溶胶—凝胶工艺制备二氧化钛自清洁薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,光催化氧化应用于环境污染物的治理已经成为环境科学研究的热点。半导体TiO_2作为一种性能优异的光催化材料,可将许多化学法、生物法无法降解的有机物完全降解为CO_2、H_2O及相应无机酸,且成本低廉,不造成二次污染,使其在废水处理、空气净化、杀菌以及自清洁和太阳能转化等方面有着十分诱人的前景。本论文对半导体光催化和亲水性的工作原理,存在问题及发展前景进行了综述,同时对二氧化钛(TiO_2)光催化的改性的研究进行了介绍。
     由于TiO_2的带隙较宽(约3.2eV),半导体的光吸收波长范围窄(主要在紫外区),故其太阳能的利用效率低,且还存在半导体载流子的复合率高,量子化效率低等缺陷。本论文对玻璃表面TiO_2光催化薄膜作为自清洁薄膜材料进行了一系列探讨。从进行TiO_2掺杂改性和结构修饰着手,针对TiO_2自清洁性能有待提高的问题,用溶胶—凝胶浸置提拉法在玻璃基板上制备了掺HPC、掺硅、掺钒薄膜和钒、硅共掺杂,钒、铁共掺杂TiO_2薄膜,对它们的光催化性能和亲水性能作了系统的研究。
     对掺HPC薄膜进行光催化活性和亲水性测试结果表明:适量(3m最佳)的HPC加入可以使二氧化钛颗粒的团聚程度降低,颗粒均匀分布,TiO_2晶粒纳米化,粗糙度增加,使TiO_2拥有更大的比表面积,使其光催化性能和亲水性均得到改善。其中3m的HPC改性的TiO_2薄膜经过紫外光照3h后表现为超亲水性。
     对掺硅薄膜进行光催化活性和亲水性测试结果表明:硅掺杂提高了TiO_2薄膜光催化活性。但硅的添加量过大时,薄膜光催化活性下降,原因是产生无催化作用的二氧化硅。硅的加入对二氧化钛薄膜的亲水性没有明显影响。
     对掺钒薄膜进行光催化活性和亲水性测试结果表明:掺钒后薄膜光学带隙变小,扩大了可利用光的范围,提高了TiO_2薄膜光催化活性。同时钒掺入产生电子空穴俘获阱,降低电子空穴复合,对光催化活性的提高也有贡献。而钒掺杂使TiO_2薄膜亲水性能显著提高,甚至在太阳光照下就具有亲水性。
     另外,钒、硅共掺杂进一步提高了Ti_2薄膜光催化活性。选择更为合适的
    
    浙江大学硕士毕业论文
    刘琴华:溶胶.凝胶工艺制备二城化钦自清洁薄膜的研究
    双离子共掺杂可能会更有效地提高TIO:的光催化。实验中发现共掺杂薄膜的亲
    水性能不佳。
     综上所述,本研究用溶胶凝胶制备了一系列改性的TIO:薄膜,对它们的自
    清洁(光催化性能和亲水性性能)作了系统研究。研究结果发现,对光催化性能
    而言,掺HPC、掺钒、掺硅和钒、硅共掺杂都对Tio:薄膜光催化活性有所提高,
    但不是所有的改良都带来更好的亲水性。其中,3mHPC掺杂薄膜样品和x二0.巧
    的钒掺杂薄膜光催化性能和亲水性性能都比未掺杂Tio:薄膜样品好,可作为自
    清洁薄膜。
In recent decades, studies on photocatalysis have attracted considerable attention. Titanium dioxide (TiO2), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this thesis, the history, principle, problems and prospect of the photo induced super-hydropholicity and photocatalytic activity of TiO2 films are reviewed. At the same time, the modifying methods of TiO2 photocatalytic are introduced.
    Because of the anatase's broad Eg (3.2eV), the absorption thresholds correspond to 380nm for the TiO2. Consequently, only the ultraviolet fraction of the solar irradiation can be active in the photoexcitation processes using pure TiO2 solid. The high recombination rate of Charge carrier and low efficiency of quantization are also the deficiencies of pure TiO2. This thesis is focused on TiO2 films as self-cleaning material. Using hydroxypro-pylcellulose (HPC) as additive TiO2 films, V-doped TiO2 films, Si-doped TiO2 films and co-doped TiO2 films by the sol-gel technique on glass substrates, the hydropholicity and photocatalytic activity were investigated.
    As to the HPC-doped TiO2 film, it was found that TiO2 films with HPC are composed of smaller particles, and possess higher surface areas and surface roughness. TiO2 films with HPC show better light-induced hydropholicity and higher photocatalytic activity than the films without HPC.
    The results show the optical absorption by Vanadium ions doped TiO2 films. The presence of Vanadium and Silica in TiO2 greatly enhanced their photo-activity. The reason of the increasing photo-activity was analyzed. It was found that the acidification of water could also improve the photocatalyst.
    The photocatalyst of V and Si co-doped TiO2 films is improved and the hydropholicity of V and Si co-doped TiO2 films is reduced..
引文
[1] Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature, (1972), 37, 238-238.
    [2] 张彭义,余刚,蒋展彭,半导体光催化剂及其改性技术进展,环境科学进展,(1997),5(3),1-10.
    [3] Ollis D E, Contaminat degradation in Water, Environ Sci Technol, (1985),19, 48O-484.
    [4] Zhao G. L., Han G. R., Takahashi M., Yoko T., Photoelectrochemical properties of sol-gel-derived Ti_(1-x)V_xO_2 solid solution film photoelectrodes, Thin Solid Films, (2002), 410, 14-20.
    [5] Yamashita H., Ichihashi Y., Takeuchi M., S. Kishiguchi, M. Anpo, Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation, J. Synchrotron Rad, (1999), 6, 451-452.
    [6] Kyeong Y. J., Swung B. P., Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene, Applied Catalysis B, Environmental (2000), 25, 249-256.
    [7] 果玉忱编,半导体物理学,国防工业出版社,北京,(1988),19.
    [8] Amy L. Linsebigler, Guangquan Lu, John T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Jr. Chemical Reviews, (1995), 95(3), 735-758.
    [9] Fujii M., Tomoji Kawai, Shichio Kawai, Photocatalytic activity and the energy levels of electrons in a semiconductor particle under irradiation, Chemical Physics Letter, (1984), 106(6), 517-522.
    [10] Kamat P.V., Dimitrijevic N. M., Colloidal semiconductors as photoeatalysts for solar energy conversion, Solar Energy, (1990), 44(2), 83-98.
    [11] Hagfeldt A., Gratzel M., Light-Induced Redox Reactions in Nanocrystalline Systems, J Chemical Review, (1995), 95(1),49-68.
    [12] Sun L., Bolton J. R., Determination of the quantum yield for the photochemical
    
    generation of hydroxyl radicals in TiO_2 suspensions, J Phys Chem, (1996), 100, 4127-4134.
    [13] Serpone N., Peizzetti E., Photocatalysis, New York, Wilty, (1989).
    [14] Salvador P., Gonzalez Garcia M. L., Munoz F., Catalytic Role of Lattice Defects in the Photoassisted Oxidation of Water at (001) n-TiO_2 Rutile, J.Phys.chem, (1992), 96(25), 10349-10353.
    [15] Wong J. C. S., Linsebigler A., L., Lu G. Fan, Jingfu, Yates, John T., Photooxidation of CH3C1 on TiO_2(110) Single Crystal and Powdered TiO2 Surfaces, J.Phys.chem., (1995), 99(1), 335-344.
    [16] Yamashita, H., Nishiguchi, H., Kamada, N., Anpo, M., Teraoka, Y., Hatano, H., Ehara, S., Kikui, K., Palmisano, L., Sclafani, A.;, Schiavello, M., Fox, M.A., Photocatalytic reduction of CO_2 with H_2O on TiO_2 and Cu/TiO_2 catalysts, Research on Chemical Intermediates, (1994), 20(8),815-820.
    [17] Tang H., H. Berger, Schmid P.E., Lvy F., Optical properties of anatase (TiO_2), Solid State Communications, (1994), 92, (3), 267-271.
    [18] Katsuyama, T., Hiruma, K., Ogawa, K., Haraguchi, K., Yazawa, M., Optical properties of GaAs nano-whiskers, J. Appl. Phys. Suppl., (1994), 34(1), 224-231.
    [19] Gerischer H., Heller A., Role of oxygen in photooxidation of organic molecules on semiconductor particles, J Phys Chem, (1991), 95(13) ,5261-5267.
    [20] Gerischer H., Heller A., Photocatalytic oxidation of organic molecules at TiO_2 particles by sunlight in aerated water, J Electrochem Soc, (1992), 139(1), 113-118.
    [21] Sato S., White J. M., Photodecomposition of water over Pt/TiO_2 catalysts, Chem.Phys.Lett., (1980),72, 83-86.
    [22] Takeda K., Fujiwara K., Characteristics on the determination of dissolved organic nitrogen compounds in natural waters using titanium dioxide and platinized titanium dioxide mediated photocatalytic degradation. Water Reasearch, 1996,30(2): 323-330.
    [23] Aguado M. A., Anderson M. A., Degradation of formic acid over semiconducting membranes supported on glass, Effects of structure and electronic doping, Solar Energy Materials and Solar Cells, (1993), 28(4), 345-361.
    [24] Wang C. M., Heller A., Heinz G., Palladium catalysis of O_2 reduction by
    
    electrons accumulated on TiO_2 particles during photoassisted oxidation of organic compounds, J Am Chem Soc, (1992), 114(2), 5230-5234.
    [25] Alberici R. M., Jardim W. F., Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO_2 in a slurry reactor [J]. Water Research, (1994), 28(8), 1845-1849.
    [26] Chen L. C., Chou T. C., Photodecolorization of methyl orange using silver ion modified TiO_2 as photocatalyst, Industrial & Engineering Chemistry Research, (1994), 33(6), 1426-1443.
    [27] Gao Y. M., Lee W., Trehan R., Kershaw, Dwight K., Wold A., Improvement of photocatalytic activity of titanium (Ⅳ) oxide by dispersion of Au on TiO_2 [J]. Materials Research Bulletin, (1991), 26(12), 1247-1254.
    [28] I. Bernard Rufus, V. Ramakrishnan, B. Viswanathan, J. C. Kuriacose. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide [J]. Langmuir, (1990), 6(3), 565-567.
    [29] Li X.Z., Li F.B., Study of Au/Au3+-TiO_2 Photocatalysts toward Vishible Photooxidation for Water and Wastewater Treament, Environ.Sci.Technol, (2001), 35, 2381-2387.
    [31] Di Paola, A., Marci, G., Palmisano, L., Schiavello, M., Uosaki, K.,Ikeda, S., Ohtani B., Preparation of Polycrystalline TiO_2photocatalysts Impregnated with Variaus Transition Mwtal Ions, Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol, J.Phoys,Chem.B, (2002), 106, 637-645.
    [31] Asahi R., Morikawa T., Ohwaki T., Aoke K., Taga Y., Visible-Light Photocatalysis in Nitrogen-Doped Ttanium Oxides.Science, (2001), 293(13), 269-271.
    [32] Heperuma O.A., Tennakone K., Dissanayake W. P., Photocatalytic behaviour of metal doped titanium dioxide, Applied Catalysis, (1990), 62(1), 1-5.
    [33] Choi W., Termin A., Michael R.H., Role of metal ion dopants in quantum-sized TiO_2,J Phy chem, (1994),98, 13669-13679.
    [34] Jimmy C.Yu, J L., Raymund W.M.K., Enhanced photocatalytic activity of Ti_(1-x)V_xO_2 solid solution on the degradation of acetone, J Photochem Photobiol A, Chem, (1997), 111,199-203.
    
    
    [35] Vogel R., Hoyer P, Weller H., Quantum-sized PbZ, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J Phys Chem, (1994), 98, 3183-3188.
    [36] Gopidas K. R., Bohorquez M., Kamat P. V., Photophysical and photochemical aspects of coupled semiconductors, J Phys Chem, (1990), 94(16), 6435-6440.
    [37] Bedja I., Kamat P. V., Capped semiconductor colloids, synthesis and photoelectrochemical behavior of TiO_2-capped SnO_2 nanocrystallites, J Phys Chem, (1995), 99(22), 9182-9188.
    [38] Do Y. R., Lee K., Dwight K., The effect of WO_3 on the photocatalytic activity of TiO_2, J Solid State Chemistry, (1994), 108, 198-201.
    [39] Vinodgopal K., Kamat P. V. ,Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin films, Environmental Science and Technology, (1995), 29, 841.
    [40] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Linght induced amphiphilic surface, Nature, (1997), 388-431.
    [41] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Photogeneration of highly amphophilic TiO_2 surfaces, Adv. Mater., (1998), 10, 135.
    [42] Fujishima A., R. T. Narasinga, Recent advances in heterogeneous TiO_2 photocatalysis, Proc. Indian Acad. Sci., (1997), 109, 471-486.
    [43] 汪剑炜,王正东,胡黎明,超分散剂的分子结构设计,化工进展(1994),4,32-37.
    [44] 王正东,胡黎明,超分散剂的作用机理及应用效果,精细石油化工,(1996),6,59-62.
    [45] 王听,李镇江,杨丰科,侯耀永,周玉,单分散纳米氧化锆的制备,化工学报,(1999),50 (4),519-523。
    [46] J.H.Jean& T.A.Ring, processing monosized TiO_2 powders generated with HPC dispersant, Am.Ceram.Soc.Bull., (1986),65(12), 1574-1577.
    [47] Hachfeld, E.A., Kim, Y.-J., Francis, L.F., Dip coating of titanium ethoxide
    
    solutions, Mater. Lett. (Netherlands), (1994), 18(3), 141-147.
    [48] C.Andenson, A.J.Bard, Improved photocatalytic activity and characterieation of mixed TiO_2/SiO_2 and TiO_2/ZrO_2. Environ Sci.Technol,(1996), 30:647-653
    [49] 于向阳,程继健,Ti0_2—SiO_2薄膜的光催化活性和超亲水性能,玻璃与搪瓷,(2001),29(3),38-42.
    [50] Litter M. L, Navio JA., Comparison of the photocatalytic efficiency of TiO_2, iron xides and mixed Ti(Ⅳ)---Fe(Ⅲ) oxides: photodegradation of oligocarboxylic acids, J.Photochem.Photobiol.,A:chem., (1994), 98, 183-193.
    [51] Navio J. A., Macias M., Gonzalez-Catalan M, J mater Sci, (1992), 27, 3036-3041.
    [52] 陈晓青,杨娟玉,蒋新宇,宋江锋,掺铁TiO_2纳米微粒的制备及光催化性能,应用化学,(2003),20,17-23.
    [53] Laura E.Depero, paolo Bonzi, Mirella Musci, Cristina Casale, Microstructural Study of Vanadium—Titanium Oxide Powders Obtained by Laser-Induced Synthesis, J.of Solid State Chem., (1994), 111, 247-252.
    [54] S.N.Frank., Semiconductor electrodes. 12. Photoassisted oxidations and photoelectrosynthesis at polyerystalline titanium dioxide electrodes, JACS, (1977), 99, 4667-4675.
    [55] Ezio Pelizzetti, Claudio Minero, Valter Maurino, Antonino Sclafani, Hisao Hidaka, Nick Serpone, Photocatalytic degradation of nonylphenol ethoxylated surfactants, Environ Sci Tech, (1989), 23, 1380-1385.
    [56] Michael R., Hoffmann, Scot T. Martin, Wonyong Choi, Detlef W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem Rev, (1995), 95(1), 69-95.
    [57] 魏宏斌,李田,水中有机污染物的光催化氧化.环境科学进展,(1994),2(3),50-57.
    [58] Tennakone K., Ketipearachchi U. S., Photocatalytic method for removal of mercury from contaminated water, Appl Catal B: Environ, (1995), 5(4), 343-349.
    [59] Wei C., Lin W. Y., Zainal Z., Bactericidal activity of TiO_2 photocatalyst in aqueous media, Environ Sci Technol, (1994), 28(5), 934-938.
    
    
    [60] Sunada, K., Kikuchi, Y., Hashimoto, K., Fujishima, A., Bactericidal and Detoxification Effects of TiO_2 Thin Film Photocatalysts, Environ,Sci.technol, (1998), 32(5), 726-728.
    [61] Fujishima A., Ohtsuki J., Yamashita T.,. Behavior of tumor cells on photoexcited semiconductor surface. Photomed Photobiol, (1986), 8, 45-46.
    [62] Sakai H., Baba R., Hashimoto K., Selective killing of a single cancerous T24 cell with TiO_2 semiconducting microelectrode under irradiation, Chem Lett, (1995), 185-186.
    [63] M. Machida, K. Norimoto, T. Watanabe, K. Hashimoto, A. Fujishima, The effect of SiO_2 addition in super-hydrophilic property of TiO_2 photocatalyst, J.Mater.Sci, (1999), 34, 2569-2574.
    [64] Chert D.W., Ray A.K., Photodegradation kanetics of 4-nitrophenol in TiO_2 supension, Wat. Res., (1998), 32(11), 3223-3234.
    [65] 王怡中,符雁,汤鸿宵,平板构型太阳光催化反应系统中甲基橙降解脱色研究,环境科学学报,(1999),19(2),142-146.
    [66] Fujishima A., Rao T. N., Tryk D. A., Titanium dioxide photocatalysis. J Photochemistry and Photobiology C, (2000), 1, 1-27.
    [67] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima and K. Hashimoto., Photocatalytic activity and photoinduced hydrophilicity of titanium diocide coated glass, Thin Solid Films, (1999), 351, 260-263.
    [68] S. Ikezawa, H. Homyara, T. Kubota, R. Suzuki, S. Koh, F. Mutuga, T. Yoshioka, A. Nishiwaki, Y. Ninomiya, M. Takahashi., Application of TiO_2 film for environmental purification deposite by controlled electron beam-excited plasma, Thin Solid Films, (2001), 386, 173-176.
    [69] Jean J. H., Ring T. A., Processing monosized TiO_2 Powders generated with HPC dispersant, Am Ceram Soc Bull, (1986), 65(12), 1574-1577.
    [70] Clayfield, E.J., Lumb, E.C., Mackey, P.H., Retarded dispersion forces in colloidal particles-Exact integration of the Casimir and Polder equation, J. Colloid Interface Sci., (1971), 37(2), 382-389
    
    
    [71] Tian Qing-Hua(田清华), Zhao Gao-Ling(赵高凌), Han Gao-Rong(韩高荣), The Mechanism Investigation of Influence of HPC on the Microstructure of TiO_2 Films, J. lnorg. Mater, (2004), 19(1), 148-152.
    [72] C.J. Yu, J. Yu, W. Ho, J. Zhao, Light-induced suer-hydropholicity and photocatalytic activity of mesoporous TiO_2 thin films.,J. Photochem. Photobiol A, (2002), 148, 331-339.
    [73] Kyeong Y.J., Swung BP. Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene J Photochemistry and photobiology, A: Chemistry., (1999), 127, 117-122.
    [74] Kyeong Y.J., Swung B.P., Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene Applied Catalysis B: Environmental (2000), 25, 249-256.
    [75] Lin Jun, Yu Jimmy C, Lo D, S. K. Lam, Photocatalytic Activity of Rutile Ti_(1-x)Sn_xO_2Solid Solutions, J catal., (1999), 183,368-372.
    [73] 尹衍升,关凯书,赵虹 SiO_2添加量对TiO_2薄膜表面特征及亲水性的影响,中国有色金属学报,(2003),4(13),48-52.
    [77] 赵高凌,施永明,叶宏伟,韩高荣,Ti_(1-x)V_xO_2固溶体薄膜的制备及光电性能,材料研究学报,(2002),16(1),51-59.
    [78] Pat Y., Heller A., Photooxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention, J. Mater. Res., (1997), 12(10), 2759-2766.
    [79] 刘向东,焦正宽,叶锡生,彭子飞,张立德,纳米板钛矿基TiO_2的晶粒尺寸效应,浙江大学学报,(2001),28(6),621-625.
    [80] Laura E., Depero, paolo Bonzi, Mirella Musci, Cristina Casale, Microstructural Study of Vanadium—Titanium Oxide Powders Obtained by Laser-Induced Synthesis, J.of Solid State Chem., (1994), 111, 247-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700