甜瓜性别相关基因遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从建立高频再生体系入手,以甜瓜子叶节为外植体,对其不定芽和植株再生进行了系统的研究,并对甜瓜不定芽再生过程中的生理生化和内源激素动态变化进行了研究,初步分析和探讨了甜瓜不定芽发育机理。建立了农杆菌介导组培法、农杆菌介导茎尖不定芽法和花粉管通道法三种遗传转化方法,将性别相关基因导入到具有重要推广价值的甜瓜品系中。主要研究结果如下:
     1本试验以甜瓜子叶节为外植体,6-BA为主要诱导激素,辅之以IAA,建立了稳定的甜瓜子叶节再生体系。甜瓜子叶节在不定芽诱导培养基上直接分化出了丛生芽,对于本研究所用的4份试材,最终获得4号品系最适激素水平为6-BA的有效浓度1mg/L,IAA的有效浓度0.01mg/L,再生频率为96.7%。
     2甜瓜子叶节外植体再生过程SOD、可溶性糖含量、POD、CAT、可溶性蛋白、叶绿素呈有规律的动态变化。这些生理生化指标的变化与不定芽的产生密切相关。可溶性糖、可溶性蛋白含量在甜瓜不定芽产生过程中呈现上升趋势,可见,这些物质在不定芽发生过程中起着重要的作用。在3种抗氧化酶中,SOD活性变化在愈伤组织的早期发生过程中起关键作用;CAT活性变化对不定芽的诱导发生、后期发育阶段起主导作用;而POD活性变化在不定芽发生过程中作用不明显,并且SOD与CAT活性变化有一定相关性。两种抗氧化酶在愈伤组织诱导及不定芽分化、发育和成熟过程中分工合作、相互配合。4个甜瓜品系的叶绿素(叶绿素a、叶绿素b、类胡萝卜素、叶绿素总量)含量均呈现大幅下降趋势,即在无菌苗时期,叶绿素的含量为最高值。表明无菌苗时期光合作用能力最强,而在愈伤组织生长过程中,光合能力减弱。较高的ZR含量有利于不定芽的诱导,较低的IAA/ZR比值和较高的ZR/ABA比值有利于甜瓜子叶节的再生。
     3在建立了高频再生体系的基础上,对农杆菌介导下子叶节遗传转化过程中,Km使用浓度等主要影响因素进行了系统研究,优化了转化流程,建立了农杆菌介导甜瓜子叶节遗传转化体系,对获得的抗性植株进行了PCR和Southern杂交检测,阳性转化率为2.25%。
     4通过对主要影响因素进行系统研究,确立了甜瓜授粉授精时间,优化了花粉管通道法遗传转化体系。建立了T1代抗性种子的筛选体系,对获得的抗性植株进行了PCR检测,阳性率为0.05%。
     5对茎尖产生不定芽的激素水平等主要影响因素进行了研究,建立了茎尖遗传转化体系,优化了转化流程中的各项参数。对获得的抗性植株进行了PCR和Southern杂交检测,阳性率为8%。
     6.通过转录组测序,选择不同性别甜瓜植株差异表达的EST,获得同源片段后,从甜瓜雌雄异花同株中克隆获得一条具有完整阅读框的CmACS-3基因序列,与公布的哈密瓜CmACS-3序列二者核苷酸序列相同率达98%。CmACS-3全长1865bp,该序列编码区长度为1446bp,编码492个氨基酸。该基因在甜瓜幼苗根、茎、叶中均表达。通过构建植物表达载体,茎尖法转化甜瓜品系M-23,转基因植株营养生长正常,雌蕊正常,花药上花粉量少,通过花粉离体萌发实验发现花粉萌发率下降,这可能与转基因植株花药表型与基因作用之间的互作有关。
In this study, through the establishment of high frequency regeneration system, meloncotyledon node was regarded as explant, meanwhile adventitious buds and plant regeneration wereanalyzed systematically; Dynamic changes of physiology, biochemistry and endogenous hormonesin regeneration process of melon adventitious bud were analyzed, developmental mechanism ofmelon adventitious bud was preliminary analyzed. The Agrobacterium-mediated tissue culturemethod, Agrobacterium-mediated adventitious bud of the shoot tip method, and the pollen tubepathway method were established; Gender-related genes were transformed into an importantpractical valuable melon strains. The main results were as follows:
     1In this experiment, the cotyledon node of melon was regarded as explant.6-BA was mainlyinduced hormone, complemented by the IAA. The regeneration system of cotyledon nodes fromdifferent melon genotypes was established through the organs direction occurrence ways.Clustered buds were differentiated from melon cotyledon node in adventitious bud inductionmedium. For4materials used in this study,4th line was suitable for optimal hormone levelultimately. Effective concentration of6-BA was1mg/L, IAA was0.01mg/L, and regenerationfrequency was96.7%.
     2Soluble sugar content, SOD, CAT, POD, soluble proteins, and chlorophyll demonstratedregular dynamic change in melon adventitious bud regeneration process. These changes wereclosely related with cell division and regeneration start of adventitious bud. Soluble sugar andprotein content, as the material and energy bases of development of adventitious bud showed anupward trend in the process of adventitious bud start. For three kinds of antioxidant enzymes,activity changes of SOD played a key role in the early development of callus; Activity changes ofCAT played a leading role in adventitious bud occurrence, late development and maturation; whileactivity changes of POD were not obvious in adventitious bud, and related with activity changes ofSOD and CAT. Two antioxidant enzymes cooperated mutually in callus induction and adventitiousbud differentiation, development and maturation. Chlorophyll content (chlorophyll a, chlorophyll b,carotenoids, and total chlorophyll) of4melon strains displayed a sharp downward trend. In asterile seedling, the content of chlorophyll reached the highest value. That indicated ability of photosynthesis was the strongest in sterile seedling, but weekend in the callus growth process.Higher content of ZR was conducive to the formation of adventitious bud, the lower hormone ratioof IAA/ZR and higher ratio of ZR/ABA were conducive to melon cotyledon node regeneration.
     3On the basis of establishment of high frequency regeneration system, some main impactfactors, such as Km concentration, were analyzed systematically in the process ofAgrobacterium-mediated the cotyledon node genetic transformation. Conversion process wasoptimized, and the Agrobacterium-mediated melon cotyledon node genetic transformation systemwas established. Through PCR detection and southern hybridization detection for resistant plants,the positive rate was2.25%.
     4Through analyzing main impact factors systematically, pollination time was ascertained,and pollen tube pathway genetic transformation system was optimized. Screening system ofresistant seeds from T1generation was established. Through PCR detection for resistant plants, thepositive rate was0.05%.
     5Some main impact factors, such as hormone levels, for the generation of adventitious budwere analyzed, genetic transformation system of the shoot tip was established, and the parametersof the conversion process were also optimized. Through PCR detection and southern hybridizationdetection for resistant plants, the positive rate was8%.
     6Through transcriptome sequencing, different gender difference expression ESTs wereselected and ESTs homologous fragments were obtained. CmACS-3gene sequence including acomplete open reading frame was gained from monecious melon, and then was identical to have98%homologous nucleotide sequence with the cantaloupe CmACS-3. CmACS-3(1865bp) had1446bp in coding region, which encoded492amino acids. CmACS-3was expressed in root, stem,and leaves. Through constructing plant expression vector, shoot tip method was applied totransformed melon M-23. Transgenic plants grew normally, pistils were normal, and pollen ofanther was less. Germination rate of pollen was low by germination in vitro experiment.However,decreased in the amount of pollen in the anther. This might be in accordance with the relationshipbetween anther phenotype in transgenic plants and gene action.
引文
[1]张大力.甜瓜子叶愈伤组织的培养和植株的再生[J].陕西师大学报,1984,2:81-84.
    [2]唐定台,张静兰,徐桂芳等.植物激素对哈密瓜(Cucumis melo L.)子叶形成愈伤组织和植株再生的作用[J].植物学报,1980,2(22):132-135.
    [3] DIRKS R,VAN B M. In vitro plant regeneration from leaf and cotyledon explantsof Cucumis melo L.[J]. Plant Cell Rep,1989,7:626-627.
    [4] NIEDZ R P,SCHILLER S S,DUNBAR K B,et al. Factors influencing shoot regenerationfrom cotyledonary explants of Cucumis melo L.[J]. Plant Cell TISSORG,1989,18(3):313-319.
    [5]尹俊,徐妙云,贾小平,等.河套蜜瓜体胚发生及植再生的研究[J].园艺学报,2000,27(6):455-457.
    [6]王建设,陈杭.甜瓜再生芽高效诱导方法的研究[J].园艺学报,1999,26(5):339-340.
    [7]蔡润,黄伟华,潘俊松,等.甜瓜子叶离体培养直接再生不定芽的形态学和解剖学观察[J].武汉植物学研究,2002,20(5):338-34.
    [8]陈千红,管和.外源激素诱导甜瓜下胚轴愈伤组织的效应[J].华东师范大学学报(自然科学版),1989,2:92-99.
    [9]肖守华,赵善仓,王崇启,等.厚皮甜瓜高效再生体系的建立[J].山东农业科学,2007(4):35-38.
    [10]师桂英,徐秉良,薛应枉.厚皮甜瓜黄河蜜植株再生研究[J].兰州大学学报(自然科学版),2006,42(5):48-51.
    [11]赵月玲,夏海武.甜瓜组织培养和快速繁殖[J].植物生理学通讯,1999,10:377.
    [12]夏海武,马秀兰,万永霞.甜瓜组织培养与快速繁殖的研究[J].山东农业科学,2001,2:23-24.
    [13]陶兴林,黄永红赵长增,等.厚皮甜瓜品种离体培养再生植株能力的基因型差异研究[J].果树学报,2005,22(3):252-255.
    [14]毛娟,陈大鹏,赵长增.黄河蜜3号高效再生体系的建立[J].甘肃农业大学学报,2010,2(45):63-68.
    [15]孔维萍,程鸿.薄皮甜瓜高效再生体系的建立[J].北方园艺,2012,2:132-133.
    [16] WU HUIWEN TSONG ANN YU,JOSEPH A.J.RAJA, et al. Generation of transgenic orientalmelon resistant to Zucchini yellow mosaic virus by an improved cotyledon cuttingmethod[J]. Plant Cell Rep,2002,8:1053–1064.
    [17] AKASAKA-KENNEDY Y, TOMITA K, EZURA H. Efficient plant regeneration andAgrobacterium-mediated transformation via somatic embryogenesis in melon(Cucumis melo L.)[J]. Plant Sci,2004,166(3):763-769.
    [18] ABDOLLAHI H, MULEO R, RUGINI E. Optimisation of regeneration and maintenanceof morphogenic callus in pear (Pyrus communis L.) by simple and doubleregeneration techniques[J]. Sci Hortic-Amsterdam,2006,108(4):352-358.
    [19] RHIMI A, HERNOULD M, BOUSSAID M. Agrobacterium-mediated transformation ofTunisian Cucumis melo cv. Maazoun[J]. Afr J Biotechnol,2007,6(18).
    [20] CHOVELON V, RESTIER V, DOGIMONT C, et al. Histological study of shootorganogenesis in melon(Cucumis melo L.)after genetic transformation.Cucurbitaceae2008[C]. Proc IXth EUCARPIA mtg on Gene and Breed of Cucurbitaceae,INRA, Avignon, France,2008:21-24.
    [21] COMLEKCIOGLU N, MENDI Y Y, ELDOGAN S,et al. Effects of different combinationsand concentrations of growth regulators and photoperiod on somatic embryogenesisof cucumis melo var.flexuosus[J]. Afr J Biotechnol,2009,8(22)6228-6232.
    [22] THIRUVENGADAM M, REKHA K T, YANG C H,et al. High-frequency shoot regenerationfrom leaf explants through Organogenesis in bitter melon (Momordica charantiaL.)[J]. Plant Biotechnol Rep,2010,4:321-328.
    [23] NTUI V O, CHIN D P, NAKAMURA I, et al. An efficient Agrobacteriumtumefaciens-mediated genetic transformation of “Egusi” melon (Colocynthiscitrullus L.)[J]. Plant Cell Tiss Org,2010,103(1):15-22.
    [24] FICCADENTI N,ROTINO G. Genotype and medium affect shoot regeneration of melon[J].Plant Cell Tiss Org,1995,40:293-295.
    [25] CHOI J,KIM H,LEE C, et al. Efficient and simple plant regeneration viaorganogenesis from leaf segment cultures of persimmon(Diospyros kaki Thunb.)[J].In Vitro Cell Dev Biol Plant,2001,7:274–279.
    [26] GALPERIN M,ZELCER A,KENIGSBUCH D. High competence for adventitious regenerationin the melon genotypeis controlled by a single dominant locus[J]. Hortscience,2003,6:1167-1168.
    [27] RHIMI A, FADHEL N B, BOUSSAID M. Plant regeneration via somatic embryogenesisfrom in vitro tissue culture in two Tunisian Cucumis melo cultivars Maazoun andBeji[J]. Plant Cell Tiss Org,2006,84:239–243.
    [28] COGBILL S,FAULCON T,JONES G,et al. Agrobacterium-mediated genetictransformation of economically important oilseed rape cultivars[J]. Plant CellTiss Org,2011,107:317–323.
    [29] BOSZORADOVA E,LIBANTOVA J,MATUSIKOVA I,et al. Agrobacterium-mediated genetictransformation of economically important oilseed rape cultivars[J]. Plant CellTiss Org,2011,107:317–323.
    [30]崔凯荣,陈克明,王晓哲.植物体细胞胚发生研究的某些现状[J].植物学通报,1993,10(1):14-20.
    [31] YOUNG M. Adventitious shoot regeneration from cotyle-donary explants ofrapid-cycling fast plants of Brassica rapa L[J]. Plant Cell Tiss Org,2010,101:127–133.
    [32] PARK S Y, CHO H M, MOON H K. Genotypic variation and aging effects on theembryogenic capacity of Kalopanax septemlobus[J]. Plant Cell Tiss Org,2011,105:265–270.
    [33] BELL RL,SCORZA R,LOMBERK D. Adventitious shoot regeneration of pear(Pyrusspp.)genotypes[J]. Plant Cell Tiss Org,2011,108:229–236.
    [34] CHOVELON V, RESTIER V, GIOVINAZZO N, et al. Histological study of organogenesisin Cucumis melo L.after genetic transformation:why is it difficult to obtaintransgenic plants?[J]. Plant Cell Rep,2011,30:2001–2011.
    [35] MURASHIGE T,SKOO F. A revised medium for rapid growth and bioassays with tobaccotissue culturew[J]. Physiol Plant,1962,15:473-497.
    [36]范双喜.植物组织培养中胚状体诱导的研究[J].北京农学院学报,1993,8(2):142-146.
    [37]郏艳虹,熊庆娥.植物体细胞胚胎发生的研究[J].四川农业大学学报.2003,21(3):263-266.
    [38]邓向东,耿玉轩,路子显,等.外植体和培养因子对哈密瓜不定芽诱导的影响[J].园艺学报,1996,23(1):57-61.
    [39] GEORGE E F, HALL M A, DE KLERK G J. Somatic embryogenesis[M]. Plant propagationby tissue culture. Springer Netherlands,2008:335-354.
    [40] HUANG W L, LEE C H, CHEN Y R. Levels of endogenous abscisic acid andindole-3-acetic acid influence shoot organogenesis in callus cultures of ricesubjected to osmotic stress[J]. Plant Cell Tiss Org,2012,108(2):257-263.
    [41] GARCìA MARTìN G,MANZANERA JA,GONZAìLEZ-BENITO M. EEffect of exogenous ABA onembryo maturation and quantification of endogenous levels of ABA and IAA inQuercus suber somatic embryos[J]. Plant Cell Tiss Org,2005,80:171-177.
    [42] BARRETO R,NIETO SOTELO J,CASSAB GI. Influence of plant growth regulators andwater stress on ramet induction,rosette engrossment,and fructan accumulationin Agave tequilana Weber var.Azul[J]. Plant Cell Tiss Org,2010,103:93–101.
    [43] IVANOVA M,VAN STADEN J. Influence of gelling agent and cytokinins on the controlof hyperhydricity in Aloe polyphylla.sc[J]. Plant Cell Tiss Org,2011,104:13–21.
    [44] HUANG W L, LEE C H, CHEN Y R. Levels of endogenous abscisic acid andindole-3-acetic acid influence shoot organogenesis in callus cultures of ricesubjected to osmotic stress[J]. Plant Cell Tiss Org,2012,108(2):257-263.
    [45] SONG L Y, GAO F. Changes of endogenous hormones in Momordica charantia duringin vitro culture[J]. Chinese Bull. Bot,2006,23(2):192-196.
    [46] GUIS M, ROUSTAN J P, DOGIMONT C, et al. Melon biotechnology[J]. Biotechnology&genetic engineering reviews,1998,15:289-311.
    [47] MIEHLER C H,BANER EO. High frequency somatic embryo genes is from leaf tissueof Populu spp[J]. Plant Sci,1991,77:111-118.
    [48]许煜泉,史益敏.番茄离体子叶培养的形态发生及过氧化物酶的动态[J].上海农学院学报,1992,10(2):121-126.
    [49]张静兰,唐定台,徐桂芳,等.防线素D和环已亚胺对激素诱导绿豆子叶脱分化及其核酸、蛋白质代谢的作用[J].植物学报,1982,24:433-439.
    [50]戴均贵,周吉源.华黄茂.离体形态发生过程中生理生化特性变化的研究[J].华中师范大学学报:自然科学版,1997,31(2):220-224.
    [51]屈妹存,刘选明.百合鳞片细胞形态发生中生理生化特性研究[J].生命科学研究,1998,2(4):288-294.
    [52] MERATAN AA,GHAFFARI SM,NIKNAM V. In vitro organogenesisand antioxidant enzymesactivity in Acanthophyllum sordidum[J]. Biol Plant,2009,53:5–10.
    [53] BA KOVá, P, POSPí ILOVá, J,SYNKOVá, H. Production of reactive oxygen speciesand development of antioxidative systems during in vitro growth and ex vitrotransfer[J]. Biol Plant,2008,52:413-422.
    [54] KAIRONG C, GENGSHENG X, XINMIN L, et al. Effect of hydrogen peroxide on somaticembryogenesis of Lycium barbarum L[J]. Plant Sci,1999,146(8):9-16.
    [55]黄剑.水曲柳(Fraxinus mandshurica Rupr.)不定芽发生体系与发育机理的研究[D].哈尔滨:东北林业大学,2010.
    [56] PAPADAKIS A K, SIMINIS C I, ROUBELAKIS-ANGELAKIS K A. Reduced activity ofantioxidant machinery is correlated with suppression of totipotency in plantprotoplasts[J]. Plant Physiol,2001,126(1):434-444.
    [57] TIAN MIN,GU QING,ZHU MU YUAN. The involvement of hydrogen peroxide andantioxidant enzymes in the process of shoot organogenesis of strawberry callus[J].Plant Sci,2003,165:701-707.
    [58] ZHANG SHOU GONG, HAN SU YING, WEN HUAYANG, et al. Changes in H2O2content andantioxidant enzyme gene expression during the somatic embryo genesis of Larixleptolepis [J]. Plant Cell Tiss Org,2010,100:21–29.
    [59] ABBASI BILAL HAIDER, KHAN MURAD, GUO BIN, et al. Efficient regeneration andantioxidative enzyme activities Brassica rapa var.turnip [J]. Plant Cell TissOrg,2011,105:337–344.
    [60]王亚馥,王仑山.枸杞组织培养中形态发生的细胞组织学观察[J].兰州大学学报,1989,25(4):88-92.
    [61]庄东红,杜虹.大白菜子叶培养过程中POD同工酶和可溶性蛋白质含量的变化[J].汕头大学学报,2002,17(1):65-68.
    [62]崔凯荣任红旭邢更妹,等.枸杞组织培养中抗氧化酶活性与体细胞胚发生相关性的研究[J].兰州大学学报(自然科学版),1998,34(3):93-99.
    [63] ZHANG BO, WANG HAIQING, WANG PEI, et al. Involvement of nitric oxidesynthase-dependent nitricoxide and exogenous nitric oxide in alleviating NaClinduced osmotic and oxidative stress in Arabidopsis thaliana[J]. Afr J Agr Res,2010,5(13):1713-1721
    [64] SRIVASTAV M, KISHOR A, DAHUJA A, ET AL,et al. Effect of paclobutrazol and salinityonion leakage,proline content and activities Of antioxidant enzymes inmango(Mangiferaindica L.)[J]. Sci Hortic-Amsterdam,2010,25:785–788.
    [65] YUE ZHAO. Cadmium accumulation and antioxidative defenses in leaves of Triticumaestivum L. and Zea mays L[J]. Afr J Biotechnol,2011,10(15):2936-2943.
    [66]詹园凤,吴震,金潇潇,等.大蒜体细胞胚胎发生过程中抗氧化酶活性变化及某些生理特征[J].西北植物学报,2006,26(9):1799-1802.
    [67]陈陆琴,王关林,李洪艳,等.彩萼石楠的组织培养和快速繁殖[J].植物生理学通讯,2005,41(1):58.
    [68]张良波.屋顶长生草离体培养及其形态发生的细胞学与生理生化变化的研究[D].湖南,湖南农业大学理学院,2004.
    [69] PAN Z Y,ZHU S P,GUAN R,et al. Identification of2,4-D-responsive proteins inembryogenic callus of Valencia sweet orange(Citrus sinensis Osbeck)followingosmotic stress [J]. Plant Cell Tiss Org,2010,103:145–153.
    [70] ALI A, AHMAD T, ABBASI N A, et al. Effect of different concentrations of auxinson in vitro rooting of olive cultivar “Moraiolo”[J]. Pak J Bot,2009,41(3):1223-1231.
    [71] FENG J C,YU X M,SHANG X L,et al. Factors influencing efficiency of shootregeneration in Ziziphus jujube Mill.“Huizao”[J]. Plant Cell Tiss Org,2010,101:111–117.
    [72]刘涤,迟静芬,刘桂芸.带辛烟草愈伤组织器官发生过程中外源激素的作用[J].植物生理学报,1986,12(1):104-108.
    [73] LE SHEM B. Polarity and responsive regions for regeneration in the cultured meloncotyledon[J]. J Plant Physiol,1989,135(2):237-239.
    [74]王秀红.水稻不同外植体的组织培养能力及其内源激素分析[D].雅安:四川农业大学,2002.
    [75] AIDA M, ISHIDA T, FUKAKI H, et al. Genes involved in organ separation inArabidopsis: an analysis of the cupshaped cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.
    [76] AIDA M, ISHIDA T, TASAKA M. Shoot apical meristem and cotyledon formation duringArabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOTMERISTEMLESS genes[J]. Development,1999,126(8):1563-1570.
    [77] CENTENO M L,RODR′GUEZ A,FEITO I,et al. Relationship between endogenous auxinand cytokinin levels and morphogenic responses in Actinidia deliciosa tissue[J]. Plant Cell Rep,1996,16:58–62.
    [78] ANA E V,RICARDO J O,BELéN F,et al. Relationships between hormonal contents andthe organogenic response in Pinus pinea cotyledons[J]. Plant Physiol Bioch,2001,39:377–384.
    [79] WANG X H,SHI X Y,WU X J,et al. The influence of endogenous hormones on culturecapability of different explants in rice[J]. Agric Sci China,2005,4(5):343-347.
    [80]裴东,郑均宝,凌艳荣,等.红富士苹果试管培养中器官分化及其部分生理指标的研究[J].园艺学报,1997,24(3):229-234.
    [81]邵继平.声波刺激对菊花愈伤组织内源激素IAA和ABA动态变化的实验研究[D].重庆:重庆大学,2003.
    [82]田春英,邵建柱.刘莹,等.红富士苹果叶片不定芽再生中激素、多胺和NO含量的变化[J].园艺学报,2010,37(9):1403-1408.
    [83]林士杰,姜静,冯听,等.黑林1号杨组培叶片不定根的发生与内外源激素关系的研究[J],林业科技,2006,31(1):6-8.
    [84] YOSHIOKA K, HANADA K, NAKAZAKI Y, et al. Successful transfer of the cucumbermosaic virus coat protein gene to Cucumis melo L[J]. Ikushugaku Zasshi,1992,42(2):277-285.
    [85]孙严,李仁敬,许健.新疆甜瓜抗黄瓜花叶病毒转基因植株的获得[J].新疆农业科学,1994(1):34-35.
    [86] FANG G W,GRUMET R. Genetic Engineering of Potyvirus Resistance U-sing ConstructsDerived from the Zucchini Yellow Mosaic-Virus Coat Protein Gene[J]. Mol PlantMicrobe In,1993(6):358-367.
    [87] GONSALVES C,XUE B,YEPES M,et a1. Transferring cucumber mosaic virus-white leafstrain coat protein gene into Cucumis melo L. and evaluating transgenicplantsfor protection against infections[J]. J Am Soc Hortic Sci,1994,119:345-355.
    [88] CLOUGH G H,HAMM P B. Coat protein transgenic resistance to watermelon mosaicand zucchini yellow mosaic virus in squash and cantaloupe[J]. Plant Dis,1995,79(11):1107-1109.
    [89] FUCHS M,MCFERSON J R,TRICOLI D M,et al. Cantaloupe line CZW-30containing coatprotein genes of cucumber mosaic virus,and water-melon mosaicvirus-2isresistant tothese virusin the field[J]. Mol Breed,1997,3(4):279-290.
    [90]薛宝娣,陈永首,Gonsalves D,等.转CP基因的番茄、南瓜和甜瓜植株的抗病性研究[J].农业生物技术学报,1995,3(2):58-63.
    [91]王慧中.转基因甜瓜植株的获得及其抗病性[J].植物保护学报,2000,27(2):126-130.
    [92]姜瑛.苋菜凝集素基因(ACA)转入甜瓜及其在转基因植物中的表达[D].哈尔滨:东北农业大学,2001.
    [93] MOON J G,CHOO B K,HS DOO,et al. Effects of growth regulators on plant regenerationfrom the cotyledon explant in oriental melon(Cucumis melo L.)[J]. Kor J PlantTissue Cult,2000,27:1–6.
    [94] NORA F,PETERS J,SCHUCH M,et al. Melon regeneration and transformation using anapple ACC oxidase antisense gene[J]. Rev Bras Agrociencia,2001,7:201–205.
    [95] KENG CL,HOONG L K. In vitro plantlets regeneration from nodal segments ofmuskmelon(Cucumis melo L.)[J]. Biotechnology,2005,4:354–357.
    [96] NUN ě Z PALENIUS H G, CANTLIFFE DJ, HUBER DJ,et al. Transformation of amuskmelon“Galia”hybrid parental line (Cucumis melo L.var.reticulatus Ser.)with an antisense ACC oxidase gene[J]. Plant Cell Rep,2006,25:198–205.
    [97] Fan J D,He QW,Wang X F,et al. Antisense acid Invertase (anti-MAI1)gene alterssoluble sugar composition and size in transgenic muskmelon fruits[J]. Acta HortSinica,2007,34:677–682.
    [98] WU H,YU T,RAJA A,et al. Generation of transgenic oriental melon resistant toZucchini yellow mosaic virus by an improved cotyledon-cutting method[J]. PlantCell Rep,2009,28:1053–1064
    [99] NTUI VO,THIRUKKUMARAN G,AZADI P, et al. Stable integration and expression ofwasabi defensin gene in“Galia”melon(Colocynthis citrullus L.)confersresistance to Fusarium wilt and Alternaria leaf spot [J]. Plant Cell Rep2010b,29:943–954.
    [100] FANG G, GRUMET R. Agrobacterium tumefaciens mediated transformation andregeneration of musk-melon plants[J]. Plant Cell Rep,1990,(9):160-164
    [101] AYUB, R, BOUZAYEN, M, LATCHé, et al. Expression of ACC oxydase antisense genein melon[J]. Plant Physiology Science,1995,108(2),150
    [102] BORDAS M,MONTESINOS C,DABAUZA M,et al. Transfer of the yeast salt tolerancegene HAL1to Cucumis melo L. cultivars and in vitro evaluation of salttolerance[J]. Transgenic Res,1997,6(1):41-50.
    [103]李天然,张治中,张鹤龄,等.番茄ACC合酶反义基因对河套蜜瓜的转化的转化[J].植物学报,1999,41(2):142-145.
    [104]杨甲定,钟文海. ACC脱氨酶基因转化白兰瓜的初步研究[J].西北植物学报,2002,22(5):1044-1049.
    [105]李晓荣,廖康,王惠,等.哈密瓜转化植株的获得及移载研究[J].新疆农业大学学报,2003,26(2):29-33.
    [106]葛屹松,赵晓琴,李冠.新疆甜瓜组培体系的优化及抗病转基因研究[J].新疆大学学报(自然科学版),2003,20(1):55-58.
    [107]肖守华.西瓜、甜瓜遗传转化体系的建立及转基因植株的抗病性分析[D].泰安:山东农业大学,2006.
    [108]颜雪.根癌农杆菌介导R-Fom-2基因转化新疆甜瓜的研究[D].乌鲁木齐:新疆大学.2008.
    [109]程鸿.甜瓜APX和Mol基因的克隆及功能研究[D].泰安:山东农业大学,2009.
    [110] WU H W, YU T A, RAJA J A J, et al. Generation of transgenic oriental melonresistant to Zucchini yellow mosaic virus by an improved cotyledon-cuttingmethod[J]. Plant Cell Rep,2009,28(7):1053-1064.
    [111] CHOI JUN YOUNG, SHIN JEONG SHEOP, CHUNG YOUNG SOO,et al. An efficient selectionand regeneration protocolfor Agrobacterium-mediated transformation oforiental melon(Cucumis melo L.var.makuwa)[J]. Plant Cell Tiss Org,2012,110:133–140.
    [112] REN Y, BANG H, CURTIS I S, et al. Agrobacterium-mediated transformation andshoot regeneration in elite breeding lines of western shipper cantaloupe andhoneydew melons (Cucumis melo L.)[J]. Plant Cell Tiss Org,2012,108(1):147-158.
    [113] HESS D. Pollen-based techniques in genetic manipulation[J]. Internationalreview of cytology,1987,107:367-395.
    [114]关淑艳,张健华,柴晓杰,等.花粉管通道法将淀粉分支酶基因反义表达载体转入玉米自交系的研究[J].玉米科学,2005,13(4):13-15.
    [115]张慧英,冯锐,吕平,等.外源DNA直接导入甜玉米自交系后代性状变异[J].中国农学通报,2006,22(9):186-188.
    [116]丁国华,徐仲,朱祥春,等.花粉管通道法导入抗赤星病烤烟总DNAD1代性状变异的研究[J].东北农业大学学报,2000,31(2):173-179.
    [117] HAO J, NIU Y, YANG B, et al. Transformation of a marker-free and vector-freeantisense ACC oxidase gene cassette into melon via the pollen-tube pathway[J].Biotechnol Lett,2011,33(1):55-61.
    [118]谢道听,范云六,倪万潮,等.苏云金芽抱杆菌(Bacillu:thuringiensls)杀虫晶体蛋白基因导入棉花获得转基因植株[J].中国科学B辑,1991,4:367-373.
    [119] SCHMIDT A. Histologische Studien an phanerogamen Vegetationspunkten[J]. Bot.Archiv.1924,345-404.
    [120] FOSTER A S. ZONAL. Structure and Growth of the Shoot Apex in Microcycas calocoma(Miq.)A.DC[J]. American Journal of Botany,1943,56-73.
    [121] ZHANG S, CHO MJ, KOPREK T, YUN R,et al. Genetic transformation of commercialcultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitroshoot meristematic cultures derived from germinated seedlings. Plant Cell Rep,1999,18,959-966.
    [122]吴敬音,朱卫民,佘建民,等.陆地棉(G.hirsutum L.)茎尖分生组织培养及其在基因导入上的应用[J].棉花学报,1994,6(2):89-92.
    [123]朱卫民,吴敬音,佘建民,等.棉花茎尖分生组织在微粒轰击法转化中的应用[J].江苏农业学报,1998,14(2):74-79.
    [124] GOULD J H, MAGALLANES-CEDENO M. Adaptation of cotton shoot apex culture toAgrobacterium-mediated transformation[J]. Plant Mol Biol Rep,1998,16:283-283.
    [125] MORRE J L, PERMINGEAT H R, ROMAGNOLI M V, et al. Multiple shoot induction andplant regeneration from embryonic axes of cotton[J]. Plant Cell Tiss Org,1998,54(3):131-136.
    [126] ZAPATA C, SRIVATANAKUL M, PARK S H, et al. Improvements in shoot apexregeneration of two fiber crops: cotton and kenaf[J]. Plant Cell Tiss Org,1999,56(3):185-191.
    [127]刘明月,左开井.农杆菌介导棉花茎尖遗传转化体系优化[J].上海交通大学学报(农业科学版),2011,29(2):25-31.
    [128]雷江荣,王冬梅,邵林,等.农杆菌法转化茎尖获得转SNC1基因棉花及其T1植株对棉花枯萎病的抗性[J].分子植物育种,2010,8:252-258.
    [129] TAFVIZI F, FARAHANEI F, SHEIDAI M,et al. Effects of zeatin and activatedcharcoal in proliferation of shoots and direct regeneration in cotton(Gossypium hirsutum L.)[J]. Afr J Biotechnol,2009,8:6220-6227.
    [130]邵宏波.高等植物性别分化研究的某些进展[J].武汉植物学研究,1994,12(1):185-194.
    [131]陈学好.黄瓜花性别分化的生理学研究[D].杭州:浙江大学,2001.
    [132] JUAREZ C, ANN BANKS J. Sex determination in plants[J]. Current opinion in plantBiology,1998,1(1):68-72.
    [133]斋藤隆.瓜类花性的分化(上)[M].中国农业科学院蔬菜研究所主编,北京:农业出版社,1982,39-42.
    [134]陈学好,陈艳萍,金银根.黄瓜性器官败育的细胞学研究[J].兰州大学学报(农业与生命科学版),2003,2(24):68-71.
    [135]李计红.甜瓜性别分化的生理生化特性研究[D].兰州:甘肃农业大学.2006.
    [136]王强,张建农,李计红.甜瓜性别分化的显微结构观察[J].甘肃农业大学学报,2009,(6):79–84.
    [137] Coen E S, Meyerowitz E M. The war of the whorls: geneticinteractions controllingflower development[J]. Nature,1991,353:31-37.
    [138] WEIGEL D, MEYEROWITZ E M. The ABCs of floral homeotic genes[J].Cell.1994,78:203-209.
    [139] ECKARDT N A.MADS Monsters:Controlling Floral Organ Identity[J]. Plant Cell.2003,15:803-805.
    [140] ANGENENT G C,COLOMBOL.Molecular control of ovule development[J]. Trends PlantSci,1996,1:228-232
    [141] FERRARIO S,IMMINK R G H,SHCHENNIKOVA A,et al.The MADS box gene FBP2Is requiredfor SEPALLATA Function in Petunia[J].Plant Cell,2003,15:914-925.
    [142] DELONG A,URREA A C,DELLAPORTA S L. Sex determination gene Tassel seed-2of maizeencodes a short-chain alcohol dehy-drogenase required for stage-specific floralorgan abortion[J]. Cell,1993,74:757-768.
    [143] CHUCK G. Molecular mechanisms of sex determina-tion in monoecious and dioeciousplants[J]. Adv Bot Res,2010,54:53-83.
    [144] IRISH E E,LANGDALE J A,NELSON T.Interactions between sex deter-mination andinflorescence development loci in maize[J]. Devel Genet,1994,15:155-171.
    [145] URREA A C,DELLAPORTA S L. Cell death and cell protection genes determine thefate of pistils in maize[J].Development,1999,126:435-441.
    [146] MALEPSZY S,NIEMIROWICZ SZCZYTT K.Sex determination in cucumber(Cucumis sativusL.)as a model system for molecular biology[J]. Plant Sci,1991,80:39-47.
    [147]陶倩怡.黄瓜单性花决定基因M的功能分析[M].上海:上海交通大学.2010.
    [148]陈惠明,卢向阳,刘晓虹,等.两个新发现的黄瓜性别决定基因遗传规律的研究[J].园艺学报,2005,32(5):895-898.
    [149] TEREFE D,TATLIOGLU T. Isolation of a partial sequence of a putative nucleotidesugar epimerase,which may involve in stamen develop-ment in cucumber(Cucumissativus L.)[J]. Theor Appl Genet,2005,111(7):1300-1307.
    [150] LI ZHENG, HUANG SANWEN, LIU SHIQIANG, et al. Molecular isolation of the M genesuggests that a conserved-residue conversion induces the formation of bisexualflowers in cucumber plants[J]. Genetics,2009,182:1381-1385.
    [151]陶倩怡,李征,何欢乐,等.黄瓜单性花决定基因M的表达分析[J].遗传,2010,40(1):1-12.
    [152] TANURDZIC M, BANKS J A. Sex determining mechanisms in land plant[J]. Plant Cell,2004,16:S16-S71.
    [153] PIERCE L K, WEHNER T C. Review of genes and linkage groups in cucumber[J]. HortSci,1990,25:605-615.
    [154] POOLE C F,GRIMBALL P C. Inheritance of new sex forms inmelon(Cucumis meloL.)[J]. Hered,1939,30:21–25.
    [155] MARTIN A, TROADEC C, BOUALEM A, et al. A transposon-induced epigenetic changeleads to sex determination in melon[J]. Nature,2009,461:1134-1139.
    [156] ROSA J T. The inheritance of flower types in Cucumis and Citrullus[M]. Hilgardia,1928,3:235-250.
    [157] J.R.WALL.Correlated inheritance of sex expression and fruit shape in Cucumis[J].Euphytica,1967,16:199-208.
    [158] ROWE, P R. The genetics of sex expression and fruit shape, staminate flowerinduction, and F1hybrid feasibility of gynoecious muskmelon[D]. East lansingMichigan State University,1969.
    [159] KUBICKI B. Inheritance of some characters in muskmelon(Cucumis melo L.)[J].Genet,1969,3:265–274.
    [160] KENIGSBUCH D,COHEN Y.The inheritance of gynoecy in muskmelon[J]. Genome,1990,33:317–320.
    [161] Zalapa J E. Inheritance and mapping of plant architecture and fruit yield inmelon(Cucumis melo L.)[D]. Madison:University of Wisconsin.2005.
    [162] Pitrat M. gene list for melon[J]. Cucurbit Genet Coop Rep,2002,25:76-93.
    [163] Soon O.Park,Kevin M.Crosby,Rongfeng Huang,et al. Identification andconfirmation of RAPD and SCAR Markers linked to the ms-3Gene controlling malesterility in melon (cucumis melo L.)[J]. J Am Soc Hortic Sci,2004,129:819-825.
    [164] SILBERSTEIN L, KOVALSKI I, BROTMAN Y, et al. Linkage map of Cucumis meloincluding phenotypic traits and sequence-characterized genes[J]. Genome,2003,46(5):761-773.
    [165]张桂芬,李计红,张建农.甜瓜雄全同株和雌雄异花同株的RAPD标记[J].甘肃农业大学学报,2011,3:35–37.
    [166] NOGUERA F J, CAPEL J, ALVAREZ J I, et al. Development and mapping of a codominantSCAR marker linked to the andromonoecious gene of melon[J]. Theor Appl Genet,2005,110(4):714-720.
    [167] FEI SHI LUAN, YUN YAN SHENG, YU HAN WANG, et al. Performance of melon hybridsderived from parents of diverse geographic origin[J]. Euphytica,2010,1(7):1-16.
    [168]张慧君,王学征,栾非时,等。甜瓜性别分化的研究进.园艺学报,2012,39(9):1773–1780.
    [169]路绪强,马鸿艳,刘宏宇,等.控制甜瓜雄花分化基因的遗传分析及初步定位.东北农业大学学报,2010,41(7):51–55.
    [170]刘威,盛云燕,马鸿艳,等.甜瓜雄全同株与纯雌株基因遗传分析及初步定位[J].中国蔬菜,2010,(4):24–30.
    [171]高美玲,朱子成,高鹏,等.甜瓜重组自交系群体SSR遗传图谱构建及纯雌性基因定位[J].园艺学报,2011,38(7):1308-1316.
    [172] HUI FENG, XIAO MING LI, ZHI YONG LIU,et al. A co-dominant molecular marker linkedto the monoecious gene CmACS-7derived from gene sequence in Cucumis melo L[J].Afr J Biotechnol,2009,8(14):3168–3174.
    [173] BOUALEM A, FERGANY M, FERNANDEZ R, et al. A conserved mutation in an ethylenebiosynthesis enzyme leads to and romonoecy in melons[J]. Science,2008,(321):836–838.
    [174] YANG S F, HOFFMANN N E. Ethylene biosynthesis and its regulation in higherplants[J]. Annual Review of Plant Physiology,1984,35:155-189.
    [175] TAKAHSHIH, SUGE H. Sex expression and ethylene production in cucumber plantsas affected by1-amino-cyclopropane-1-carboxylicacid[J]. J Jpn Soc HorticSci,1982,51:51–55.
    [176] KENDE H. Ethylene biosynthesis[J]. Annu Rev Plant Biol,1993,44(1):283-307.
    [177] ALVAREZ J. Effect of sowing date on ethephon caused feminization in musk melon.[J]. J Hortic Sci Biotech,1989,64(5):639–642.
    [178] PAPADOPOULOU E, LITTLE H A, HAMMAR S A, et al. Effect of modified endogenousethylene production on sex expression, bisexual flower development and fruitproduction in melon(Cucumis melo L.)[J]. Sex Plant Reprod,2005,18:131-142.
    [179] HOLLY L, EKATERINA P, SUE H,et al. The influence of ethylene perception on sexexpression in melon(Cucumis melo L.) as assessed by expression of themutantethylene receptor, At-etr1-1, under the control of constitutiveand floraltargeted promoters[J]. Sex Plant Reprod,2007,20:123–136.
    [180]李晓明,魏宝东,刘爱群,等.乙烯利诱导雄全同株甜瓜形成雌花[J].中国蔬菜,2010,(4):67–70.
    [181] CHERNYS J T, ZEEVAARTJ A D. Characterization of the9-cis-expoxycarotenoiddioxygenase gene family and the regulation of abscisic acid biosynthesis inavocado[J]. Plant Physiol,2000,124:343-354.
    [182] OELLER PW, LU MW, TAYLOR LP, et al. Reversible inhibition of tomato fruitsenescence by antisence RNA[J]. Science,1991,254:437-439.
    [183] ROTTMANN W H, PETER G F, OELLER P W, et al.1-Aminocyclopropane-1-carboxylatesynthase in tomato is encoded by a multigene family whose transcription isinduced during fruit and floral senescence[J]. J Mol Biol,1991,222:937-961.
    [184] YIP W K, MOORE T, YANG S F. Differential accumulation of transcripts for fourtomato1-aminocyclopropane-1-carboxylate synthase homologs under variousconditions[J]. Proc Nat Acad Sci USA,1992,89:2475-2479.
    [185] NAKATSUKA A, MURACHI S, OKUNISHI H, et al. Differential expression and internalfeedback regulation of1-aminocyclopropane-1-carboxylate synthase,1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes intomato fruit during development and ripening[J]. Plant Physiol,1998,118:1295-1305.
    [186] LIN Z F, ZHONG S L, GRIERSON D. Recent advances in ethylene research[J]. J ExpBot,2009,60:3311-3336.
    [187] YAMAGAMI T, TSUCHISAKA A, YAMADA K, et al. Biochemical diversity among the1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by theArabidopsis gene family[J]. J Biol Chem,2003,278:49102-49112.
    [188] TSUCHISAKA A, THEOLOGIS A. Unique and overlapping expression patterns amongthe Arabidopsis1-amino-cyclopropane-1-carboxylate synthase gene familymembers[J]. Plant Physiol,2004,136:2982-3000.
    [189] PENG H P, LIN T Y, WANG N N, et al. Differential expression of gene encoding1-amino-cyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia[J].Plant Mol Biol,2005,58:12-25.
    [190] FUJII N,KAMADA M,YAMASAKI S. Differential accumu-lation of Aux/IAA mRNA duringseedling development and gravity response in cucumber(Cucumis sativus L.)[J].Plant Mol Biol,2000,42(5):731-740.
    [191] RUDICH J,HALEVY AH. Involvement of abscisic acid in the regulation of sexexpression in the cucumber[J]. Plant Cell Physiol,1974,15(4):635-42.
    [192] EVELYN A,HAVIR,NEIL A,et al. Biochemical and developmental characterizationof multiple forms of catalase in tobacco leaves[J]. Plant Physiol,1987,84(2):450-455.
    [193]张志良.植物生理学实验指导(第三版)[M].北京:高等教育出版社,2003.
    [194] FEISHI LUAN, ISABELLE DELANNAY, JACK E.STAUB. Chinese melon(Cucumis meloL.)diversity analyses provide strategies for germplasm curation,geneticimprovement,and evidentiary support of domestication patterns[J]. Euphytica,2008,164:445–461.
    [195]陶兴林,黄永红,陆璐,等.2个甜瓜品种高效再生体系的建立[J].西北植物学报,2005,25(4):806-811.
    [196]张若纬,顾兴芳,王烨,等。不同黄瓜基因型子叶再生体系的建立.华北农学报,2010,25(增刊):50-54
    [197]侯丽霞,何启伟,赵双宜,等.薄皮甜瓜自交系高效组织培养技术的研究[J].山东农业科学,2006,(4):7-10.
    [198]胡莹,冷平,王福军,等.京玉1号甜瓜高效再生体系的建立[J].中国农业大学学报,2009,14(1):99-103.
    [199]杨和平,程井辰,周吉源,等.石刁柏体细胞胚胎发生过程中超氧物歧化酶活性的变化[J].植物学报,1993,35(6):490-493.
    [200]何梦玲,周吉源.不同光照对喜树细胞培养生长和生理生化特性的影响[J].华中师范大学学报,2002,36(4):489-493.
    [201] CUI K R,XING G S,LIU X M,et al. Effect of hydrogen peroxide on somaticembryogenesis of Lycium barbarum L[J].Plant Sci,1999,146(1):9-16.
    [202]商庆梅,秦智伟,周秀艳.黄瓜植株衰老过程中根系内生理生化指标变化[J].东北农业大学学报,2010,41(9):27-30.
    [203] MANUEL B,DAVID A. DALTON,JOSE F M,et al.Reactive oxygen species andantioxidants in legume nodules[J]. Acta Physiol Plant,2000,l09(4):372-381.
    [204]邱全胜,敬兰花,杨成德,等.小麦体细胞胚胎发生过程中核酸和可溶性蛋白质的变化[J].西北植物学报,1992,12(4):253-258.
    [205]戴若兰,张玮,邢更生,等.枸杞体细胞胚发生中蛋白质代谢动态的立体计量[J].西北植物学报,1999,19(2):266-269.
    [206] ALI A, AHMAD T, ABBASI NA,et al. Effect of different concentrentrations ofauxins on in vitro rooting of olive cultivar“moralolo”[J]. Pak J Bot,2009,41(1):1223-1231.
    [207] VíCTOR M. JIMéNEZ, FRITZ BANGERTH. Endogenous hormone levels in explants andin embryogenic and non-embryogenic cultures of carrot[J]. Acta Physiol Plant,2001,111:389-395.
    [208]朱丽华,张彩琴,盛小光,等.大白菜下胚轴不定芽再生过程中内源激素和多胺含量的变化[J].福建农业学报,2008,21(2)143-146.
    [209] YAFENG ZHANG, JIEHONG ZHOU, TAO WU, et al. Shoot regeneration and therelationship between organogenic capacity and endogenous hormonal contents Inpumpkin[J]. Plant Cell Tiss Org,2008,93:323-331.
    [210]王克臣.亚麻离体再生及早期体细胞胚胎发生机理的研究[D].哈尔滨:东北农业大学,2008.
    [211]马雄风.苎麻抗虫基因遗传转化研究[D].北京:中国农业科学院,2009.
    [212]樊继德,何启伟,王秀峰,等.甜瓜反义酸性转化酶基因对甜瓜的遗传转化[J].园艺学报,2007,34(3):677-682.
    [213]王浩波,林茂,杨坤,等.导入南瓜DNA选育抗枯萎病西瓜新种质的研[J].西北农业学报,2002,11(1):24-27.
    [214]张文珠,魏爱民,杜胜利,等.黄瓜农杆菌介导法与花粉管通道法转基因技术[J].西北农业学报,2009,18(1):217-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700