objective joint operation modeling, and a modified multi-objective differential evolution (MMODE) is presented to solve multi-objective problems (MOPs) with complex constraints. In MMODE, we adopt archive technology to store Pareto optimal solutions during the searching process, and the size of archive set is maintained by using a iterative strategy which is based on proposed "μ+1" selection operation. Meanwhile, a chaotic multi-objective local search operator based on Tent chaotic sequence is designed to improve the efficiency of the proposed method. MMODE is tested by a series of widely used benchmark MOPs, and the comparing case study is implemented by analyzing the results obtained by MMODE and the results obtained by some other multi-objective optimal algorithms, The results verify the high efficiency and accuracy of the proposed method when dealing with MOPs with complex characteristics.
     (3) In view of the conflict and competitive relationships among multiple operational requirements with Jinsha river downstream cascade project and Three Gorges cascade project, based on correlation analysis of multiple operational objectives, we establish a multi-objective flood control model, a multi-objective power generation model, and a multi-objective ecological dispatch model to consider multiple dispatch requirements of the cascade hydropower stations at the same time under different schedule modes. Afterwards, the proposed MMODE method is applied to solve these multi-objective models. The results show that MMODE can deal with above multi-objective operation model effectively, and a set of non-dominated dispatch schemes can be obtained rapidly, and based on which we analyze the mutual influence among those operational objectives, thus providing alternatives dispatch schemes for operational decision makers.
     (4) In order to determine the multi-objective comprehensively optimal operation scheme quickly, scientifically and reasonably, this thesis combined subjective and objective preference during the decision-making process comprehensively and a novel decision-making method based Vague set is proposed. The standard attribute importance matrix is established to quantify their difference to achieve subjective preference, and a modified entropy calculating equation is proposed to calculate entropy weight precisely. Meanwhile, we describe the closeness degree between the alternative schemes and the ideal schemes by using Vague value. By applying the proposed method to solve the multi-objective power generation, flood control and ecological dispatch decision-making problem and analyzing the decision result, we obtain the optimal scheme under different operational situations and preferences rapidly and correctly.
引文
[1]国家中长期科学和技术发展规划纲要(2006-2020)[R]2006.http://www.gov.cn/jrzg/2006-02/09/content_183787.htm.
    [2]水电水利规划设计总院.我国水力资源复查成果(2003年)[R].北京:中国电力出版社,2004.
    [3]长江流域综合规划[R],水利部长江水利委员会.2009.
    [4]周建中,张勇传等.复杂能源系统水电竞价理论与方法[M].北京:科学出版社,2010.
    [5]张勇传.系统辨识及其在水电能源中的应用[M].武汉:湖北科学出版社,2007.
    [6]马光文.流域梯级水电站群联合优化运行[M].北京:中国电力出版社,2008.
    [7]叶秉如.水资源系统优化规划和调度[M].北京:中国水利水出版社,2001.
    [8]张勇传.水电站经济运行原理[M].北京:中国水利水出版社,1998.
    [9]梁忠民.水文水利计算(第二版)[M].北京:中国水利水出版社,2008.
    [10]张铭,李承军,袁晓辉,等.大规模混联水电系统长期发电优化调度模型及求解[J].武汉大学学报(工学版),2007,40(3):45-49.
    [11]张铭.水电站优化运行与风险分析[D].华中科技大学,2008.
    [12]Little JDC. The use of storage water in a hydroelectric system [J]. Journal of the Operations Research Society of America,1955,3(2):187-197.
    [13]张勇传,李福生,熊斯毅,等.水电站水库群优化调度方法的研究[J].水力发电,1981,(11):48-52.
    [14]张双虎.梯级水库群发电优化调度的理论与实践[D].西安理工大学,2007.
    [15]郭生练,陈炯宏,刘攀,等.水库群联合优化调度研究进展与进展望[J].水科学进展,2010,21(4):496-503.
    [16]赵鸣雁,程春田,李刚.水库群系统优化调度新进展[J].水文,2005,25(6):18-23
    [17]伍宏中.水电站群补偿径流调节的线性规划模型及其应用[J].水力发电学报,1998,(1):10-22.
    [18]Needham J., Watkins D., Lund J., et al. Linear programming for flood control in the Iowa and Des Moines rivers [J]. Journal of Water Resources Planning and Management,2000,126(3):118-127.
    [19]Shim K. C., Fontane D., Labadie J. Spatial decision support system for integrated river basin flood control [J]. Journal of Water Resources Planning and Management, 2002,128(3):190-121.
    [20]Dorfman R. The multi-structure approach in design of water resource systems [R]. Harvard UniversityPress.1962.
    [21]Windsor J.S. Optimization model for reservoir flood control [J]. Water Resource Research,1973,9(5):1103-1114.
    [22]都金康,李罕,王腊春,等.防洪水库群洪水优化调度的线性规划方法[J].南京大学学报,1995,31(2):301-309.
    [23]李寿声,彭世彰.多种水源联合运用非线性规划灌溉模型[J].水利学报,1986,(6):11-19.
    [24]罗强,宋朝红,雷声隆.水库群系统非线性网络流规划法[J].武汉大学学报(工学版),2001,34(3):22-26.
    [25]Barros M., Tsai F., etc. Optimization of Large-scale hydropower system operations [J]. Journal of Water Resource Planning.& Management,2003,129(3):178-188.
    [26]陈禹六.大系统理论及其应用[M].北京:清华大学出版社,1988.
    [27]田峰巍,颜竹丘,刘恩锡.大系统优化理诊在水电站厂内经济运行中的应用[J].水力发电学报,1988,(2):10-19.
    [28]李爱玲.水电站水库群系统优化调度的大系统分解协调方法研究[J].水电能源科学,1997,15(4):58-63.
    [29]李亮,黄强,肖燕,等.DPSA和大系统分解协调在梯级水电站短期优化调度中的应用研究[J].西北农林科技大学学报(自然科学版),2005,33(10):125-128.
    [30]张勇传,邴凤山.凸动态规划与水电能源[J].水力发电学报,1983,(3):19-27.
    [31]姚华明,张勇传,钟琦,等.双状态动态规划算法(BSDP)及其在水库群补偿调节中的应用[J].人民长江,1988,(10):.11-16.
    [32]董增川,许静仪.水电站库群优化调度的多次动态线性规划方法[J].河海大学学报,1990,18(6):63-69.
    133] 黄强.用模糊动态规划法进行水电站水库优化调度[J].水力发电学报,1993,(1):27-36.
    [34]梅亚尔.梯级水库优化调度的有后效性动态规划模型及应用[J].水科学进展,2000,11(2):194-198.
    [35]马志鹏,陈守伦.水库预报调度的灰色动态规划模型[J].水力发电学报,2007,26(5):7-10.
    [36]贾仁甫,马志鹏,陈守.灰色动态规划方法在水库调度中的误差分析[J].水力发电学报,2008,27(4):11-14.
    [37]程春田,郜晓亚,武新宇,等.梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J].中国电机工程学报,2011,31(10):26-32.
    [38]万新宇,王光谦.基于并行动态规划的水库发电优化[J].水力发电学报,2011,30(6):166-170.
    139] Howson H.R, Sancho N.G.F. A new algorithm for the solution of multi state dynamic programming problems [J], Math Programm,1975,8(1):104-116.
    [40]Nanda J., Bijwe P. R. Optimal hydrothermal scheduling with cascaded plants using progressive optimality algorithm [J]. IEEE Transactions on Power Apparatus and Systems,1981,100(4):2093-2099.
    [41]Turgeon A. Optimal short-term hydro scheduling from the principle of progressive optimality [J]. Water Resources Research 1981; 17(03):481-486.
    [42]余永青,戴国瑞.基于算法的变维线性模型在水电站群优化调度中的应用[J].水电能源科学,1989,7(1):65-71.
    [43]邱林,陈守煜.水电站水库实时优化调度模型及其应用[J].水利学报,1997,(3):74-77.
    [44]方红远,王浩,程吉林.初始轨迹对逐步优化算法收敛性的影响[J].水利学报,2002,(11),27-31
    [45]刘涵,黄强,赵麦换.黄河干流供水发电补偿效益及其分配方案研究[J].水力发电学报,2003,(2):24-29.
    [46]刘新,纪昌明,杨子俊,等.基于逐步优化算法的梯级水电站中长期优化调度[J].人民长江,2010,41(21):32-34.
    [47]Holland J. Adaptation in natural and artificial systems [M]. AnnArbor:The University of Michigan Press,1975.
    [48]Kirkpatrick S, Gelatt Jr C.D, Vecchi M.P. Optimization by simulated annealing [J]. Science,1983,220:671-680.
    [49]Eberhart R. C., Kennedy, J. A new optimizer using particle swarm theory [C]. Proc., 6th Symp. On Micro Machine and Human Science, IEEE Service Center, Piscataway, N.J.,1995,39-43.
    [50]曹磊.混沌、分形及其应用[M].合肥:中国科技大学出版社,1995.
    [51]Storn R, Price K. Differential Evolution:A simple and efficient adaptive scheme for global optimization over continuous spaces [R].University of California,Berkeley:ICSI,1995.
    [52]Dorigo M., Maniezzo V., Colorni A. Ant system:optimization by a colony of cooperating agents [J]. IEEE Trans on SMC,1996,26(1):28-41.
    [53]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展,1997,8(3):275-280.
    [54]畅建霞,黄强,王义民.基于改进遗传算法的水电站水库优化调度[J].水力发电学报,2001,(3):85-90.
    [55]杨敬涛,周建中,向凌,等.伪并行遗传算法及其在水电站经济运行中的应用[J].电网技术,2004,28(14):53-56.
    [56]贾嵘,李阳,丁建河,等.改进遗传算法在水电站日优化运行模型中的应用[J].电网技术,2005,29(14):77-80.
    [57]万星,周建中.自适应对称调和遗传算法在水库中长期发电调度中的应用[J].水科学进展,2007,18(4):598-603.
    [58]Chen L., Chang F. J. Applying a real-coded multi-population genetic algorithm to multi-reservoir operation [J]. Hydraulic. Process.2007,21:688-698.
    [59]吴成国,王义民,黄强,等.基于加速遗传算法的梯级水电站联合优化调度研究[J].水力发电学报,2011,30(6):171-177.
    [60]杨道辉,马光文,过夏明,等.粒子群算法在水电站优化调度中的应用[J].水力发电报,2006,25(5):5-7.
    [61]武新宇,程春田,廖胜利,等.两阶段粒子群算法在水电站群优化调度中的应用[J].电网技术,2006,30(20):25-28.
    [62]Nagesh Kumar D., Janga Reddy M. Multipurpose Reservoir Operation Using Particle Swarm Optimization [J]. Journal of Water Resources Planning and Management,2007,133(3):192-201.
    [63]张双虎,黄强,吴洪寿,等.水电站水库优化调度的改进粒子群算法[J].水力发电学报,2007,26(1):1-5.
    [64]马玉新,解建仓,罗军刚.基于组织进化粒子群算法的水电站水库优化调度研究[J].西安理工大学学报,2009,25(3):256-262.
    [65]张景瑞,向泽江,龙健,等.流域梯级水电站群优化调度的多向导粒子群算法[J].水力发电学报,2011,30(4):36-41.
    [66]徐刚,马光文,梁武湖,等.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400.
    [67]徐刚,马光文.基于蚁群算法的梯级水电站群优化调度[J].水力发电学报,2005,24(5):7-10.
    [68]练继建,马超,张卓.基于改进蚂蚁算法的梯级水电站短期优化调度[J].天津大学学报,2006,39(3):264-268.
    [69]Jalali M. R., Afshar A., Marino M. A. Multi-Colony Ant Algorithm for Continuous Multi-Reservoir Operation Optimization Problem [J]. Water Resource Management, 2007,21:1429-1447.
    [70]赵雪花,黄强,吴建华.蚁群算法在水电站厂内经济运行中的应用[J].水力发电学报,2009,28(2):139-142.
    [71]张智晟,樊秀娟,林涛.基于量子蚁群优化算法的梯级水电系统经济调度[J].电力自动化设备,2010,30(10):17-21.
    [72]蒋传文,权先璋,张勇传.水电站厂内经济运行中的一种混沌优化算法[J].华中理工大学学报,1999,27(12):38-40.
    [73]权先璋,蒋传文,温权,等.混沌优化在水电站经济负荷分配中的应用[J].武汉水利电力大学学报,1999,32(5):13-15.
    [74]Yuan X, Yuan Y, Zhang Y. A hybrid chaotic genetic algorithm for short-term hydro system scheduling [J]. Mathematic and Computers in Simulation,2002,59(4): 319-327.
    [75]Yuan X, Wang L, Yuan Y. Application of enhanced PSO approach to optimal scheduling of hydro system [J]. Energy Conversion and Management,2008,49(11): 2966-2972.
    [76]He Y, Zhou J, Xiang X, et.al. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling [J]. Chaos, Solitons and Fractals,2009,42(5):3169-3176.
    [77]芮钧,梁伟,陈守伦,等.基于变尺度混沌算法的混联水电站水库群优化调度[J].水力发电学报,2010,29(1):66-71.
    [78]Mantawy A.H, Soloman S.A, EI-Hawary M.E. A innovation simulated annealing approach to the long-term hydro-scheduling problem[J]. Electric Power and Energy System,2003,25:41-43.
    [79]张双虎,黄强,孙廷容.基于并行组合模拟退火算法的水电站优化调度研究[J].水力发电学报,2004,23(4):15-19.
    [80]邵琳,王丽萍,黄海涛,等.水电站水库调度图的优化方法与应用-基于混合模拟退火遗传算法[J].电力系统保护与控制,2010,38(12):40-43.
    [81]Yuan X, Zhang Y, Wang L, et.al. An enhanced differential evolution algorithm for daily optimal hydro generation scheduling[J]. Computers and Mathematics with applications,2008,25:2458-2468.
    [82]黄强,张洪波,原文林,等.基于模拟差分演化算法的梯级水库优化调度图研究[J].水力发电学报,2008,27(6):13-17.
    [83]李英海,莫莉,左建.基于混合差分进化算法的梯级水电站调度研究[J].计算机工程与应用,2012,48(4):228-231.
    [84]左幸,马光文,徐刚,等.人工免疫系统在梯级水库群短期优化调度中的应用[J].水科学进展,2007,18(2):277-281.
    [85]王正初,周慕逊,李军,等.基于人工鱼群算法的水库优化调度研究[J].继电器,2007,35(21):43-47.
    [86]白涛,黄强.蜂群遗传算法及在水库群优化调度中的应用[J].水电自动化与动化与大坝监测,2009,33(1):1-4.
    [87]覃晖,周建中,李英海,等.基于文化克隆选择算法的梯级水电站联合优化调度.系统仿真学报,2010,22(10):2342-2347.
    [88]张勇传,李福生,柱裕福.水电站水库调度最优化[J].华中工学院院报,1981,9(6):49-56.
    [89]王金文,王仁权,张勇传,等.逐次逼近随机动态规划及库群优化调度[J].人民长江,2002,33(11):45-48.
    [90]刘涵.水库优化调度新方法研究[D].西安:西安理工大学,2006
    [91]Young G. K. Finding reservoir operating rules [J]. Journal of Hydraulics Division, 1967,93(6):297-321.
    [92]陈洋波,陈惠源.水电站库群隐随机优化调度函数初探[J].水电能源科学,1990,8(3):216-223.
    [93]Peng C S, Buras N. Practical estimation of inflows into multireservoir system [J]. Journal of water Recourses Planning and Management,2000,126(5):331-334
    [94]刘攀,郭生练,张文选,等.梯级水库群联合优化调度函数研究[J].水科学进展,2007,18(6):816-822.
    [95]纪昌明,苏学灵,周婷,等.梯级水电站群调度函数的模型与评价[J].电力系统自动化,2010,34(3):33-37.
    [96]刘攀,郭生练,庞博,等.三峡水库运行初期蓄水调度函数的神经网络模型研究及改进[J].水力发电学报,2006,25(2):83-89.
    [97]王东泉,李承军,张铭.基于遗传算法的水库中长期调度函数研究[J].水力发电,2006,32(10):92-94.
    [98]冯雁敏,李承军,张铭.基于改进粒子群算法的水库中长期调度函数研究[J].水力发电,2008,34(2):94-97.
    [99]吴佰杰,李承军,查大伟.基于改进BP神经网络的水库调度函数研究[J].人民长江,2010,41(10):59-63.
    [100]唐幼林,曾佑澄.模糊非线性规划数学模型在多目标综合利用水库规划中的应用[J].水电能源科学,1991,9(1):43-49.
    [101]林翔岳,许丹萍,潘敏贞.综合利用水库群多目标优化调度[J].水科学进展,1992,3(2):112-119.
    [102]陈洋波,王先甲,冯尚友.考虑发电量与保证出力的水库调度多目标优化方法[J].系统工程理论与实践,1998,4:95-101.
    [103]Nagesh Kumar D., Janga Reddy M. Ant Colony Optimization for Multi-Purpose Reservoir Operation [J]. Water Resources Management,2006,20:879-898.
    [104]胡国强,贺仁睦.梯级水电站长期多目标模糊优化调度新模型[J].电力自动化设备,2007,27(4):23-26.
    [105]高仕春,滕燕,陈泽美.黄柏河流域水库水电站群多目标短期优化调度[J].武汉大学学报(工学版),2008,41(2):15-17.
    [106]徐国宾,王健,马超.耦合水质目标的三峡水库非汛期目标多目标优化调度模型[J].水力发电学报,2011,30(3):78-84.
    [107]吴杰康,祝宇楠,韦善革.采用改进隶属度函数的梯级水电站多目标优化调度模型[J].电网技术,2011,35(2):48-52.
    [108]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [109]Janga Reddy M., Nagesh Kumar D. Optimal reservoir operation using multi-objective evolutionary algorithm [J]. Water Resource. Management,2006, 20(6):861-878.
    [110]Janga Reddy M., Nagesh Kuma D. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation [J]. hydrology Process,2007, 21(21),2897-2909.
    [111]杨俊杰,周建中,方仍存,等MOPSO算法及其在水库优化调度中的应用[J].计算机工程,2007,33(18):249-251.
    [112]丁胜祥,董增川,王德智,等.基于Pareto强度进化算法的供水库群多目标优化调度[J].水科学进展,2008,19(5):679-684.
    [113]陈小兰,熊立华,万民,等.宏观进化多目标遗传算法在梯级水库调度中的应用[J].水力发电学报,2009,28(3):5-9.
    [114]覃晖,周建中,王光谦,等.基于多目标差分进化算法的水库多目标防洪调度研究[J].水利学报,2009,40(5):513-519.
    [115]覃晖,周建中,肖舸,等.梯级水电站多目标发电优化调度[J].水科学进展,2010,21(3):377-384.
    [116]周建中,李英海,肖舸,等.基于混合粒子群算法的梯级水电站多目标优化调度[J].水利学报,2010,4(10):1212-1221.
    [117]叶跃祥.区间数多属性决策的一些问题研究[D].中国科学技术大学,2007
    [118]杨俊杰.基于MOPSO和集对分析决策方法的流域梯级联合优化调度[D].华中科技大学,2007
    [119]Bellman, R E, Zadeh, L A. Decision-making in a fuzzy environment [J]. Management Science,1970,17:141-164.
    [120]王本德,周惠成,程春田.梯级水库群防洪系统的多目标洪水调度决策的模糊优选[J].水利学报,1994,(2):31-40.
    [121]程春田,王本德.启发式与人机交互相结合的水库防洪调度模糊优化调度模型[J].水利学报,1995,(11):71-76.
    [122]侯召成,陈守煜.水库防洪调度多目标模糊群决策方法[J1.水利学报,2004,12:106-111.
    [123]陈守煜,袁品碹,郭瑜.可变模糊决策理论及其在水库防洪调度决策中应用[J].大连理工大学学报,2008,48(2):259-262.
    [124]姚荣,贾海峰,张娜.基于模糊物元和墒权迭代理论的水库兴利调度综合评价方法[J].水利学报,2009,1:115-121.
    [125]Chen S M, Tan J M. Handling Multicriteria Fuzzy Decision Making Problems Based on Vague Sets Theory [J]. Fuzzy Sets and Systems,1994,67:163-172
    [126]李娜,梅亚东,段文辉,等.基于Vague集理论和群决策的大坝病险综合评价方法[J].水电自动化与大坝监测,2006,30(6):65-69.
    [127]李永,朱明,李嘉.基于Vague集相似度量模型的城市水安全应急保障能力评价[J].水利学报,2009,40(5):608-613.
    [128]李英海,周建中.基于改进熵权和Vague集的多目标防洪调度决策方法[J].水电能源科学,2010,28(6):32-35.
    [129]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [130]路金喜.水库正常蓄水位方案选择的灰色层次分析方法及应用[J].水电能源科学,1999,17(2):48-52.
    [131]曾勇红,姜铁兵,权先璋.灰色系统理论在水库正常蓄水位方案选择中的应用[J].水电自动化与大坝监测,2003,27(1):57-59.
    [132]刘丙军,邵东国,阳书敏,等.基于狄关联熵的汉江中下游地区水资源分配模型和方法研究.长江流域资源与环境,2005,14(6):699-703
    [133]马志鹏,陈守伦,芮钧.梯级水库群防洪系统多目标决策的灰色优选[J].数学的实践与认识,2007,37(11):112-116.
    [134]李英海,周建中,张勇传,等.水库防洪优化调度风险决策模型及应用[J].水力发电,2009,35(4):19-22.
    [135]刘明广.复杂群决策系统决策与协同优化[M].北京:人民出版社,2008.
    [136]陈晓红.复杂大群体决策方法及应用[M].背景:科学出版社,2008.
    [137]徐玖平.群决策理论与方法及实现[M].北京:清华大学出版社,2009.
    [138]王志良,门宝辉,邱林,等.区域水规划方案多属性递阶群决策[J].水科学进展,2005,16(3):391-396.
    [139]刘治理,马光文,姚若军,等.基于群决策的综合利用水库运行方式研究[J]. 四川大学学报(工程科学版),2009,41(2):77-80.
    [140]陈继光.基于乘性加权算子的水权分配群决策[J].水电能源科学,2011,29(6):134-136.
    [141]Storn R. Designing Nonstandard Filters with Differential Evolution [J]. IEEE Signal Processing Magazine,2005,22(1):103-106.
    [142]Coelhoa L, Mariani V, Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints [J]. Energy Conversion and Management,2007,48(5):1631-1639.
    [143]张吴明,钟约先.基于改进差分进化算法的相机标定研究[J].光学技术,2004,30(6):720-723.
    [144]郭振宇,安强,程博,等.差异演化算法在热连轧工作辊温度仿真中的应用[J]系统仿真学报,2007,19(21):4877-4880.
    [145]Storn. R, Price. K. Differential evolution-a simple and efficient Heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997,11:341-359.
    [146]彭杨,李义天,谢葆玲,等.三峡水库汛后提前蓄水方案研究[J].水力发电学报,2002,21(3):12-20.
    [147]彭杨,李义天,张红武.三峡水库汛末蓄水时间与目标决策研究[J].水科学进展,2003,14(6):682-689.
    [148]郑守仁.三峡工程设计水位175m试验性蓄水运行的相关问题思考[J].人民长江,2011,42(13):1-7.
    [149]陈进.长江流域大型水库群统一蓄水问题探讨[J].中国水利,2010,(8):10-13.
    [150]刘丹雅,纪国强,安有贵,等.三峡水库综合利用调度关键技术研究与实践[J].中国工程科学,2011,13(7):66-69.
    [151]Mandal K K, Basu M, Chakraborty N. Particle swarm optimization technique based short-term hydrothermal scheduling [J]. Applied Soft Computing,2008, 8(4):1392-1399
    [152]Victoirea T.A, Jeyakumarb A.E. Hybrid EP-SQP for dynamic economic dispatch with valve-point effect [J]. Electric Power System Research,71(1):51-59.
    [153]吴亮红,王耀南,袁小芳,等.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458.
    [154]吴亮红,王耀南,袁小芳,等.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):117-120.
    [155]Tavazoeia. M, Haeri, M. Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms [J]. Applied Mathematics and Computation,2007,187(2):1076-1085.
    [156]三峡水库优化调度方案[R].水利部长江水利委员会.2009.
    [157]Coello C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art [J]. Computer Methods in Applied Mechanics and Engineering,2002,191(11):1245-1287.
    [158]Soars S, Lyra C, Tavares H. Optimal Generation Scheduling of Hydro-thermal Power System [J]. IEEE Trans on Power Apparatus and Systems,1980, 99(3):1107-1115.
    [159]Lakshminarasimman L, Subramanian S. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs [J]. Energy Conversion and Management,2008; 49(10):2513-2521.
    [160]Lakshminarasimman L, Subramanian S. Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution [J]. IEE Proc Gener Transm Distrib,2006; 153(6):693-700.
    [161]Deb K. Multi-objective optimization using evolutionary algorithms [M]. Wiley, Chichester, UK,2001.
    [162]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [C]. Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications,1985:93-100.
    [163]Srinivas N., Deb K. Multi-objective Optimization Using Non-dominated Sorting in Genetic Algorithms [J]. Evolutionary Computation,1994,2(3):221-248.
    [164]Deb K, Pratap A, Agarwal S, et.al. A fast and elitist multi-objective genetic algorithm:NSGA-II [J]. IEEE Trans. Evol. Compu,2002,6(2):182-97.
    [165]Zitzler E., Thiele L. Multi-objective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation,1999,3(4):57-271.
    [166]Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the Strength Pareto Evolutionary Algorithm [C]. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece,2002:95-100.
    [167]覃晖.流域梯级电站群多目标联合优化调度与多属性风险决策[D].华中科技大学,2010.
    [168]Xue F, Sanderson A.C, Graves R.J. Pareto-based Multiobjective Differential Evolution [C]. Proc of the 2003 Congress on Evolutionary Computation.2003: 862-869.
    [169]Qian W. Y., Li A. J. Adaptive differential evolution algorithm for multi-objective optimization problems [J]. Appl. Math. Comput.,2008,201,431-440.
    [170]Rolic T., Filipic B. DEMO:Differential Evolution for Multi-objective Optimization [C]. Lecture Notes in Computer Science, Berlin, Springer,2005, pp.520-533.
    [171]Zitzler E., Deb K., Thiele L. Comparison of multi-objective evolutionary algorithms:empirical results [J].2000, Evol. Comput,8(2),173-195.
    [172]向家坝水库调度规程2011年初稿[R].中水顾问集团中南勘测设计研究院,2011.
    [173]黄志中,周之豪.防洪实时优化调度的多目标决策模型[J].河海大学学报,1994,22(6):16-21.
    [174]梅亚东.梯级水库防洪优化调度的动态规划模型及解法[J].武汉水利点力大学学报,1999,32(5):10-12.
    [175]许可,周建中,顾然,等.面向生态的流域梯级电站调度研究[J].华中科技大学学报(自然科学版),2010,38(10):119-123.
    [176]胡和平,刘登峰,田富强,等.基于生态流量过程线的水库生态调度方法研究[J].水科学进展,2008,19(3):325-332.
    [177]梅亚东,杨娜,翟丽妮.雅砻江下游梯级水库生态友好型优化调度[J].水科学进展,2009,20(5):721-725.
    [178]叶季平,王丽萍.大型水库生态调度模型及算法研究[J].武汉大学学报(工学版),2010,43(1):65-67.
    [179]郭文献,夏自强,王远坤,等.三峡水库生态调度目标研究[J].水科学进展,2009,20(4):554-559.
    [180]Tennant D L. Instream flow regimes for fish, wildlife, recreation and related environmental resources [J]. Fisheries,1976,1(4):6-10.
    1181]郭利丹,夏自强,林虹,等.生态径流评价中的Tennant法应用[J].生态学报,2009,29(4):1787-1792.
    1182] Zadeh L A. Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [183]Gau Wenlung, Buehrer D J. Vague Sets [J]. IEEE Transactions on Systems Man and Cybernetics,1993, (23):610-614.
    [184]Hong D H, Choi C H. Multi-criteria fuzzy decision-making problems based on vague set theory [J]. Fuzzy Sets and Systems,2000,114:103-113
    [185]吕泽华.模糊集理论的新拓展及其应用研究[D].华中科技大学,2007
    [186]徐玖平.多属性决策的理论与方法[M].北京:清华大学出版设,2006.
    [187]丁传明,黎放,齐欢.一种基于相似度的混合型多属性决策方法[J].系统工程与电子技术,2007,29(5):737-740.
    [188]许树柏.层次分析法原理[M].天津:天津大学出版社,1988
    [189]Chu A. T. W., Kalaba R. E., Spingarn K. A comparison of two methods for determining the weights of belonging to fuzzy sets [J]. Journal of Optimization Theory and Application,1979, (27):531-538.
    [190]李英海.梯级水电站群联合优化调度及其决策方法[D].华中科技大学,2009.
    [191]马永红,周荣喜,李振光.基于离差最大化的决策者权重确定方法[J].东北化工大学学报,2007,34(2):177-180.
    [192]程平,刘伟.多属性群决策中一种基于主观偏好确定属性权重的方法[J].控制与决策,2010,25(11):1645-1650.
    [193]徐泽水.三角形模糊互补判断矩阵的一种排序方法[J].模糊系统与数学,2002,1(16):47-50.
    [194]邱菀华.管理决策与应用熵学[M].北京:机械工业出版社,2001
    [195]赵德勇,宋辉.基于熵权的改进型多指标综合评估方法及应用[J].军械工程学院学报,2001,13(3):47-51
    [196]周惠成,张改红,王国利.基于熵权的水库防洪调度多目标决策方法及应用[J].水利学报,2007,38(1):100-106
    [197]Hwang C L, Yoon K. Multi-attributes decision-making methods and applications [J]. Berlin Heidelberg:Springer,1981.12-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700