基于光缓存器的全光时分交换技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步时分交换是大型交换机的主流交换技术,尽管目前基于分组的异步交换技术得到了较快发展,但是在大型的交换局中,同步数字程控交换机以其巨大的交换容量,仍然占有一定的规模。在开发高速全光网的时候,如何将已有的交换设备全光化,省去光电光转换,仍然是一件非常有意义的工作。全光缓存器可以在光域内实现光数据包的时分交换操作,避免了光-电-光的转换过程,有效克服了通信网络中的电子速率瓶颈,是未来全光时分交换设备的关键部件。以半导体光放大器的非线性偏振旋转效应为基础的全光缓存器是一种新型的全光缓存器,它具有结构紧凑、易于读写、可级联性好等优势。本论文在国家863项目“基于全光缓存器的弹性光分组交换环上”以及国家自然基金“并行数字式级联结构全光缓存器的研究”的支持下,针对半导体光放大器的非线性偏振旋转效应开展全光开关及全光缓存器的研究工作,并在此基础上,瞄准同步数字程控交换机全光化,开展了全光时分交换系统的探索。
     本论文完成的主要创新性研究工作如下:
     1.通过对SOA控制电流与NPR效应的研究,实现了一种具有高性能的基于SOA的偏振光开关,其分光比与消光比均可达到30dB,并提出了一种基于SOA的NPR效应的2×2空分光开关。
     2.首次提出使用保偏光纤作为全光缓存器的延迟器件,可使系统获得更好的偏振稳定性,分析了信号光缓存圈数与SOA控制电流的关系,首次实现了基于该缓存器单元的40圈缓存结果,延迟时间为16.4μs,缓存粒度为0.41μs。该缓存器单元只含有一个有源器件SOA,是一种结构紧凑易于集成的可循环式全光缓存器。首次提出使用压电陶瓷对缓存器单元光纤延迟线进行压力调制的方法,改变缓存过程中的传输损耗,得到了10Gbit/s信号光缓存10圈的输出功率均衡的结果。
     3.首次实现了基于两级串联结构缓存器系统的三数据包时隙压缩与时隙交换实验。结果表明,该系统可实现三数据包之间完备的时隙交换操作,可操作的最长时隙为124ns,时隙压缩可获得的最小安全时间间隔为13ns。并首次搭建了四级串联式的光缓存器结构,对单一数据包的分段缓存进行了实验研究,每个缓存单元的缓存深度达到90%。
     4.首次实现了一种基于SOA的NPR效应缓存器单元的空分-时分-空分(STS)结构的全光时分交换系统,并实现了数据包{A,B,C,D}到{D,C,B,A}的时隙交换操作。
     5.首次提出一种4×4结构的全光时分交换节点结构,采用并联反馈式缓存单元的组合,昂贵器件较少,且信号通过后完整性及一致性保持较好,由于SOA的增益作用,这种节点具备一定的自相似整形功能。
Synchronous time division is the mainstream of switching technology in large switching machine. Despite the fast developing of the current packed-based asynchronous switching technology, the synchronous digital program-controlled switches still occupied a certain scale in large exchange offices, for their huge exchange capacity. In the development of high-speed all-optical network, how to change the existing equipment all-optical, eliminating the need for the photoelectrical conversion is a very rewarding job. The optical buffer can accomplish the time division exchange operation of optical data avoiding optical-electrical-optical conversion process, overcoming the bottleneck of electron rates in communication network and will be a key component of the all optical synchronous time division switches in future. The optical buffer based on nonlinear polarization rotation in a semiconductor optical amplifier is a novel optical buffer, which has the advantages of easy integration and can be cascaded.
     In this thesis, with the supporting of the state863Project "optical packet switching ring based on the elasticity of the optical buffer" and the National Nature Science Foundation of Parallel digital cascade structure study of the optical buffer, researches were deployed on all optical switch and buffer base on nonlinear polarization rotation in semiconductor optical amplifiers. And on this basis, targeting all optical synchronous digital program-controlled switches, a systematic exploration of all-optical synchronous time division switching system was carried out.The main contributions of this dissertation are listed as follows:
     1. By the study of the relationship of injected current in SOA and the NPR effects, we got a high-performance SOA-based polarization switch, and the splitting ratio and extinction ratio can reach30dB, and also we proposed a new2×2optical switch based on NPR in SO As.
     2. Firstly proposed a delay device composed of all optical buffer based on NPR effect in SOA. With only one SOA in the buffer units, a simple compact structure integrated in all-optical buffer. Experimentally realized a2.5G data optical packet of127bit buffered40laps. The relationship of cache laps with the output power, and gives the power equalization solutions and experimental results by the way of PZT.
     3. Realized the time slot interchange of triple data packets in buffer units based on NPR of SOA. The results illuminates this system performs well on the TSI operation between triple data packets, and the longest time gap is124ns. The safe distance of time gap exchanging was also studied and the distance is13ns. Built a four cascade cache structure. Based on this system, segmented cache experimental study of a single data package was performed, each cache unit buffer depth reached90%.
     4. For the first time, a time slot interchange system with a STS structure of buffer units based on NPR effect of SOA was realized and an experiment four packets complete time slot interchange was completed.
     5. Proposed a optical time division switch structure of4×4all-optical switching matrix for the first time. The cache part was a combination of parallel feedback caching unit with less expensive devices. Solve the node data conflict node signal integrity and consistency remains good. Because of the gain role of the SOA, this node with a certain degree of self-similarity shaping functions.
引文
[1]韦乐平.光通信技术的发展趋势与展望.电信科学,Vol.8,2003,1-5
    [2]纪越峰.国家863光纤通信O—TIMIE计划的实施策略.电信技术.Vo1.6:11-14,2003
    [3]Sarah Cogan, OFC/NFOEC 2012 Showcasing the lateset in optical networking and communicaitons. IEEE Communication Magzine,2012,50(11), S4-S6,
    [4]S. Bigo, Y. Frignic, G Charlet, and et al.10.2Tbit/s(256 X 42.7Gbit/s PDM/WDM) transmission over 100 km TeraLightTM fiber with 1.28bit/s/Hz spectral efficiency. OFC2001, PD25
    [5]K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiy.10.92Tb/s(273×40Gbps) triple band/ultra dense WDM optical repeatered transmission experiment. OFC2001, PD24.
    [6]W.Idler, S.Bigo. Design of 40Gb/s based multi-terebit/s ultr-DWDM systems. IEICE Transaction on Communication,2002,E85-B (2),394-399
    [7]Liu Xiang, Xu C, Xing Wei. Performance analysis of time-polarization multiplexed 40Gb/s RZ-DPSK DWDM transmission. IEEE Photonics Technology Letters,16(1),2004,302-304
    [8]M.Katsuyuki, et al. Demostration of 42.7Gb/s×32 WDm 4800km straight line transmission with commercially applicable EDFA and DMF techniques. OFC'2004,2004, FM5
    [9]Richard N. Clarke, Expanding Mobile Wireless Capacity:The Challenges Presented by Technology and Economics, The 19th ITS Biennial Conference January 4,2013
    [10]Mahony, M.J.O., The Application of Optical Packet Switching in Future Communication Networks. Communications Magazine,2001,39(3):128-135.
    [11]顾畹仪等.光传送网.北京:机械工业出版社,2003
    [12]ITU-T Recommendation G. 807, Requirements for Automatically Switched Transport Networks (ASTN) [S]
    [13]ITU-T Recommendation G 8080/Y.1304-2001, Architecture for the automatic switched optical networks (ASON) [S]
    [14]14Zhang W., Wu J., Xu K. and Lin J.T. TCP performance experiment on OBS network testbed. OFC2006, OTfH1
    [15]J. S. Zhang, M. C. Cao, et al. Variable time-period switching:a novel OBS implementation. Chinese Optics Letters,2003,1(9):513-516
    [16]S. Yao, B. Mukherjee and S. Dixit. All-optical packet switching for metropolitan area network: opportunities and challenges. IEEE Communication Magazine,2001,39(3):142-148
    [17]17Zhang, T., Design and analysis of contention resolution techniques in optical packet-switched networks.2005, The University of Texas:Dallas.185.
    [18]L. Xu, H. Perros, and G Rouskas. Techniques for optical packet switching and optical burst switching. IEEE Communication Magazine,2001,39 (1):136-142
    [19]D. Hunter and I. Andonovic. Approaches to optical Internet packet switching. IEEE Communication Magazine,2000,38 (9):116-122
    [20]Guillemot, C., Transparent Optical Packet Switching:The European ACTS KEOPS Project Approach. J. Lightw Technol,1998.16(12):2117-2134.
    [21]T. El-Bawab and J. Shin. Optical packet switching in core network between vision and reality. IEEE Communication Magazine,2002,40 (9):60-65
    [22]万冬,数字程控交换技术与应用(第2版),北京:北京理工大学出版社,2013
    [23]陈媛媛,程控交换设备组网与配置,成都:西南交通大学出版社,2010
    [24]http://network.51 cto.com/art/201004/194043.htm
    [25]http://www.techcn.com.cn/index.php?edition-view-140060-1
    [26]国民经济和社会发展第十二个五年规划纲要(全文),中华人民共和国国务院,2011
    [27]《国家重大科技基础设施建设中长期规划(2012—2030年)》,中华人民共和国国务院,2013
    [28]WayneTomasi.ElectronicCommunicationsSystems:FoundametnalsThroughAdvanced,FourthE dition[M].北京:电子工业出版社,2002.
    [29]颜谦和,交换机与路由器技术,北京:清华大学出版社,2011
    [30]冯穗力,数字通信原理,北京:电子工业出版社,2012
    [31]叶敏.程控数字交换与现代通信网[M].北京:北京邮电大学出版社,1998.
    [32]金淮丰.程控数字交换技术[M].北京:电子工业出版,2002.
    [33]洪小斌等,面向未来的光交换网络及其器件技术,北京,电子工业出版社,2011
    [34]余重秀,光交换技术,北京:人民邮电出版社,2008
    [35]潘爱军,严高师,光开关技术的发展及应用.自动化信息,2005.54:77-79.
    [36]孙嵘,李华青,光开关技术介绍.广东通信技术,2002.22(3):12-17.
    [37]Murphy, E.J., et al.,16×16,strictly Nonlocking Guided-Wave System. J Lightwave Tech,1996.14(3):352-358.
    [38]A. Beling, H.4. Bach,et al.Monolithically integrated balanced photodetector and its application inOTDM 160 Gbit/s DPSK transmission. Electronics Letters,39(16), 2003.1204-1205
    [39]D.D.Marcenac, A.D.Ellis, D.G.Moodie,80 Gbit/s OTDM using electroabsorption modulators. ECOC,1997.34(1),23-26
    [40]THOMPSON, R. A. and P. P. GIORDANO. An experimental photonic time-slot interchanger using optical fibers as reentrant delay-line memories. Lightwave Technology,1987,5(1): 154-162.
    [41]J.Yao, P.Barnsley, et al. Time slot interchanging using semiconductor laser amplifiers. Electronics Letters,1993,29(12):1053-1054.
    [42]Chi, N., Z. Wang, et al. A large variable delay, fast reconfigurable optical buffer based on multi-loop configuration and an optical crosspoint switch matrix, IEEE.2006.
    [43]Wang, Z., N. Chi, et al. Time-slot assignment using optical buffer with a large variable delay range based on AVC crosspoint switch. Journal of Lightwave Technology,2006,24(8):2994.
    [44]Cardakli, M., D. Gurkan, et al. Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency-generation and optical buffers. Photonics Technology Letters, IEEE,2002,14(2):200-202.
    [45]Yilmaz, O. E., L. Christen, et al. Time-slot interchange of 40 Gbits/s variable length optical packets using conversion-dispersion-based tunable delays. Optics letters,2008,33(17): 1954-1956.
    [46]P. Zakynthinos et al., Single chip quad MZI array in a 40 Gb/s AOLS front-end, in Proc. OFC, 2007, Paper OWH7.
    [47]Zouraraki,O.,K.Yiannopoulos,et al.Implementation of an all-optical time slot interchanger architecture. IEEE Photonics Technology Letters,2007.19(17-20):1307-1309.
    [48]赵东风等,SDH光传输技术与设备,北京:北京邮电大学出版社,2012
    [49]肖萍萍等,SDH原理与应用,北京:人民邮电出版社,2008
    [50]Nortel Networks breaks own'land speed record' using light-redefines speed of Internet and networking, press release, Nortel Networks
    [51]汪斌强等.高性能路由器技术体系关键问题及发展趋势.电信科学2003,19(10),23-28
    [52]范力军等,太比特核心路由器及其关键技术的研究.小型微型计算机系统,2003,24(7):1132-1137
    [53]行松健一.光开关与光互连.北京:科学出版社,2002
    [54]菊池和朗,光信息网络,北京:科学出版社,2005
    [55]孙嵘,李华青,光开关技术介绍.广东通信技术,2002.22(3):12-17.
    [56]刘爱明,吴重庆,王秀彦,光控光开关的发展和应用.光通信技术,2002.26(1):24-27.
    [57]P. B. Chu, S. Lee, and S. Park. MEMS:The Path to Large Optical Crossconnects. IEEECommunications,2002,40(3):80-87
    [58]Marom, D.M. Hybrid free-space and planar lightwave circuit wavelength-selective 1×3 switch with integrated drop-side demultiplexer, Optical Communication,2005. ECOC 2005.31st European Conference, Vol.4,993-994
    [59]100. Shalmany, N.A. and A.GP. Rahbar. On the Choice of All-Optical Switches for Optical Networking. in HONET 2007.
    [60]贾艳群,曹文华,相移型全光开关在OTDM通信系统中的应用.光通信技术,2008.4:52-54.
    [61]Tai, C. and W.I. Way, Dynamic Range and Switching Speed Limitations of an N x N Optical Packet Switch Based on Low-Gain Semiconductor Optical Amplifiers. J Lightwave Tech, 1996.14(4):525-533.
    [62]Bulow, H., Impact of Extinction Ratio and Switching Efficiency of Nonlinear Optical Loop Mirror Demultiplexer on Error Rate Performance. Photon. Technol. Lett.,1994.6(12):p. 1482-1484.
    [63]Wang, D., et al., Nonlinear Optical Loop Mirror Based on Standard Communication Fiber. J LIGHTWAVE TECHNOL,1997.15(4):642-646.
    [64]Jinno, M. and T. Matsumoto, Nonlinear sagnac interferometer switch and its applications. IEEE J Quantum Electron,1992.28:875-882.
    [65]Doran, N.J. and D. Wood, Nonlinear-optical loop mirror. Opt. Lett.,1988.13:56-58.
    [66]Desurvire, E., Effect of normal mode loss in nonlinear optical loop mirror switching. ELECTRON LETT,1994.30(7):580-581.
    [67]Pottiez, O., et al., Experimental demonstration of NOLM switching based on nonlinear polarisation rotation. ELECTRON LETT,2004.40(14).
    [68]J. C. Simon. GaInAsP semiconductor laser amplifiers for single-mode fiber communications. J. Lightwave Technol.,1987,5(9):1286-1295
    [69]T. Saitoh and T. Mukai. Recent progress in semiconductor laser amplifiers. J. Lightwave Technol.,1988,6(11):1656-1664
    [70]S. Yamamoto, K. Mochizuki, H. Wakabayashi, et al. Long-haul high-speed optical communication systems using a semiconductor laser amplifier. J. Lightwave Technol.,1988, 6(10):1554-1558
    [71]M. O'Mahony. Semiconductor laser optical amplifiers for use in future fiber systems. J. Lightwave Technol.,1988,6(4):531-544
    [72]杨祥林.光放大器及其应用.北京,电子工业出版社,2000:114
    [73]A. Hamie, A. Sharaiha, J. Le Bihan. All-optical non-inverted wavelength conversion based on cross gain modulation in semiconductor optical amplifiers.2005 Conference on Lasers and Electro-Optics Europe,496
    [74]A. Bilenca, R. Alizon, V. Mikhelashhvili. Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-Inp quantum-dash semiconductor optical amplifiers operating at 1550nm. Photonics Technology Letters,2003,15 (4):563-565
    [75]C. Joergensen, S. L. Danielsen, K. E. Stubkjaer. All-optical wavelength conversion at bit rate above 10Gb/s using semiconductor optical amplifiers. Journal of Selected Topics in Quantum Electronics,1997,3 (5):1168-1180
    [76]Dimitris Syvridis. All optical wavelength converters based on semiconductor optical amplifiers. Semiconductor Conference,2000,1:65-71
    [77]Shigeru Nakamura, Yoshiyasu Ueno, Kazuhito Tajima. Ultrafast all-optical switching using a frequency shift accompanied by cross-phase modulation in a semiconductor optical amplifier. Lasers and Elecrtro-Optics,2001:348-349
    [78]Hanlim Lee, Sungkee Kim and Jichai Jeong. Frequency chirping and dynamic characteristics of wavelength-converted optical siganals by cross-gain and cross-phase modulation in semiconductor optical amplifiers. Lasers and Electro-Optics,1999,3:640-641
    [79]Atsushi Matsumoto, Kohsuke Nishimura and Katsuyuki Utaka. Operation design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. Journal of Quantum Electronics,2006,42 (3): 313-323
    [80]Milan L. Masanovic, Vikrant Lal, Erik J. Skogen. Cross-phase modulation efficiency in offset quantum-well and centered quantum-well semiconductor optical amplifiers. Photonics Technology Letters,2005,17 (11):2364-2366
    [81]S.C. Cao, J. C. Cartledge and E. Berolo. Theoretical model of gain-saturated semiconductor optical amplifiers in cross-phase modulation wavelength converters. Lasers and Electro-Optics Society 2000 Annual Meeting,2000,2:778-779
    [82]J. S. Lee, H. J. Song, W. B. Kim. All-optical harmonic frequency upconversion of radio over fiber signal using cross-phase modulation in semiconductor optical amplifier. Electronics Letters,2004,40 (19):1211-1213
    [83]Zhihong Li, Yi Dong, Jinyu Mo. Cascaded all-optical wavelength conversion for RZ-DPSK signal based on four-wave mixing in semiconductor optical amplifier. Photonics Technology Letters,2004,16(7):1685-1687
    [84]Yanhua Hong, Paul S. Spencer and K. Alan Shore. Wide-band polarization-free wavelength conversion based on four-wave mixing in semiconductor optical amplifiers. Journal of Quantum Electronics,2004,40(2):152-156
    [85]Kit Chan, Chun-Kit Chan, Lian Kuan. Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. Photonics Technology Letters,2004,16(3):897-899
    [86]H. Simos, A. Argyris, D. Kanakidis. Regenerative properties of wavelength converters based on FWM in a semiconductor optical amplifier. Photonics Technology Letters,2003,15(4): 566-568
    [87]K. E. Stubkjaer. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J. Sel. Top. Quantum Electron.,2000,6(6):1428-1435
    [88]赵凯华,钟锡华。光学(上).北京大学出版社,235-244,1998
    [89]Mishra, A.K., et al., Wavelength Conversion Employing 120-fs Optical Pulses in an SOA-Based Nonlinear Polarization Switch. IEEE J SEL TOP QUANT,2004.10(5):p. 1180-1186.
    [90]Makoto Tsubokawa and Masaharu Ohashi, A Consideration of Polarization Dispersion Determining From A Stokes Parameter Evaluation, IEEE J. Lightwave Technol.1991,9(8), 948-951.
    [91]Govind P. Agrawal编著,贾东方于震虹等译,非线性光纤光学原理及应用,北京,电子工业出版社,2002年第一版,2002:14-15
    [92]R.C. Jones. A new calculus for the treatment of optical systems, Journal of the optical Society of America.,Vol.31,1941
    [93]GGStokes. Trans.Camb.Plil. Soc,9-399,1852
    [94]H.Poincare. Theorie mathematique dela lumiere. Paris, Georges Carre, Chap 2,1892
    [95]M. Zhao, J. D. Merlier, G Morthier, et al. Dynamic birefringence of the linear optical amplifier and application in optical regeneration [J] IEEE J. Sel. Topics Quantum Electron. 20028,1399-1404.
    [96]L. Q. Guo and Michael J. Connelly, A Mueller-Matrix Formalism for Modeling Polarization Azimuth and Ellipticity Angle in Semiconductor Optical Amplifiers in a Pump-Probe Scheme[J], IEEE J. Lightwave Technol.2007,25,410-420.
    [97]W. Chongqing, L. Yajie, S. Fu, et al.. Power Equalization for the Optical Subsystems Based on the SOA Polarization Rotation, CLEO,2007, paper CThF6.
    [98]Songnian Fu, Wen-De Zhong, P. Shum, et al.. Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers with Linear Polarization Maintenance [J], IEEE. Photon. Technol. Lett.200719,1931-1933
    [99]Dorren, H.J.S., et al., Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers: Theory and Application to All-Optical Flip-Flop Memories. IEEE J QUANTUM ELECT, 2003.39(1):p.141-148.
    [100]Dorren, H.J.S., et al., All-Optical Logic Based on Ultrafast Gain and Index Dynamics in a Semiconductor Optical Amplifier. IEEE J QUANTUM ELECT,2004.10(5):p.1079-1092.
    [101]吴重庆,光通信导论.2008,北京:清华大学出版社.
    [102]M. Osinski and J. Buus. Linewidth broadening factor in semiconductor lasers-An overview. IEEE J. Quantum Electron.,1987,23(1):9-29
    [103]L. D. Westbrook and M. J. Adams. Simple expressions for the linewidth enhancement factor in direct-gap semiconductors. IEE Proc:Optoelectron.,1987,134(4):209-214
    [104]C.D.Poole, R.E.Wager. A phenomenological approach of polarization dispersion in long single mode fibers, Electronics Letters., Vol.22,No.9,1986,1029-1030
    [105]C.D.Poole, C.R.Giles. Polarization dependent pulse compression and broadening due to polarization dispersion in dispersion shifted fiber, Optics Letter.,1989,Vol.13,155-157
    [106]董辉,单模光纤中的偏振效应,电子信息工程学院.2004,北京交通大学:北京..162.
    [107]Talli, G and M.J. Adams, Gain dynamics of semiconductor optical amplifiers and three-wavelength devices. IEEE J QUANTUM ELECT,2003.39(10):1305-1313.
    [108]Ben-Ezra, Y., M. Haridim, and B.I. Lembrikov, Theoretical Analysis of Gain-Recovery Time and Chirp in QD-SOA. Photon. Technol. Lett.,2005.17(9):.1803-1805.
    [109]Inohara, R., et al., Experimental Analysis of Cross-Phase Modulation and Cross-Gain Modulation in SOA-Injecting CW Assist Light. Photon. Technol. Lett.,2003.15(9): 1192-1194.
    [110]董建绩,张新亮,黄德修,SOA动态增益特性的理论和实验研究.物理学报,2005.54(2):763-767.
    [111]K.Hunter, D., M.C. Chia, and I. Andonovic, Buffering in Optical Packet Switches. J LIGHTWAVE TECHNOL,1998.16(12):2081-2094.
    [112]Connie J. Chang-Hasnain, Pei-Cheng Ku, Jungho Kim, et al. Variable optical buffer using slow light in semiconductor nanostructures. Proceedings of the IEEE,2003,91 (11): 1884-1897
    [113]R. J. Mears, L. Reekie, I. M. Jauncey and D. N. Payne. Low-noise erbium-doped fiber amplifier operating at 1.54 μm. Electron. Lett.,1987,23(19):1026-1028
    [114]S. L. Danielsen, B. Mikkelsen, C. Joergensen, et al.10 Gb/s operation of a multiwavelength buffer architecture employing a monolithically integrated all-optical interferometric Michelson wavelength converter. Photonics Technology Letters,1996,8 (3):434-436
    [115]T. Sakamoto, K. Noguchi, R. Sato. Variable optical delay circuit using wavelength converters. Electronics Letters,2001,37 (7):454-455
    [116]Agarwa,A.,et al.All-optical storage of picosecond pulse packets using wavelength-induced XPM and parametric amplification, in Optical Society of America.2000.
    [117]Agarwa, A., et al. All-optical erasable storage buffer based on parametric nonlinearity in fiber, in Optical Society of America.2001.
    [118]Agarwal, GS., Sub-and Superluminal Propagation of Intense Pulses in Media with Saturated and Reverse Absorption. Phys. Rev. Lett.,2004.92(20):203901-1/4.
    [119]A. M. Liu, C. Q. Wu, Y. D. Gong. Optical buffer configuration based on 3×3 collinear fiber coupler. Electronics Letters,2004,40(16):1017-1019.
    [120]李亚捷,吴重庆,付松年,基于3×3平行排列耦合器的全光光开关的特性分析,光学技术,2006,32(3):400-402.
    [121]Songnian Fu, P. Shum, Liren Zhang, Chongqing Wu, and A. M. Liu. Design of SOA-Based Dual-Loop Optical Buffer With a 3×3 Collinear Coupler:Guideline and Optimizations. Journal of Lightwave Technology,2006,24(7):2768-2778.
    [122]Wu, C. and Y. Li. Power equalization for the optical subsystems based on the SOA polarization rotation. Optical Society of America.2007.
    [123]C. Y. Tian, C. Q. Wu, Z. Y Li and N. Guo, Dual-Wavelength Packets Buffering in Dual-Loop Optical Buffer. IEEE Photon. Technol. Lett.2008,20(8):578-580.
    [124]Yeo, Y.-K., J. Yu, and G.-K. Chang, A Dynamically Reconfigurable Folded-Path Time Delay Buffer for Optical Packet Switching. Photon.Technol.Lett.,2004.16(11):.2559-2561.
    [125]Yeo, Y.-K., et al. Dynamically reconfigurable optical buffer with integrated, Simultaneous Wavelength Conversion Capability for multi-wanvelength packets, in ECOC.2005.
    [126]Chowdhury, A., et al., DWDM Reconfigurable Optical Delay Buffer for Optical Packet Switched Networks. Photon. Technol. Lett.,2006.18(10):1176-1178.
    [127]Mu Cheng, Wu Chong-Qing, Liu Hua, Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in SOA, Chinese physics letter,25(11),4026-4029,2008;
    [128]Mu Cheng, Chongqing Wu, Chao Song, Rui Zhao, Shuang Zhao, Qin Wang, The Cascadable Recirculating Buffer Based on Nonlinear Polarization Rotation in a Semiconductor Optical Amplifier, Asia-Pacific Optical Communications,2008
    [129]吴重庆,袁保忠,光速减慢和光缓存技术.物理学与信息科学技术专题,2005.34(12):922-926.
    [130]L. V. Hau, S. E. Harris, Z. Dutton, et al. Light speed reduction to 17 metres per second in ultracold atomic gas. Nature,1999,397-594
    [131]A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar. Observation of ultralslow and stored light pulse in solid. Physics Review Letter,2002,88 (2):023602-023602-4
    [132]C. C. Philips. Observation of electromagnetic induced transparency and measurement of subband dynamics in semiconductor quantum well. Physics,2000,166-173.
    [133]Chun-Hua Yuana. Slow light control with electric fields in vertically coupled InGaAs/GaAs quantum dots. J. Applied Physics,2007,102,023109.
    [134]Yoshitomo Okawach, Jay E. Sharping and Alexander L. Gaeta. Tunable all-optical delays via Brillouin slow light in an optical fiber.2005 Conference on Lasers & Electro-Optics (CLEO)
    [135]Zhaoming Zhu, Andrew M. C. Dawes and Daniel J. Gauthier.15-GHz-Bandwidht SBS slow light in optical fibers. Optical Fiber Communication 2006,2006, PDP1.
    [136]Jay E. Sharping, Yoshitomo Okawachi and Alexander L. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier. Optics Express,2005,13(16):6092-6098
    [137]David Dahan, Gadi Eisenstein. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier:a route to all optical buffering. Optics Express,2005,13 (16):6234-6249
    [138]Rodnye S. Tucher, Pei-Cheng Ku and Constance. Slow-light optical buffers:capabilities and fundamental limitations. Journal of Lightwave Technology,2005,23 (12):4046-4066
    [139]Ki Ho Han, Wang Joo Lee, Byoung Yoon Kim. Fiber-optic sensor array based on Sagnac interferometer with stable phase bias, IEEE Photonic Technology Letters., 2001,13(2),148-150
    [140]K.Bohnert, P.Gabus, J.Nehring, H.Brandle. Temperature and vibration insensitive fiber-optic current sensor, Journal of Lightwave Technology.,2002,20(2),267-276
    [141]C.K.Kikendall,A.Dandridge.Polarization induced phase noise in fiber optic interferomneters with polarizer based polarization diversity receivers, Optical Fiber Sensor Conference Technical Digest, Vol.1,375-378,2002
    [142]K. Seppanen, Shared OTDM packet compressor and decompressor. Electron. Lett.,2000, 36(25):2090-2092.
    [143]H. Toda, F. Nakada, M. Suzuki, and A. Hasegawa. An optical packet compressor based on a fiber dalay loop. IEEE Photon. Technol. Lett.,2000,12(6):708-710.
    [144]H. J. S. Dorren, M. T. Hill, Y. Liu, et al. Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods. J. Lightw. Technol.,2003,21(1):2-12.
    [145]Kunimasa Saitoh, Masanori Koshiba, and Yasuhide Tsuji. Stress analysis method considering piezoelectric effects and its application to static strain optic devices. J. Lightwave Technol., 1999,17(9):1626-1633.
    [146]王涛,王晓东,王立鼎.压电陶瓷快速响应特性与应用研究.传感技术学报,2009,22(6):785-789.
    [147]K.Hunter, D., M.C. Chia, and I. Andonovic, Buffering in Optical Packet Switches. J LIGHTWAVE TECHNOL,1998.16(12):2081-2094.
    [148]O.Baireuther, R.Vincikier. European communications R&D programs, Military Communication Conference MILCOM'91.,Vol.1,215-219,1991
    [149]顾畹仪,光纤通信(第2版),北京,人民邮电出版社,2011
    [150]A. J. Lowery. Amplified spontaneous emission in semiconductor laser amplifiers:validity of the transmission-line laser model. Optical Amplifiers for Communication, IEE Proceedings, 1990,137 (4):241-247
    [151]A.Bogoni, A. Bizzi, L. Poti et al. Impact evalution of the SOA spontaneous emission in ultrafast all-optical processing schemes. IEE Proceedings-Circuits Devices System,2003,150 (6):548-551
    [152]Gavioli, G., et al., Cascadability Properties of Optical 3R Regenerators Based on SOAs. J LIGHTWAVE TECHNOL,2007.25(9):p.2766-2775
    [153]Zhu,Z., et al.Jitter and Amplitude Noise Accumulations in Cascaded All-Optical Regenerators. J LIGHTWAVE TECHNOL,2008.26(12):p.1640-1652.
    [154]Yang, Q. and K. Kelley. Effect of Backward ASE Noise on the Gain Distribution in a Cascade of SOA switches, in 2004 Digest of the LEOS Summer Topical Meetings.2004
    [155]Michael L. Dennis, Member, et al. Photonic Serial-Parallel Conversion of High-Speed OTDM Data. IEEE Photon. Technol. Lett.,2000,12(11):1561-1563.
    [156]R. Takahashi, T. Yasui, N. Kondo, and H. Suzuki,40-Gb/s 16-bit label recognition using a planar-lightwave-circuit-based all-optical serial-to-parallel converter. Electron. Lett.,39(15): 1135-1136.
    [157]I. Glesk, K. L. Kang and P. R. Prucnal. Demonstration of ultrafast all-optical packet routing. Electronics Letters,1997,33 (9):794-795
    [158]A. Carena, M. D. Vauhta, R. Gaudino, et al. OPERA:An optical packet experimental routing architecture with label swapping capability. J. Lightw. Technol.,1998,16 (12):2135-2145
    [159]Peifang Zhou and Oliver Yang. How practical is optical packet switching in core network. GLOBECOM 2003,2709-2713.
    [160]P. Gambini, M. Renaud, et al. Transparent optical packet switching:network architecture and demonstrators in KEOPS project. IEEE J. Select. Areas in Comm.,1998,16(7):1245-1259.
    [161]D. Blumenthal. Lasor(label switched optical router):Architecture and underlying integration technologies. Proceedings of European Conference on Optical Communications,2005, We2.1.1.
    [162]M. Zirngibl. IRIS:a scalable, optically load-balanced router, Proceedings of 17th IEEE/LEOS Annual Meeting,2004, MI2.
    [163]D.Boetle, M.Burzio, P.Cinao, G.Eilenberger, et al. ATMOS(ATM optical switching) system perspective. Fiber and Intergrated Optics,15(4),1996,267-279
    [164]K.Habara, H.Sanjo, H.Nishizawa, et al. Self-routing demonstration of a 320Gb/s packet switch prototype using wavelength routing techniques. Conference on Laser and Electro-Optics CLEO 2000,253-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700