黑河下游荒漠河岸植物根系水力再分配及其生态水文效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水分胁迫条件下,根系的“开源”和气孔的“节流”作用是植物延迟脱水的主要机理。水力再分配(HR)是一种有助于根系增加吸水以延缓脱水的可能机理,即在土壤水势梯度驱动下经由根系将土壤水分由供应充足部位转移到严重缺水根际环境的一种被动运输过程,主要包括水力提升(HL)、水力下传(HD)、侧向再分配(LR)、叶片吸收(FU)和组织脱水(TD)5种模式。目前,已在全球不同生态系统约120种植物中发现根系HR,并对其大小及生态水文效应开展了广泛而深刻的讨论。国内对根系HR的研究起步较晚,手段单一,基本停留在HL这一层面,对其生态水文效应的研究更是鲜见报道。因此,本文采用热比率法、十壤水分观测及其不同尺度的植物水分生理观测等探究了黑河下游荒漠河岸植物胡杨(Populus euphratica Oliv.)和柽柳(这里指多枝柽柳Tamarix ramosissima Ledeb.)根系HR及其生态水文效应。
     (1)水力再分配过程
     胡杨根系不仅具有HL,降水后也能将表面湿土层吸收的水分向下运输,即HD。同时,在河道灌水后,根系也能将河道内湿土中吸收的水分运输至距离河道较远的干土中,即LR。有趣的是,LR过程中侧根不同深度存在双向液流,且树干液流速率也明显减小,说明这一过程可能还受到树干调节,可能的机理是根木质部的径向分区(Radial sectoring),即侧根吸收的水分向上运输至茎木质部后沿着心材作螺旋运动而将一部分水分向下运输至另一侧的根中。尽管柽柳侧根液流未出现负向流动,但有两个证据表明柽柳根系HR确实存在:(i)根际区土壤含水量的昼夜波动;(ii)稳定同位素确认的水分主要来源于地下水和浅层土壤水。柽柳根际区大量不定根的存在,说明柽柳HR的路径可能不是侧根而是不定根。
     (2)水力再分配的大小及影响因素
     胡杨根系水力再分配的数量小于柽柳。对于胡杨,基于侧根负向液流计算的生长季根系HR大小在0.16~0.26mmd-1之间变化,平均为0.21mmd-1。对于柽柳,基于土壤体积含水量变化估算的根系HR大小在0.14~1.02mmd-1之间变化,平均为0.48mmd-1。相关分析和逐步回归分析表明:根系HR的大小除受蒸腾拉力控制外,还与气候因子和土壤水分有效性显著相关,其中:HR与水汽压差、土壤温度、土壤含水量呈显著的正相关,而与相对湿度呈显著的负相关。
     (3)水力再分配的水文效应
     首先,HR能够调节根际区土壤水分平衡。以柽柳为例,在干季(7月14-23日),表层80cm土壤内,每天夜间HR(5.42mm)补充了大约71.00%的白天损耗(7.59mm)。由于HR的存在,土壤储水量减小比自然条件下减少到相同水平至少要提前约4天。其次,水力再分配通过对土壤水分有效性的调节而间接地影响着植物蒸腾。生长季胡杨根系HR对蒸腾的贡献在14.60~113.04%之间,平均为38.75%;柽柳根系HR对蒸腾的贡献在10.46~53.33%之间,平均为19.44%。最后,水力再分配也影响着林分水量平衡。2012年生长季,胡杨林分HR(123.00mm)对蒸散发(313.00mm)的贡献约为37.00%,柽柳林地HR(117.20mm)对蒸散发(607.27mm)的贡献约为19.00%。另外,林分蒸散发差异也影响到局地小气候。典型日(7月12-21日),日间胡杨林地温度比柽柳林地最大高约4℃,相对湿度低约10.00%,水汽压差高约1.60kPa。
     (4)水力再分配的生态效应
     根系水力再分配最直接的表现是维持浅层土壤中细根有效性,进而能够对干旱区降水脉冲作出快速响应。换言之,HD可以通过深层土壤水补给影响整个生态系统水分平衡。一次降水事件后,水分通过HR向深层土壤的运移要比入渗或优势流更快。如果不存在HR,深层土壤的水分补给将更低。根系水力再分配通过增加植物水分吸收而影响着植物叶片的气体交换参数。另外,根系水力再分配也影响植物群落的组成与格局,这有待进一步证实。
     与传统观点对于水分利用策略的认识不同,本文认为:在地下水埋深较浅时,柽柳根系能够通过HR吸收深层丰富的水分和浅层富集的养分,以保持气孔开放维持高的蒸腾速率,这使得它们每天的光合产物积累和生长速率大于胡杨,即在水分供应充足条件下柽柳为耗水植物。在水分胁迫条件下(干季),叶水势下降,气孔关闭并在厚角质层和浓密的表皮保护下蒸腾耗水降到最低,即由耗水植物变为节水植物。但是,由于干旱时叶子(同化枝)生长减缓,过量的光合产物被运到根部,导致根的更快生长,再向湿润土壤深入吸收更多的水分。如此往复,使柽柳根与地上部比例进一步增大。因此,像柽柳这样的耗水性旱生植物要比胡杨这样的节水性旱生植物更加耐旱,这可能就是柽柳在中亚广泛分布,而在美国西南部河流沿岸疯狂生长的原因。
In desert ecosystems, the mainly mechanisms of plants delay dehydration to resist droughts is to increase water income via roots and reduce it expenditure via stoma of leaf. To tolerate drought during dry season, desert also riparian plants undergo hydraulic redistribution (HR), the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. Patterns of HR include hydraulic lift (HL), hydraulic descent (HD), lateral redistribution (LR), foliar uptake (FU) and tissue dehydration (TD). Now, HR has been described in approximately120species that involves a wide variety of ecosystems and a wide range of life forms. Apart from its magnitude, the potential ecohydrologic consequences of HR have attracted recent attention. However, the study status in China is started late, single means and the content focus on HL and the rarely reported refer to ecohydrologic consequences of HR. The objectives of this study were (1) to search for the evidence, quantify the magitude and discuss the ecohydrologic consequences of that the roots of two desert riparian plants, Populus euphratica Oliv. and Tamarix ramosissima Ledeb., carry out HR. To demonstrate HR, we present data on patterns of sap flow in the stems or branches and lateral roots of those two desert riparian species and soil volumetric moisture content where these species grow, and the datas of plant water physiology with different scales also been provided.
     (1) Patterns of hydraulic redistribution
     We not only confirm the previous knowledge on HL of P. euphratica, but also the water can transport from moist topsoil to dry subsoil after rain, i.e. HD. In addition, water also moved from lateral moist soil layer to opposite dry soil layer, i.e. LR. Interestingly, we observed bidirectional flow in the lateral roots of P. euphratica during the time of lateral redistribution, and it may be mediated by stem tissues and, by inference, the radial sectoring in the xylem that the stem base seems in connection with the root xylem. The water absorbing from the wet side adjacent to river was transported to the stem; the circumferential movement of sap flow around the heartwood becomes available to the downstream flow. Although no direct evidence indicated reverse sap flow of lateral roots and associated HR in T. ramosissima, several factors indicate that HR is occurring:(1) diel fluctuations of volumetric moisture content in the upper soil layer and (ii) the identification of primary water sources as groundwater and vadose zone water through stable isotope studies. The reason of HR not occurred in lateral roots of T. ramosissima was potential nocturnal transpiration suppression. Thus, we inferred that HR occurs in T. ramosissima via adventitious roots rather than via lateral roots.
     (2) Magitudes and controlling factors of hydraulic redistribution
     For P. euphratica. the magnitude of HR based on nagitive sap flow in lateral roots was ranged from0.16mm d-1to0.26mm d-1with an average of0.21mm d-1. For T. ramosissima, the magnitude of HR based on diurnal fluctuations of soil volumetric moisture content at20cm to60cm depths was ranged ranged from0.14mm d-1to1.02mm d-1with an average of0.48mm d-1during the growing season, which was far less than that in2011. The correlation and stepwise regression analysis demonstrated that apart from the transpiration tension, the climate and soil moisture availability can accounted for the variation of HR. Specifically, HR was significantly positive correlation with vapor pressure deficit, soil temperature and soil moisture content, instead negative correlation with relative humidity.
     (3) Hydrological effects of hydraulic redistribution
     The effect of HR on soil moisture balance is positive. For example, in T. ramosissima stand, approximately71.00%of the water removed daily (7.59mm) from the upper80cm of soil was replaced by nocturnal hydraulic redistribution (5.42mm) during dry season (14to23July). If hydraulic redistribution had not occurred, the soil water content observed at the end of the10-day monitoring period would have been attained about4days sooner. Because of the increase of soil moisture, the transpiration was also increased that indirectly induced by HR. For P. euphratica. hydraulic redistribution increased transpiration ranged from14.60%to113.04%with an average of38.75%during the growing season. For T. ramosissima, hydraulic redistribution increased transpiration ranged from10.46%to53.33%with an average of19.44%. In the same way, the effect of HR on community water balance is positive. In2012, approximately37.00%of evapotranspiration (313.00mm) was replaced by nocturnal hydraulic redistribution (123.00mm) during dry season for P. euphratica stand. Accordingly, approximately19%of evapotranspiration (607.27mm) was replaced by nocturnal hydraulic redistribution (117.20mm) during dry season for T. ramosissima stand. In addition, the difference of evapotranspiration also affects the microclimate among stands, that the temperature and vapor pressure deficit for P. euphratica stand was maximal higher4℃and1.60kPa than T. ramosissima stand, respectively, instead relative humidity for the former maximal lower10%than the latter during the typical days (12to21July).
     (4) Ecological effect of hydraulic redistribution
     The directly ecological effect of hydraulic redistribution on plants were to maintain the effectiveness of fine roots in the shallow soil, that made it can quickly reaponse to precipitation pulse in arid area. HD, on the other hand, can affect overall ecosystem water budgets by increasing deep soil water recharge. Water movement to deep soil layers after a rain event is faster through HR than via infiltration or preferential flow and, in the absence of HR. water recharge of deep soil layers would be very low. And then gas exchange parameters of leaf were affected by increased water absorbing via fine roots in the shallow soil. Finally, HR may also have effects on plant community composition and structure, that further investigation is needed to substantiate this.
     In contrast to the conventional view on water use strategies of plants, we thought the roots of T. ramosissima can simultaneously absorb plentiful water in deep soil layer and nutrient in shallow soil layer throught HR, which made the leaves of T. ramosissima can keep stoma open and maintain higher transpiration rate and photosynthetic product accumulation than P. euphratica. When soil water is limited, transpiration reduced rapidly to a minimum under the protection of thickly cutin layer and skin, along with descend of the leaf water potential and closure of stoma, which suggest the transform of T. ramosissima from water spender to saver. However, because the growth decreases of leaf or assimilating shoots, the excessive amounts of photosynthetic products was transport to the roots that lead to the faster growth and then more water absorbing in deep soil layer. So given enough time, the proportion of roots and overground part will increase further. Therefore, xerophytes of water-consuming as T. ramosissima is more drought tolerant than water-saving like P. euphratica. it could be the reasons that widely distributed in central Asia and crazy grow along rivers in southwestern United States.
引文
[1]Amenu, G. G. and P. Kumar. A model for hydraulic redistribution incorporating coupled soil-root moisture transport[J]. Hydrol. Earth Syst. Sci.,2008.12:55-74.
    [2]Anderson, J. E. Factors Controlling Transpiration and Photosynthesis in Tamarax Chinensis Lour.[J]. Ecology,1982,63(1):48-56.
    [3]Armas, C., J. H. Kim, T. M. Bleby, et al. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species[J]. Oecologia,2012,168(1):11-22.
    [4]Armas, C., F. M. Padilla, F. I. Pugnaire, et al. Hydraulic lift and tolerance to salinity of semiarid species:consequences for species interactions[J]. Oecologia,2010,162(1): 11-21.
    [5]Arndt, S., A. Kahmen, C. Arampatsis, et al. Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert[J]. Oecologia,2004,141(3): 385-394.
    [6]Bauerle, T. L., J. H. Richards, D. R. Smart, et al. Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil[J]. Plant, Cell & Environment,2008,31:177-186.
    [7]Bawazir, A. S., Z. Samani. M. Bleiweiss, et al. Using ASTER satellite data to calculate riparian evapotranspiration in the Middle Rio Grande. New Mexico[J]. International Journal of Remote Sensing,2009,30(21):5593-5603.
    [8]Bleby, T. M., A. J. McElrone and R. B. Jackson. Water uptake and hydraulic redistribution across large woody root systems to 20 m depth[J]. Plant, Cell & Environment,2010, 33(12):2132-2148.
    [9]Brooks, J. R., F. C. Meinzer, R. Coulombe, et al. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests[J]. Tree Physiology,2002,22:1107-1117.
    [10]Burgess, S. Seasonal Water Acquisition and Redistribution in the Australian Woody Phreatophyte, Banksia prionotes[J]. Annals of Botany,2000,85(2):215-224.
    [11]Burgess, S. S. O., M. A. Adams, N. C. Turner, et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants[J]. Tree Physiology,2001,21: 589-598.
    [12]Burgess, S. S. O., M. A. Adams, N. C. Turner, et al. The redistribution of soil water by tree root systems[J]. Oecologia,1998,115:306-311.
    [13]Burgess, S. S. O., M. A. Adams, N. C. Turner, et al. Tree roots:conduits for deep recharge of soil water[J]. Oecologia,2001,126:158-165.
    [14]Burgess. S. S. O. and T. M. Bleby. Redistribution of soil water by lateral roots mediated by stem tissues[J]. Journal of Experimental Botany,2006,57(12):3283-3291.
    [15]Burgess. S. S. O. and T. E. Dawson. The contribution of fog to the water relations of Sequoia sempervirens (D. Don):foliar uptake and prevention of dehydration[J]. Plant, Cell & Environment.2004.27:1023-1034.
    [16]Busch, D. E., N. L. lngraham and S. D. Smith. Water uptake in woody riparian phreatophytes of the southwestern United States:A stable isotope study[J]. Ecological Applications. 1992.2(4):450-459.
    [17]Busch. D. E. and D. M. Smith. Mechanisms associated with decline of woody species in riparian ecosystem of southwestern U. S.[J]. Ecological Monographs.1995,65:347-370.
    [18]Caldwell. M. M., T. E. Dawson and J. H. Richards. Hydraulic lift:consequences of water efflux from the roots of plants[J]. Oecologia,1998.113:151-161.
    [19]Caldwell, M. M. and J. H. Richards. Hydraulic lift-water efflux from upper roots improves effectiveness of water uptake by deep roots[J]. Oecologia,1989,79:1-5.
    [20]Caldwell, M. M. and J. H. Richards. Hydraulic lift-water efflux from upper roots improves effectiveness of water uptake by deep roots[J]. Oecologia,1989,79:1-5.
    [21]Dawson, T. E. Hydraulic lift and water use by plants-implications for water balance. performance and plant-plant interactions[J]. Oecologia.1993.95:565-574.
    [22]Dawson. T. E. and J. Ehleringer. Streamside trees that do not use stream water[J]. Nature. 1991.350:335-337.
    [23]Dennison. P. E., P. L. Nagler, K. R. Hultine, et al. Remote monitoring of tamarisk defoliation and evapotranspiration following saltcedar leaf beetle attack[J]. Remote Sensing of Environment,2009,113(7):1462-1472.
    [24]Devitt, D. A., A. Sala. D. M. Smith, et al. Bowen ratio estimates of evapotranspiration for Tamarix ramosissima stands on the Virgin River in Southern Nevada[J]. Water Resources Research.1998.34(9):2407-2414.
    [25]Domec, J.-C. J. S. King. A. Noormets, et al. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange[J]. New Phytologist,2010,187(1):171-183.
    [26]Domec. J. C., F. G. Scholz, S. J. Bucci. et al. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species:impact on stomatal control of plant water status[J]. Plant, Cell & Environment,2006,29:26-35.
    [27]Domec, J. C. F. G. Scholz, F. C. Meinzer, et al. Diurnal and seasonal changes in root xylem embolism in neotropical savanna woody species:impact on stomatal control of plant water status[J]. Plant, Cell & Environment,2006,29:26-35.
    [28]Domec, J. C., J. M. Warren, F. C. Meinzer, et al. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine:mitigation by hydraulic redistributiona[J]. Oecologia,2004,141(1):7-16.
    [29]Egerton-Warburton, L. M., J.I. Querejeta and M. F. Allen. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants[J]. Journal of Experimental Botany.2007,58(6):1473-1483.
    [30]Emerman. S. H. and T. E. Dawson. Hydraulic lift and its influence on the water content of the rhizophere:an example from sugar maple. Acer saccharum[J]. Oecologia,1996,108: 273-278.
    [31]Espeleta, J. F., J. B. West and L. A. Donovan. Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community[J]. Oecologia.2004.138(3): 341-349.
    [32]Feng, Q. and G. D. Cheng. Current situation, problems and rational utilization of water resources in arid north-western China[J]. Journal of Arid Environments,1998.40: 373-382.
    [33]Gries. D., F. J. Zeng. A. Foetzki. et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant, Cell & Environment,2003.26:725-736.
    [34]Hao, G. Y., T. J. Jones, C. Luton, et al. Hydraulic redistribution in dwarf Rhizophora mangle trees driven by interstitial soil water salinity gradients:impacts on hydraulic architecture and gas exchange[J]. Tree Physiology,2009,29(5):697-705.
    [35]Hao, X. M., Y. N. Chen. W. H. Li, et al. Hydraulic lift in Populus euphratica Oliv. from the desert riparian vegetation of the Tarim River Basin[J]. Journal of Arid Environments, 2010,74(8):905-911.
    [36]Hawkins, H.-J., H. Hettasch, A. G. West, et al. Hydraulic redistribution by Protea'Sylvia' (Proteaceae) facilitates soil water replenishment and water acquisition by an understorey grass and shrub[J]. Functional Plant Biology,2009,36:752-760.
    [37]Horton, J. L. and J. L. Clark. Water table decline alters growth and survival of Salix gooddingii and Tamarix chinensis seedlings[J]. Forest Ecology and Management,2001, 140:239-247.
    [38]Horton, J. L. and S. C. Hart. Hydraulic lift:a potentially important ecosystem process[J]. Tree, 1998,13(6):232-235.
    [39]Howard, A. R., M. W. Van lersel, J. H. Richards, et al. Night-time transpiration can decrease hydraulic redistribution[J]. Plant, Cell & Environment,2009,32(8):1060-1070.
    [40]Hultine, K. R., P. L. Nagler, K. Morino, et al. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata)[J]. Agricultural and Forest Meteorology,2010,150(11): 1467-1475.
    [41]Hultine, K. R., R. L. Scott, W. L. Cable, et al. Hydraulic redistribution by a dominant, warm-desert phreatophyte:seasonal patterns and response to precipitation pulses[J]. Functional Ecology,2004,18:530-538.
    [42]Hultine, K. R., D. G. Williams, S. S. O. Burgess, et al. Contrasting patterns of hydraulic redistribution in three desert phreatophytes[J]. Oecologia,2003,135:167-175.
    [43]Ishikawa, C. M. and C. S. Bledsoe. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks:evidence for hydraulic lift[J]. Oecologia,2000,125(4): 459-465.
    [44]Jackson, R. B., J. Canadell, J. R. Ehleringer, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia,1996,108:389-411.
    [45]Jackson, R. B., H. A. Mooney and E.-D. Schulze. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences, 1997,94:7362-7366.
    [46]Jackson, R. B., J. S. Sperry and T. E. Dawson. Root water uptake and transport:using physiological processes in global predictions[J]. Trends in Plant Science,2000,5(11): 482-488.
    [47]Katul, G. G. and M. B. Siqueira. Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift[J]. New Phytologist,2010,187:3-6.
    [48]Kurz-Besson, C. D. Otieno, R. Lobo do Vale, et al. Hydraulic lift in Cork Oak trees in a savannah-type mediterranean ecosystem and its contribution to the local water balance[J], Plant and Soil.2006,282(1-2):361-378.
    [49]Lambers, H., F. S. Chapin Ⅲ and T. L. Pons (2008). Plant water relations. Plant Physiological Ecology. H. Lambers, F. S. Chapin III and T. L. Pons. New York, Springer Science+Business Media:163-217.
    [50]Lee, J. E., R. S. Oliveira, T. E. Dawson, et al. Root functioning modifies seasonal climate[J]. Proceedings of the National Academy of Sciences,2005,102(49):17576-17581.
    [51]Loik. M. E. Sensitivity of water relations and photosynthesis to summer precipitation pulses for Artemisia tridentata and Purshia tridentata[J]. Plant Ecology,2007,191(1):95-108.
    [52]Ludwig, F., T. E. Dawson, H. Kroon, et al. Hydraulic lift in Acacia tortilis trees on an East African savanna[J]. Oecologia,2003,134:293-300.
    [53]Ludwig, F., T. E. Dawson, H. H. T. Prins, et al. Below-ground competition between trees and grasses may overwhelm the facilitative effects of hydraulic lift[J]. Ecology Letters,2004. 7(8):623-631.
    [54]Martinez-Vilalta, J., E. Prat,1. Oliveras. et al. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species[J]. Oecologia,2002,133(1):19-29.
    [55]Meinzer. F. C., J. R. Brooks, S. Bucci. et al. Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types[J]. Tree Physiology. 2004,24:919-928.
    [56]Meinzer. F. C., J. R. Brooks,J. C. Domec. et al. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques[J]. Plant, Cell & Environment, 2006,29:105-114.
    [57]Mooney, H. A., S. L. Gulmon, P. W. Rundel. et al. Further observations on the water relations of Prosopis tamarugo of the Northern Atacama Desert[J]. Oecologia,1980,44:177-180.
    [58]Nadezhdina, N., J. Cermak,J. Gasparek, et al. Vertical and horizontal water redistribution in Norway spruce (Picea abies) roots in the Moravian Upland[J]. Tree Physiology,2006,26: 1277-1288.
    [59]Nadezhdina, N., T. S. David, J. S. David, et al. Trees never rest:the multiple facets of hydraulic redistribution[J]. Ecohydrology,2010,3(4):431-444.
    [60]Nadezhdina, N., K. Steppe, D. J. W. De Pauw, et al. Stem-mediated hydraulic redistribution in large roots on opposing sides of a Douglas-fir tree following localized irrigation[J]. New Phytologist,2009,184(4):932-943.
    [61]Nagler, P., R. Scott. C. Westenburg. et al. Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers[J]. Remote Sensing of Environment,2005.97(3):337-351.
    [62]Nagler, P. L., K. Morino, K. Didan, et al. Wide-area estimates of saltcedar (Tamarix spp.) evapotranspiration on the lower Colorado River measured by heat balance and remote sensing methods[J]. Ecohydrology,2009,2(1):18-33.
    [63]Nippert, J. B.. J. J. Butler, G. J. Kluitenberg, et al. Patterns of Tamarix water use during a record drought[J]. Oecologia, 2010,162(2):283-292.
    [64]Noy-Meir,I. Desert ecosystems:environment and producers[J].Annual Review of Ecology and Systematics.1973,4(1):25-51.
    [65]Oliveira, R. S., T. E. Dawson and S. S. O. Burgess. Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil[J]. Journal of Tropical Ecology.2005.21(5):585-588.
    [66]Plamboeck, A. H., T. E. Dawson, L. M. Egerton-Warburton, et al. Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings[J]. Mycorrhiza,2007,17(5):439-447.
    [67]Prieto,I., C. Armas and F. I. Pugnaire. Hydraulic lift promotes selective root foraging in nutrient-rich soil patches[J]. Functional Plant Biology,2012,39(9):804.
    [68]Prieto,I., C. Armas and F. I. Pugnaire. Water release through plant roots:new insights into its consequences at the plant and ecosystem level[J]. New Phytologist,2012,193(4): 830-841.
    [69]Prieto, I., K. Martinez-Tilleria, L. Martinez-Manchego, et al. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems:patterns and control mechanisms[J]. Oecologia,2010,163(4):855-865.
    [70]Prieto, I., F. M. Padilla, C. Armas, et al. The role of hydraulic lift on seedling establishment under a nurse plant species in a semi-arid environment[J]. Perspectives in Plant Ecology, Evolution and Systematics,2011,13(3):181-187.
    [71]Querejeta, J.I., L. M. Egerton-Warburton,I. Prieto, et al. Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots[J]. Plant and Soil,2011,355(1-2):63-73.
    [72]Reed, P. B. National list of plant species that occur in wetlands:Southwest (Region 7).[M]. 1988. Washington, D.C. USA, United States Fish and Wildlife Service.
    [73]Richards, J. H. and M. M. Caldwell. Hydraulic lift:Substantial nocturnal water transport between soil layers by Artemisia tridentata roots[J]. Oecologia,1987,73:486-489.
    [74]Ryel, R. J., M. M. Caldwell, C. K. Yoder, et al. Hydraulic redistribution in a stand of Artemisia tridentata:evaluation of benefits to transpiration assessed with a simulation model[J]. Oecologia,2002,130:174-183.
    [75]Sala, A., S. D. Smith and D. A. Devitt. Water use by Tamarix Ramosissima and associated phreatophytes in a Mojave desert floodplain[J]. Ecological Applications,1996,6(3): 888-898.
    [76]Scholz, F. G., S. J. Bucci. W. A. Hoffmann, et al. Hydraulic lift in a Neotropical savanna: Experimental manipulation and model simulations[J]. Agricultural and Forest Meteorology,2010,150(4):629-639.
    [77]Schule, E.-D., M. M. Caldwell, J. Canadell, et al. Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands[J]. Oecologia,1998,115:460-462.
    [78]Scott, R. L., W. L. Cable and K. R. Hultine. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna[J]. Water Resources Research,2008,44(2):W02440, doi:02410.01029/02007 WR006149.
    [79]Shafroth, P. B., J. R. Cleverly, T. L. Dudley, et al. Control of Tamarix in the Western United States:Implications for Water Salvage, Wildlife Use, and Riparian Restoration[J]. Environmental Management,2005,35(3):231-246.
    [80]Si, J. H., Q. Feng, X. Y. Zhang, et al. Sap Flow of Populus euphratica in a Desert Riparian Forest in an Extreme Arid Region During the Growing Season[J]. Journal of Integrative Plant Biology,2007,49(4):425-436.
    [81]Smart. D. R., E. Carlisle and B. A. Nunez. Transverse hydraulic redistribution by a grapevine[J]. Plant. Cell & Environment,2005,28:157-166.
    [82]Smith. D. M., N. A. Jackson, J. M. Roberts, et al. Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta[J]. Functional Ecology,1999,13: 256-264.
    [83]Snyder, K. A. and D. G. Williams. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona[J]. Agricultural and Forest Meteorology,2000,105: 227-240.
    [84]Sperry, J. S. and U. G. Hacke. Desert shrub water relations with respect to soil characteristics and plant functional type[J]. Functional Ecology,2002,16:367-378.
    [85]Teste, F. P. and S. W. Simard. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests[J]. Oecologia,2008, 158(2):193-203.
    [86]Tomaso. J. M. Impact, Biology, and Ecology of Saltcedar (Tamarix spp.) in the Southwestern United States[J]. Weed Technology,1998.12(2):326-336.
    [87]Tomaso. J. M. Impact, biology, and ecology of Saltcedar (Tamarix spp.) in the southwestern United States[J]. Weed Technology,1998.12:326-336.
    [88]Van Genuchten, M. T. A closed-form equation for predicting unsaturated soils[J]. Soil Sci. Soc. Am. J.,1980.44:892-898.
    [89]Walter, H. and E. O. Box (1983). The desert of Central Asia. Ecosystems of the world 5 temperate deserts and semi-desert. N. E. West. Amsterdam, Elsevier:193-236.
    [90]Wan, C. G., R. E. Sosebee and B. L. Mcmichael. Does hydraulic lift exist in shallow-rooted species? A quantitative examination with a half-shrub Gutierrezia saroihrae[J]. Plant and Soil,1993.153:11-17.
    [91]Wang, G. Assessing the potential hydrological impacts of hydraulic redistribution in Amazonia using a numerical modeling approach[J]. Water Resources Research,2011, 47(2).
    [92]Warren, J. M.,J. R. Brooks, F. C. Meinzer, et al. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings:evidence for an ectomycorrhizal pathway[J]. New Phytologist,2008.178(2):382-394.
    [93]Warren, J. M., F. C. Meinzer, J. R. Brooks, et al. Vertical stratification of soil water storage and release dynamics in Pacific Northwest coniferous forests[J]. Agricultural and Forest Meteorology,2005.130(1-2):39-58.
    [94]Warren, J. M., F. C. Meinzer, J. R. e. Brooks, et al. Hydraulic redistribution of soil water in two old-growth coniferous forests:quantifying patterns and controls[J]. New Phytologist, 2007,173(4):753-765.
    [95]Williams, D. G. and W. Cable. Evapotranspiration components determined by stable isotope. sap flow and eddy covariance techniques[J]. Agricultural and Forest Meteorology,2004, 125:241-258.
    [96]Xu, H., Y. Li, G. Q. Xu, et al. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation[J]. Plant, Cell & Environment,2007,30(4):399-409.
    [97]Yin, C. H., G. Feng, F. Zhang, et al. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert[J]. Agricultural Water Management,2010,97(12):1978-1986.
    [98]Yuan, G.-F., P. Zhang, S.-S. Xue, et al. Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes[J]. Chinese Journal of Plant Ecology,2012,36(10):1033-1042.
    [99]Zhao, L. J., H. L. Xiao, G. D. Cheng, et al. A preliminary study of water sources of riparian plants in the lower reaches of the Heihe basin[J]. Acta Geoscientica Sinica,2008,29(6): 709-718.
    [100]Zou, C. B., P. W. Barnes, S. Archer, et al. Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters[J]. Oecologia,2005,145(1):32-40.
    [101]于贵瑞和孙晓敏.陆地生态系统通量观测原理与方法[M].北京,高等教育出版社,2006.
    [102]尹伟伦,郑彩霞,李凤兰等译[美]斯蒂芬.帕拉帝著.木本植物生理学[M].北京,科学出版社,2011.
    [103]司建华,常宗强,苏永红,等.胡杨叶片气孔导度特征及其对环境因子的响应[J].西北植物学报.2008,28(1):125-130.
    [104]司建华,冯起,李建林,等荒漠河岸林胡杨吸水根系空间分布特征[J].生态学杂志,2007,26(1):1-4.
    [105]司建华,冯起和张小由.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505-510.
    [106]司建华,冯起,张小由,等.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠,2007,27(3):442-447.
    [107]艾力.买买提明,何清,霍文,等.塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J].地球科学进展,2010,25(11):1228-1236.
    [108]李俊清,卢琦,褚建民,等.额济纳绿洲胡杨林研究[M].北京,科学出版社,2009.
    [109]李唯,倪郁,胡自治,等.植物根系提水作用研究述评[J].西北植物学报,2003,23(6):1056-1062.
    [110]徐贵青和李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报,2009,29(1):130-137.
    [111]郝兴明,陈亚宁,李卫红,等.胡杨根系水力提升作用的证据及其生态学意义[J].植物生态学报,2009,33(6):1125-1131.
    [112]常宗强,冯起,苏永红,等.额济纳绿洲胡杨的光合特征及其对光强和CO2浓度的响应[J].干旱区地理,2006,29(4):496-502.
    [113]曹生奎,冯起,司建华,等.胡杨光合蒸腾与影响因子间关系的研究[J].干旱区资源与环境,2012,26(4):155-159.
    [114]曾凡江,F.Andrea,李向义,等.策勒绿洲多枝柽柳灌溉前后水分生理指标变化的初步研究[J].应用生态学报,2002,13(7):849-853.
    [115]曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611-614.
    [116]管秀娟和赵世伟.根系水力提升的证据和意义[J].西北植物学报,1999,19(4):746-754.
    [117]翟诗虹,王常贵,高信曾.样柳属植物抱茎叶形态结构的比较观察[J].植物学报,1983,25(6):519-525.
    [118]樊小林和李生秀.植物根系的提水作用[J].西北农业大学学报,1997,25(5):75-81.
    [119]冯金朝和刘新民.干旱环境与植物的水分关系.北京.中国环境科学出版社.1998.
    [120]冯起,司建华.李建林.等.胡杨根系分布特征与根系吸水模型建立[J].地球科学进展,2008,23(7):765-772.
    [121]冯起.司建华,席海洋.荒漠绿洲水热过程与生态恢复技术[M].北京.科学出版社.2009.
    [122]冯起,司建华,张艳武,等.极端干旱地区绿洲小气候特征及其生态意义[J].地理学报,2006,26(1):99-108.
    [123]刘俊杉.高琼,朱玉洁,等.土壤-根系统水分再分配:土壤-植物-大气连续体中的一个小通路[J].植物生态学报,2007,31(5):794-803.
    [124]刘美珍,孙建新.蒋高明,等.植物-土壤系统中水分再分配作用研究进展[J].生态学报,2006.26(5):1550-1557.
    [125]刘晨峰,张志强,查同刚,等.涡度相关法研究土壤水分状况对沙地杨树人工林生态系统能量分配和蒸散日变化的影响[J].植物生态学报,2006,26(8):2549-2559.
    [126]刘铭庭主编.柽柳属植物综合研究及大面积推广应用.兰州,兰州大学出版社,1995.
    [127]张小由.康尔泗,司建华,等.胡杨蒸腾耗水的单木测定与林分转换研究[J].林业科学,2006.42(7):28-32.
    [128]张小由,龚家栋,周茂先,等.应用热脉冲技术对胡杨和样柳树干液流的研究[J].冰川冻土,2003,25(5):585-590.
    [129]张佩,袁国富,庄伟,等.黑河中游荒漠绿洲过波带多枝柽柳对地下水位变化的生理生态响应与适应[J].生态学报.2011,31(22):6677-6687.
    [130]张道远,尹林克和潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256.
    [131]张绘芳,李霞和高亚琪.基于QuickBird数据的胡杨_柽柳种群格局分析[J].新疆农业科学.2012,49(11):2029-2034.
    [132]杨戈.干旱地区植物结构与水的关系[J].干早区研究,1992,9:16-21.
    [133]杨晓东.胡杨、梭梭的植物根系-土壤水分再分配及调控机理[硕士论文].乌鲁木齐,新疆大学,2011.
    [134]苏永红,朱高峰,冯起,等.额济纳荒漠河岸胡杨林叶片气孔导度与微环境因子关系的模拟研究[J].西北植物学报,2008,28(7):1434-1439.
    [135]许旭旦和诸涵素.植物根部的水分倒流现象[J].植物生理学通讯,1995,31(4):241-245.
    [136]贺金生,上政权,方精云.全球变化下的地下生态学:问题与展望[J].科学通报,2004,49(13):1226-1233.
    [137]赵文智和程国栋.干早区生态水文过程研究若干问题评述[J].科学通报,2001,46(22):1851-1857.
    [138]赵纪东.白刺根-土界面水分再分配及其对干旱胁迫的响应[硕士论文].兰州.兰州大学,2007.
    [139]邓雄,李小明,张希明,等.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605-612.
    [140]郑姚闽,崔国发,雷霆,等.甘肃敦煌西湖多枝柽柳群落特征和种群格局[J].北京林业大学学报,2010,32(4):34-44.
    [141]阳伏林和周广胜.内蒙古温带荒漠草原能量平衡特征及其驱动因子[J].生态学报.2010,30(21):5769-5780.
    [142]陈亚明,傅华,张荣,等.根-十界面水分再分配研究现状与展望[J].生态学报,2004,24(5):1040-1047.
    [143]鱼腾飞,冯起和司建华.极端干旱区多枝柽柳叶片气孔导度的环境响应模拟[J].植物生态学报,2012,36(6):483-490.
    [144]鱼腾飞,冯起,司建华,等.黑河下游额济纳绿洲植物群落特征与物种多样性研究[J].西北植物学报.2011.31(5):1032-1038.
    [145]鱼腾飞.冯起,司建华,等.遥感结合地面观测估算陆地生态系统蒸散发研究综述[J].地球科学进展,2011,26(12):1260-1268.
    [146]黄子琛和沈渭寿.干旱区植物的水分关系与耐旱性[M].北京.中国环境科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700