大型灌区续建配套与节水改造规划设计相关技术与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国现有大型灌区434处,是我国农业灌溉的骨干及我国重要的商品粮、棉、油基地,在农业和农村经济发展中及改善生态环境等方面有着十分重要的地位和作用。为了改善灌区工程与管理状况,遏制灌溉效益衰减趋势,提高灌溉水利用效率和农业综合生产能力,1998年,国家启动了《全国大型灌区续建配套与节水改造规划》项目。今后大型灌区续建配套与节水改造规划设计的任务仍然艰巨,对其相关技术和方法进行研究显的尤为重要,为此,本文开展了以下工作:
     (1)本文提出了一般渠段、轮灌渠道及续灌渠系的纵横断面优化设计方法。大型灌区续建配套与节水改造中,由于灌溉渠道系统的投资在整个灌区改造总投资中占相当大的比重,特别是渠道的开挖及衬砌费用投资很大,因此其设计的科学与否将直接影响到水资源利用效率的高低以及农田水利工程在农业生产中效益的发挥。在目前的灌区续建配套与节水改造中,渠道纵横断面参数,特别是纵坡的选择十分重要,这对灌区改造完成后的管理运行具有重要的经济价值。本文基于遗传算法,以工程量最小为目标函数,考虑不冲不淤及首末水位约束,提出一般渠段横断面及轮灌渠道纵横断面的优化设计模型和求解方法;对骨干输配水渠系的纵横断面优化设计,针对灌区改造中常用的断面形式,首次考虑了渠段的最小水位、干支渠分水口水位衔接校核,以工程量最小为目标函数,提出了二级骨干输配水系统动态规划模型及求解方法。
     (2)本文首次建立了基于BP神经网络的灌区建筑物工程量估算模型,开发了辅助设计模块,方法简便、实用。按照国家《大型灌区续建配套与节水改造2009~2020年规划》,至2020年尚存近1200亿投资要实施,为了科学安排灌区投入资金,在规划阶段对灌区建筑物工程进行投资估算就显得十分重要。对水利工程的造价估算,我国通常采用工程概算估价法,该方法是根据已建类似工程的工程量,结合拟建工程的实际情况,首先估算其工程量,再按不同的单价估算其价值量,编制概算,从而得到它的投资估算。灌区建筑物工程概算估价法关键是工程量估算。论文通过分析灌区各类建筑物工程影响工程量的主要因素,在分类建立主要灌区工程数据库(工程主要技术参数、主要工程量、主要材料用量等)的基础上,首次建立了基于BP神经网络的工程量估算模型,开发了辅助设计模块,方法简便、实用。
     (3)本文首次建立了灌溉泵站群优化布局调整的动态规划模型,针对此模型首次提出了耦合约束具有明确边界的动态规划降维方法。在大型灌区续建配套与节水改造规划中,经常会发现有些灌区骨干灌溉干渠(河)两岸的灌溉泵站提水能力接近或大于渠道引水能力,造成灌溉高峰季节,引水渠(河)道水位急剧下降,致使无法正常灌溉,且使引水渠(河)道生态恶化的现象。本文针对该类灌区内灌溉泵站群的特点,以耗能最小为目标函数,以满足灌溉引水要求及生态需求为约束条件,首次建立了灌溉泵站群优化布局调整的动态规划模型,为此类灌区灌溉泵站群的优化布局及灌溉渠道规划调整提供科学依据。论文针对灌溉泵站群优化布局调整动态规划模型的特点,首次提出了耦合约束具有明确边界的动态规划降维方法,丰富了动态规划优化理论。
     (4)为了提高大型灌区续建配套与节水改造规划设计的工作效率,论文首次采用“VB+MapX”开发完成了基于GIS的灌区规划计算机辅助设计系统。系统采用面向对象的编程方法,以Microsoft Visual Basic 6.0作为开发平台,采取人机对话的方式,实现了多种软件(Visual Basic 6.0、MapX控件、Microsoft Access等)的跨平台集成。系统可协助灌区规划人员对灌区进行全过程规划设计,包括设计代表年的选择、作物需水量计算、作物灌溉制度计算、灌水率计算、灌溉渠系GIS实时规划、渠系设计流量推算、渠道纵横断面设计、渠系纵横断面优化、排水沟道GIS实时规划、排水流量计算、排水沟道断面设计、渠系建筑物GIS实时规划、灌区建筑物工程造价估算、经济分析等。
China has 434 large-sized irrigation districts, which not only is the backbone of China's agriculture irrigation and a important production base of commodity grain, cotton and oil, but also has a very important position and role in agriculture and rural economic development and ecological environment improvement. In order to improve the situation of irrigation engineering and management, contain irrigation efficiency attenuation, and improve irrigation water use efficiency and agricultural comprehensive productivity, the country launched a " rehabilitation and water-saving reform planning in national large-sized irrigation districts from 1998 " project. As the arduous task of rehabilitation and water-saving reform projects in large-sized irrigation districs in future, the research on related techniques and methods is extremely important.Therefore, the paper has done following works:
     (1) This paper proposes an optimization design method for general canal cross section and rotation canals and distribution system. The Paper During the rehabilitation and water-saving reform in large-sized irrigation districs, the cost of irrigation canal systems accounts for a large proportion of the total investment, especially the canal excavation and lining costs greatly , therefore, whether its design is scientific impacts the water resources use efficiency and the play of the irrigation and drainage engineering in agricultural production. In the current irrigation districs rehabilitation and and water-saving reform, the determination of parameters of canal profile and cross section , especially the longitudinal slope, has important significance, also has important economic value in irrigation area management after the reform completion. Based on GA, this paper proposes an optimization design model and solution method for general canal cross section and distribution canals profile and cross section, which takes the minimum engineering quantity as objective function and considers the constraints of non-scouring, non-silting and initial and ending water level; as for the optimal design of the profile and cross section of the main delivery and distribution canal, according to the common section form in irrigation districts reform, this paper first proposes a dynamic programming model for two-stage backbone water delivery and distribution system, which takes the minimum engineering quantity as objective function and considers the minimum water level connection and level constrains of the trunk and branch canals flow division.
     (2) The paper first constructs a quantities estimation model based on the BP neural network. According to“national large-sized irrigation districs rehabilitation and water-saving reform planning(2009~2020)”, there is an investment of nearly 120 billion to be implemented until 2020. For the sake of arranging the invested funds scientifically, it is quite important to estimate the investment of building projects in irirgation area. As for water conservancy cost estimation, the project estimate appraisement method is usually adopted in our country. The method firstly estimates the quantities in accordance with the quantities of similar constructed projects, while considers the concrete conditions of the planning building engineering, secondly estimates the value quantity by different unit price and then compiles the estimation, thus obtains the investment estimation. The key problem of the method is to estimates the quantities of the planning building engineering. Through analyzing the main factors that influence the quantities of all types of building projects in irirgation areas, the papar establishes the main projects classification database including the major technical parameters, main quantities and the quantity of main materials, then first constructs a quantities estimation model based on the BP neural network, which has filled in the black of building cost estimation method in the planning stage and has a stronger application value.
     (3)The paper first constructs a dynamic programming model of the layout adjustment optimization of irrigation pumping station group, and firstly puts forward a dimensionality reduction method for the dynamic programming model. During the rehabilitation and water-saving reform in large-sized irrigation districts, as the water level in the main diversion channel (river) is usually low, farmland irrigation depends on the small irrigation pumping stations along the two sides of the main canal. In irrigation peak season, that the capacity of the stations is close to or greater than the transfer capacity of the canals causes a sharp level drop and ecological deterioration in the rivers sometimes.According to the characteristics of the irrigation pumping station group in irrigation districts, the paper presents a dynamic programming model of the layout adjustment optimization of irrigation pumping station group for the first time. The dynamic programming model takes the minimum energy consumption as objective function and considers the irrigation diversion demand and ecological requirement, and provides scientific basis for irrigation pumping station group layout optimization and irirgation canals planning adjustment. In view of the the characteristics of the dynamic programming model of the layout adjustment optimization of irrigation pumping station group, this paper firstly puts forward a dimensionality reduction method for the dynamic programming model with coupling constraint with clear feasible region, which enriches the theory of dynamic programming optimization.
     (4)In order to improve the work efficiency, this paper first uses "VB and MapX" to develop a computer aided design system based on GIS. Using object-oriented programming method and taking Microsoft Visual Basic 6.0 as the development platform, the cad system realizes the cross-platform integration of various softwares (Visual Basic 6.0, MapX control, Microsoft Access, etc.) by the way of man-machine conversation. This system can help the planners to carry out the whole planning and design process of the irrigation area, which includes the choice of the design typical year, crop water requirement calculation, deficit irrigation schedule and irrigation rate computation, GIS real-time planning of irrigation canal system, calculate of canal system design flow, design and optimization of profile and cross section, GIS real-time planning of drainage ditch, calculation of drainage discharge, design of drainage ditche section, GIS real-time planning of irrigation area building, estimate and economic analysis of project cost, and so on.
引文
[1]全国大型灌区续建配套与节水改造规划报告(水规计[2001]514号批复).水利部政务公开网,http://www.mwr.gov.cn/zwgk/20011230/65686.asp.
    [2]全国大型灌区续建配套与节水改造“十一五”规划(发改农经[2008]145号批复).中国水利网, http://www.chinawater.com.cn/newscenter/slyw/200803/t20080328_222101.htm.
    [3]水利部:200亿元新增投资或偏向产粮大省. http://forex.stockstar.com/info/darticle.aspx?id=SS,20081113,30033767&columnid=1223,947,1527.
    [4]我国将重点加快大型灌区续建配套与节水改造工作.经济日报,2009.2.23.
    [5]李远华.大型灌区灌排系统工程改造策略[J].中国水利,2005,(23):47-49.
    [6]闫冠宇.大型灌区“十一五”规划思路[J].中国水利, 2005,(23):45-47,62.
    [7]全国大型灌区节水改造项目中期评估报告要点[J].中国水利, 2005,(23):18-41.
    [8]杨晴,关春曼,李亚娟等.全国大型灌区续建配套与节水改造综合效益评价[J].中国水利, 2001,(07):55-56.
    [9]侯庆顺,文继娟,付丽宏.大型灌区节水改造规划中的几个侧重点[J].黑龙江水利科技, 2002,(03):42-43.
    [10]实施大型灌区节水改造提高粮食综合生产能力——访水利部副部长翟浩辉[J].中国水利, 2005,(23):11-13.
    [11]赵竞成.大型灌区续建配套与节水改造项目的科学管理[J].中国水利, 2005,(23):51-53.
    [12]许迪,龚时宏.大型灌区节水改造技术支撑体系及研究重点[J].水利学报,2007,(07):42-47.
    [13]全国大型灌区续建配套与节水改造项目大事记[J].中国水利,2005,(23):102-103.
    [14]郭元裕.灌排工程最优规划与管理[M].北京:中国水利水电出版社, 1988: 15-80.
    [15]腾流慧等.我国节水灌溉技术的现状及发展前景[J].水利水电技术,1997,(3): 52-55.
    [16]李安国.渠道防渗工程技术.节水灌溉[J],1998,(8):6-8,45.
    [17]钱爱云,金兆森.小型衬砌渠系优化设计的研究[J].江苏农学院学报,1998.19(3):90-97.
    [18] Davis C. . Handbook of applied hydraulic[M]. 1952.
    [19]张庭俊.渠道断面设计的简易方法,农村水利与小水电,1991, 9(4):31-33.
    [20]N.Buras and Z.Schweig. Aqueduct route optimization by dynamic programming [J]. ASCS 95(HY5), 1969.
    [21]Laurence E.Flym and Niguel A.Marino, Channal design: optimal cross section [J], ASCE 113(3), 1981;
    [22]刘承彪.衬砌渠道经济断面设计[J].中国农村水利水电,1990,(4):26-29.
    [23]罗金耀,魏永曜.灌溉渠系优化设计方法的研究[J].水利学报,1990,(6):34-42,49.
    [24]程吉林,金兆森,孙学华等.渠道纵横断面设计的混合动态规划法研究[J].水科学进展,1997,(1):86-92.
    [25]程吉林,陈平,朱春龙等.提水灌区输水明渠纵横断面优化设计[J].灌溉排水学报,2003,(23):31-34.
    [26]余长洪,周明耀.灌区节水改造中防渗渠道断面的优化设计[J].农业工程学报,2004,(1):91-94.
    [27]鲍卫锋,黄介生,孔祥元等.基于遗传算法的渠道断面最优设计[J].中国农村水利水电,2005,(5):75-78.
    [28]张礼兵,程吉林,金菊良等.免疫遗传算法在渠道优化设计中的应用[J].扬州大学学报,2005,(08):50-53.
    [29]程吉林,程桂鑫.渠道纵横断面的几种优化设计方法.江苏农学院学报,1992,13(1):43~47.
    [30] SWAMEE P K. Optimal irrigation canal sections [J]. J Irrig &Drain Engin ASCE, 1995, 121(5): 1525-1533.
    [31]程吉林.输配水渠道设计的多维动态规划模型及其求解方法[J].江苏农学院学报,1992(增刊):34-37.
    [32]程吉林,金兆森,沈洁等.高维动态规划试验选优及其在大型渠道工程系统设计中的应用[J].水利学报,1998,(1):40-45.
    [33]许夕保,周振红,程吉林.渠道简化设计.中国农村水利水电,1997,(9):25-26.
    [34] Rydzewski.J R.et al.Irrigation thory and practice[J].London Billing&sons limited,1989:112-115.
    [35]Flynn L E,Marimo A M.Channal design:Optimal cross section.ASCE,1987,113(3):132-140.
    [36]程吉林,王景成,吴昌新.衬砌配水渠道最优纵横断面优化设计.灌溉排水,2000,(04):17-21.
    [37] GB50288-99,灌溉与排水工程设计规范.
    [38]SL18-2004,渠道防渗工程技术规范.
    [39] SDJ2217-84,灌溉排水渠系设计规范.
    [40]Steven M.Trost,Garold D.Oberlender.Predicting Accuracy of Early Cost Estimates Using Factor Analysis and Multivariate Regression.Journal of Construction Engineering and Managemnet,2003,129(2):198-204.
    [41]王勇.投资估算的方法研究.重庆大学(D),2004.
    [42]任宏;周其明.神经网络在工程造价和主要工程量快速估算中的应用研究[J].土木工程学报,2005,(08):139-142.
    [43]苏振民.基于BP神经网络的工程造价估测方法[J].基建优化, 2000,(04):40-42.
    [44]张爽.基于神经网络的工程造价估价模型[J].森林工程, 2005,(03):59-61.
    [45]于靖,刘建民,张贺.基于模糊数学的工程造价动态快速估算方法[J].广东工业大学学报, 2007,(02):111-114.
    [46]程昳.常用预测方法及评价综述[J].四川师范大学学报(自然科学版),2002,25(1):70-73.
    [47]郑周练,邓绍江,高师娴等.建筑工程造价的模糊确定[J].重庆大学学报:自然科学版,2001.24(1):55-57.
    [48]周丽萍,胡振峰.BP神经网络在建筑工程估价中的应用[J].西安建筑科技大学学报:自然科学版,2005,37(2):262-264,296.
    [49]张传友.灰色系统理论在建筑工程快速估价中的应用[J].福建工程学院学报,2006,4(1):64-67.
    [50]李志录,高杰,沈冰等.基于神经网络的灌区融雪型河源来水预报模型[J].农业工程学报,2006,22(4):66-69.
    [51]蒋晓红,成晓虹,何志军.灌区节制闸工程量估算方法探讨[J].灌溉排水,2002,21(6):31-32.
    [52]杨小林,郭玉田.基于神经网络的工程估价系统研究[J].哈尔滨建筑大学学报,2002,35(2):117-120.
    [53]Creese R,Li L.Cost estimation of timber bridges using networks[J].Cost Engrg,1995,37(5):17-22.
    [54]Garza J,Rouhana K. Neutral network versus paramet based application [J].Cost Engrg,1995,37(2):14-18.
    [55]Verlinden B, Duflou J R, Collin P .Cost estimation for sheet metal parts using multiple regression and artificial neural networks: a case study[J]. Int J Prod Econ,2008, 2 (1):484-492.
    [56]Oscar Marbán, Ernestina Menasalvas and Covadonga Fernández-Baizán. A cost model to estimate the effort of data mining projects (DMCoMo) [J]. Inf Syst, 2008,2(1):133-150.
    [57]阎存立.我国已建水利工程价值量估算的一种方法[J].水利经济,1994,(2):67-69.
    [58]袁纯山.德国水利工程造价估算方法.吉林水利[J],1998,(10):39-41.
    [59]翟明艳,陈强.工程项目快速估价的方法研究[J].华东交通大学学报,2002,(2):75-77.
    [60]毛先明,吕鸿,杨再亭.中小型水利工程项目投资粗估算模型探讨[J].水利规划与设计,2008,(4):49-50,54.
    [61]《中国灌排》编辑部.中国灌排设备手册.中国水利水电出版社,1999.10.
    [62]刘超.泵站经济运行[M].北京:水利电力出版社,1995.
    [63]马文正,丘传忻,贺贵明.泵站运行的优化调度[J].水利学报,1993,(3):37-43.
    [64]张文渊.梯级泵站的流量调配和水位(扬程)优化.水电站设计,2001,(1):20-23.
    [65]汪安南,伍杰.大型轴流泵站最优运行方式探讨[J].农田水利与小水电,1993(11):36-38.
    [66]陈守伦,芮钧,徐青等.泵站日优化运行调度研究[J].水电能源科学,2003,21(3):82-83.
    [67]刘正祥,蒋丽娟,张平燕.动态规划、模拟技术在多级泵站优化调度中的应用[J].灌溉排水,2000,19(2):62-68.
    [68]程芳,陈守伦.泵站优化调度的分解协调模型[J].河海大学学报:自然科学版,2003,31(2):136-139.
    [69]金明宇,徐青,陈守伦.大型引水工程梯级水位优化模型研究[J].水电自动化与大坝监测,2004,28(1):67-69.
    [70]戴振伟,朱兆通,储训,等.多级泵站优化调度研究[J].排灌机械,1997(3):37-41.
    [71]杨鹏,纪晓华,史旺旺.基于遗传算法的泵站优化调度[J].扬州大学学报:自然科学版,2001,4(3):72-74.
    [72]李世芳,马树元.梯级泵站扬程优化调度算法[J].水利水电工程设计,2002,21(2):45-46.
    [73]朱满林,杨晓东,张言禾.梯级泵站优化调度研究[J].西安理工大学学报,1999,15(1):67-70.
    [74]刘德祥,何忠人,郑玉春,等.大岗坡—石台寺多级泵站群优化调度模型研究[J].水电能源科学,1995,13(4):236-241.
    [75]朱劲木,李强,龙新平等.梯级泵站优化运行的遗传算法[J].武汉大学学报(工学版),2008,(01):110-113;
    [76]高占义,窦以松,黄林泉等.大禹渡梯级泵站优化调度研究[J].水利学报,1990(5):1-10.
    [77]李全盈.多级泵站群最优规划的探讨[J].西北水资源与水工程,1994,(2):73-79.
    [78]梁年生等.确定最优排涝策略的双重动态规划模型[J].水电能源科学,1996,(2):73-77.
    [79]周龙才,叶季平.满足流量要求的轴流泵站的实时优化调度[J].中国农村水利水电,1998,(12):7-10.
    [80]彭忠献,张小军,郑春风.株洲航电库区小型排涝泵站群机组选型研究[J].中国农村水利水利水电,2005,(07):74-76.
    [81]孙星明.梯级水电站建设决策支持系统[J].计算机应用,1999,(3):45-46.
    [82]罗志辉,陈惠源等.梯级水电站开发顺序多目标优化方法的研究[J].水利学报,1998,(1):30-33.
    [83]强金龙,王平.动态规划法在最优机组组合中的应用研究[J].自动化技术和应用,1985,(1):8-14.
    [84]朱满林,田峰等.井群泵站经济运行探讨[J].水利学报增刊,1998,(1):40-45.
    [85]f.A费利波娃.水电站机组工况最优化[M].水利电力出版社,1980.
    [86]田峰巍,解建仓,颜竹丘.梯级水电站群的规划与调度[M].北京:科学技术文献出版社, 1992, 2-91.
    [87]Yu-Ming.Chen Management of water resources using improved genetic algorithms[J].Computes and Electronic Agriculture,1997,(18):111~127.
    [88]Bijan Ghahraman,Ali-Reza,Sepashkhah.Optimal allocation of water from a single purpose reservoir to an irrigation project with pre-etermined multiple cropping patterns[J].Irrigation Science,2002,21:127-137.
    [89]Zhouping,Shangguan,Mingan Shao,Robert Horton,etc.A model for regionaloptimal allocation of irrigation water resources under deficit irrigation and itsapplications[J].Agricultural Water Management,2002,55:139~154;
    [90]苗丽安,韩静轩.一种求解动态规划模型的新方法[J].济南大学学报:自然科学版,2009,(2):105-107.
    [91]陈守煜,马建琴,邱林.多维目标模糊选优动态规划及其在农业灌溉中的应用[J].水利学报,2002,(04):35-40.
    [92]Hinton G E.神经网络怎样从经验中学习[M].北京:科学出版社, 1993,77-84.
    [93]Bates J N, Granger C W J. Combined forecasting[J]. Journal of Operational Research, 1969,20:451-468.
    [94]Granger C W J. Invited Review: Combining forecast twenty years later[J]. Journal of Forecasting, 1989(8):352-363.
    [95]hou Y, Bryant R H. Optimal design for an internal stiffener plate in a penstock bifurcation[J]. Journal of Pressure Vessel Technology. 1992,114(2):193-200.
    [96]Karamouz M, Tabari M R, Kerachian R. Conjunctive use of surface and groundwater resources: Application of genetic algorithms and neural networks[C]. In: Proc. of the 2004 World Waterand Environmental Resources Congress: Critical Transitions in Water and Environmental Resources Management, 2004, 3533-3542.
    [97] Moradi J M, Rodin S I, Marino M. A. Use of genetic algorithm in optimization of irrigation pumping stations[J]. Journal of Irrigation and Drainage Engineering, 2004,130(5):357-365.
    [98]王勇.大型水利地理信息系统的建设研究[D].河海大学,2007.
    [99](美国)瓦西里奥斯.奇林兹等.地理信息系统在水资源领域应用评述[J].水利水电快报,18(16):20-24.
    [100]Gupta,S.K.,and Solomon,S.1.Distributed numerical model for estimating run off and sediment discharge of Ungaged Rivers,1.the information system , Water Resources Research,13(3),1977:613-618;
    [101]Fedra K,Jamieson D G.The WaterWare decision-support system for river-basin Planning:2.Planning capability[J].Journal of Hydrology ,1996,(177):176-198;
    [102]S.J.Bhuyan.Asessment of run off and sedjment yield using remote sensing,GIS,and AGNPS[J].Soil and Water Conservation ,2002,57(6):351-364;
    [103](美国)唐娜J·李等.流域规划、开发管理的综合模型.水利水电快报,1997,18(16):23-27.
    [104]ZUKIKENJI,AMAMOTOYUKIYO,ANDOMASUO.Evaluation of Iand and water resources in rainfed agricultural area using high resolution satellite data and GIS.Journal of the Japanese Agricultural,Systems Soeiety,2005,21(3):209-216;
    [105]Davis DW.Comprehensive flood Plain studies using spatial datamanagement techniques[J].Water Resour.Bull.1978,(3):587-604.
    [106]Gemmer M.Deeision support for flood risk management at YangtZe River by GIS/RS-based flood damage estimation.Doctoral dissertation , University of Giessen UniVersity,Germany,Aaehen:Shaker Publishing House,2004.
    [107]Sanyal,Joy:Lu,X.X.Remote sensing and GIS-based flood vulner ability assessment of human Settlements:a case study of Gangetic West Bengal,India[J].Hydrological Processes,2005,19(18):3699-3716.
    [108]OVERTONl.C,Modelling flood Plain inundation on a regulated river:Integrating GIS,remote sensin gand hydrological models [J].River research and applications,2005,21(9):991-1001.
    [109]ZITAN Chen,Building Hygrokinematies Network Datebase of China[R].Geiinfomatics’98 Conference roceeding,1998.
    [110]Hom C R,Grayman W M.Water-Quality Modeling with EPA Reach File System[J].J.Water Resourc.Plng.and Mgmt.,1991,(2):262-274.
    [111]Debarry P A,GIS applications in nonPoint sources Pollution[A].HydrEngrg.,Proe.,1991 Nat.Conf.[c],ASCE,NewYork,N.Y,1991.882-887.
    [112]He Chansheng,Riggs James F.KangYung-TSung.Integration of geograPhie information system and a computer model to evaluate impacts of agricultural run off on water quality[J].Water Resources Bulletin,1993,(6):891-900.
    [113]S J Boyle and 1 K Tsanis,IDOR2D GIS A closely coupled hydrodynamic pollutent transport GIS model[OL], httP: // gis. esri. eo/library /userconf /Proc98 /PROCEED /TO200/PAP185 / P185.HTM.
    [114]LeeS,LeeK,Water quality management system at Mok-hyun stream watershed using GIS,httP://gis.esri.com/library/userconf/Proc 99/Proceed/Papers/pep773/P773.htm.
    [115]GiuPPoni,C.,Vladimirova.I,Ag-PIE: A GIS-based screening model for assessing agricultural Pressures and impacts on water quality on a European scale[J].the Science of the total environment,2006,359(1-3):57-75.
    [116]张关元.大力推广应用“3S”技术的航测遥感大队[J].海河水利,1994(04):23-24.
    [117]侯彦林,石元春.”引黄入淀”工程对区域水资源影响预测一献县至自洋淀区段[J].自然资源学报,1994,(02):142-149.
    [118]谢丹俊,费奇.可视化技术在水利工程决策支持系统中的应用研究[J].水电能源科学,1996(02):134-139.
    [119]姜铁兵,康玲,梁斌等.新型防洪减灾决策支持系统的设计与应用.华中理工大学学报,1998(11):45-47.
    [120]汪卫民.地理信息系统及其在水利行业中的应用[J].微型电脑应用,1998(03):12-15.
    [121]李青元,刘纪平,雷兵等.基于GIS的桌面水利信息系统设计与实现.遥感信息[J]. 1998(51):90-94.
    [122]刘纪平.GIS支持下的防汛信息系统关键技术综述[J].遥感信息,1998(51):15-18.
    [123]WANG Qjng.Flood Disaster Analysis Based on GIS and Remote Sensing[R].Proeeeding of IEAS’97&IWGIS’97,1997.
    [124]刘云,李义天.基于VB和MapX的河网洪水调度系统的开发[J].中国农村水利水电,2005,(3):40-42.
    [125]谭水成,许仕荣,魏亮.使用MapX+VB开发城市给水管网管理地理信息系统[J].平顶山工学院学报,2005,(04):20-22.
    [126]陈宁生,赵秀兰等.低压输水管道的水力计算程序[J].灌溉排水,1991,8(3):54-56.
    [127]彭永臻,王淑莹等.排水管网计算程序设计的全局优化[J].中国给水排水,1994,10(4):21-24. [128魏占民,梁智明等.自动上游控制灌溉渠道系统计算机模拟[J].内蒙占农牧学院学报,1997,18(4):94-100.
    [129]顾世祥,衰宏源等.决策支持系统及其在灌溉实时高度中的应用[J].中国农村水利水电,1998(8):17-19.
    [130]宋松泊,李世卿等.内蒙古河套灌区灌排信息管理决策支持系统[J].灌溉排水,2001,20(l):70-74.
    [131]赵保国,王均等.渠道工程辅助设计软件系统[J].电力学报,1995,10(3):39-42.
    [132]付宁,赵源清等.CAD在灌排渠道断面绘图上的应用[J].水利科技与经济,1997,3(2):86-87.
    [133]Holland J H. Genetic algorithms[J]. Scientific American,1992(4):44-50.
    [134]Holland J H. Adaptation in Natural and artificial systems. 1st ed; 1975. 2nd ed. Cambridge,MA: NIT Press, 1992.
    [135]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社, 1996,1-18.
    [136]金菊良,丁晶.遗传算法及其在水科学中的应用[M].成都:四川大学出版社,2000,1-162.
    [137]张礼兵.试验遗传算法研究及其在水资源系统问题中的应用[D].2007:25-26.
    [138]金菊良,丁晶著.水资源系统工程.成都:四川科学技术出版社,2002.
    [139]程吉林,毕荣石.渠道设计的动态规划模型.灌溉排水,1991,(01):53-56.
    [140]张有为译.动态规划导论.国防工业出版社,1985.
    [141]程吉林.大系统试验选优理论与应用.数学物理学报,A缉.2004,(1):8-15.
    [142]程吉林,郭元裕,金兆森等.大系统数学规划试验选优方法及其应用.中国科学E缉. 1998,(3):254-258.
    [143]程吉林等.高维动态规划试验选优方法及其在渠道工程中的应用.水利学报,1998,(1):39-44.
    [144]程吉林等,高维动态规划试验选优方法,系统工程理论与实践,1996年第2期;56-59.
    [145]程吉林.大系统试验选优理论及其应用[M].上海科学技术出版社,2002.
    [146] Cheng Jilin,Jinzhaosenm.A Dynamic Programming Model of Qualitative Mixture System for Canal Engineering,1993(4):346-353.
    [147] Parviz M..General Foumulation of Best Hgdraulic channel Seetion.l994, 120(1):27-35.
    [148]郑玉胜,黄介生.基于神经网络的灌溉用水量预测[J].灌溉排水学报, 2004, 23(2): 59-61.
    [149]陈香香,蒋晓红,缪海洋.遗传算法在暗管间距优化中的应用[J].中国农村水利水电,2006(1):9-10.
    [150]宋松柏,吕宏兴.灌溉渠道轮灌配水优化模型与遗传算法求解[J].农业工程学报, 2004, 20(2): 40-44.
    [151]Reddy S L. Optimal land grading based on genetic algorithms[J]. Journal of Irrigation and Drainage Engineering, 1996,122(4):183-188.
    [152]Sanchez G., Felici S, Pelechano J et al. Optimal design of irrigation networks using a genetic algorithm[J]. IEEE Symposium on Emerging Technologies and Factory Automation, ETFA, 1999,2: 941-947.
    [153]Hassanli A M, Dandy G C. Application of genetic algorithms for optimization of drip irrigation systems[J]. Iranian Journal of Science & Technology, 2000,24(1): 63-76.
    [154]何文学,魏恩甲,李茶青.弧底梯形明渠水力最佳断面设计[J].水利水电科技进展, 2002,22(1):23-25.
    [155]齐宝全,阎会师.用混凝土衬砌U形槽渠道的设计与施工[J].东北水利水电, 1995, (10):8-10.
    [156]S.Yagi and S.Shiba.Appliaction of genetic algorithms and fuzzy control to a combind sewer PumPing station[J].published by Elsevier Science Ltd, 1999, 39(9):217~224.
    [157]孙德敏.工程最优化方法及应用[M].合肥:中国科学技术大学出版社, 1997,1-78.
    [158]郭元裕.农田水利学(第三版)[M].北京:中国水利水电出版社,1999.114-115.
    [159]程吉林,陈平,朱春龙等.输水渠道线路优化与温游数学家模型[J].水科学进展,2004,(3):130-132.
    [160]郑祖金.基于MapX开发灌区管理信息系统[D].武汉大学,2005.
    [161]刘丽.基于VB和MapX的旅游信息系统的研究和实现[D].沈阳工业大学,2007.
    [162]齐锐,屈韶琳等.用MapX开发地理信息系统[M].清华大学出版社.
    [163]刘丹,郑坤.组件技术在GIS系统中的研究与应用[[J].地球科学,2002,3(27):263-266.
    [164]宋扬,李见为.基于组件式地理信息系统的二次开发[J].重庆大学学报,2000,6(23):121-123;
    [16]刘书雷,李军,陈宏盛.基于Mapx的GIS动态操作与实现. http://21ic.com/news/html,2004.12.7.
    [166]Lohtar M.Sehmitt Theory of genetic algorithms[J].Theoretical Computer Seience. 2001, (259):1~61.
    [167]齐超,等.基于MapX控件的电子地图控制[J].计算机应用,2000,(12):69 -71.
    [168]李克恭等.基于MapX的大地成果管理信息系统的研制[J].东北测绘, 2002,(2):23- 24.
    [169]范昊明等. GIS技术在灌区用水管理中的应用研究[J].沈阳农业大学学报,2002,(4):142 -145.
    [170]年立新.加速实现灌区信息化建设[J].中国农村水利水电, 2001,(9):10 -11.
    [171]刘光.地理信息系统组件开发篇[M].北京:中国电力出版社,2003.1.
    [172]高瑞忠,于婵等.基于随机样本的神经网络模型估算参考作物腾发量[J].农业工程学报,2006,22(2):42-45.
    [173]唐万梅.基于MATLAB的神经网络判别模型.数学的实践与认识[J],2006,36(2):46-50.
    [174]何坚勇.运筹学基础[M].北京:清华大学出版社,2000,353-370.
    [175]龙光正,杨建军.改进的最短路径算法[J].系统工程与电子技术,2002,24(6):106-108.
    [176]叶青,蔡广友等.动态规划的改进算法[J].青岛大学学报,2003,16(4):93-97.
    [177]杨国范.基于GIS和智能数据采集技术的大中型灌区用水管理系统的建立[J ] .沈阳农业大学学报,2003 ,34(1) :49– 521.
    [178]吴玉柏.水稻灌区实时预报优化调度方法的研究[J ].水利学报,1994 ,8 :72 -771.
    [179]田富强,胡和平,杨诗秀.水稻灌溉制度的计算机模拟[J].农业工程学报,1999,(4):100-103.
    [180]陈玉民,康绍忠等.中国主要作物需水量与灌溉[M].北京:水利电力出版社, 1995.
    [181]M·E·詹森.耗水量与灌溉需水量[M].北京:农业出版社, 1983. [182 ]美国垦务局.渠系自动化手册[M].第1卷.北京:中国水利水电出版社, 1996.
    [183]李远华,崔远来.漳河灌区实时灌溉预报研究[J].水科学进展, 1997 (8) : 71- 77.
    [184]周振民.灌区实时灌溉供水模型研究[J].水科学进展, 1997 (8) : 78- 82.
    [185]张阳阳.大型灌区基础数据库的设计[D].河海大学,2006.
    [186]陈敏.遗传算法在都江堰渠首配水中的应用研究[D].四川大学,2005.
    [187]马孝义,于国丰,李安强等.渠系配水优化编组通用化软件的研发与应用[J].农业工程学报,2005,(1):119-123.
    [188]白美健,谢崇宝,许迪等.灌区配水渠道流量损失计算方法的探讨[J].节水灌溉,2002,(4):8-10.
    [189]刘攀,郭生练,雒征.求解水库优化调度问题的动态规划-遗传算法[J].武汉大学学报,2007,(5):3-8.
    [190]王成文;韩勇;谭忠富等.一种求解机组组合优化问题的降维半解析动态规划方法(英文)[J].电工技术学报,2006,(5):114-120.
    [191]赵凌.动态规划模型中高维问题的降维法及疏密格子点法[J].成都大学学报,2000,(4):32-34.
    [192]方晓东.二元动态规划法在水电站库群优化调度中的应用[J].小水电, 1995,(02):31-35.
    [192]向凌,周建中,杨敬涛.一种消除动态规划法中维数灾的新方法[J].电力系统及其自动化学报, 2004,(03):79-81.
    [193]刘严,谭忠富,韩勇等.机组组合优化问题的一种改进的动态规划方法[J].中国优选法统筹法与经济数学研究会第七届全国会员代表大会暨第七届中国管理科学学术年会论文集, 2005 :374-378.
    [194]郑阳明,贾全昌.动态规划在农业土地利用结构优化中的应用[J].河北师范大学学报(自然科学版),1995,(03):21-24.
    [195]陈国栋,尹士君,汤金如等.枚举法和动态规划法在污水管网布置优化中的应用[J].给水排水,2008,(03):115-118.
    [196]许志方,沈佩君.灌排工程经济[M].水利水电出版社,1991,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700