太湖微囊藻对沉积物营养盐的消长作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微囊藻(Microcystis spp.)是太湖夏季蓝藻水华的优势类群,磷是微囊藻生长的限制因子;而沉积物的内源释放对湖泊的富营养化具有显著的影响,因此,研究微囊藻水华与沉积物营养盐的消长作用,对于了解湖泊蓝藻水华暴发的机理具有非常重要的理论意义,同时也能为湖泊富营养化的控制提供理论参考。本文通过野外调查和室内模拟实验,研究了微囊藻细胞内总氮、总磷和氮磷比的时空变化;微囊藻分解对沉积物营养盐含量的影响以及细菌对微囊藻分解的影响;微囊藻和沉积物中营养盐含量的周年变化。
     (1)微囊藻群体中的总氮、总磷含量及氮磷比都与时间(地点)和群体粒径及两者的交互作用之间存在着显著的线性相关关系。在时间尺度上,微囊藻群体中总磷含量的变化与温度的升降成正比;氮磷比的变化与温度的升降呈负相关的关系;在空间尺度上,氮磷比的变化不显著。通过对微囊藻群体组成的分析可知粒径为150~200μm的微囊藻是水华中的主体。
     (2)通过添加底泥和革兰氏阴性菌抑制剂NaN_3对不同粒径微囊藻分解的影响实验表明:小颗粒微囊藻(<25μm)分解的速度最快;添加底泥和NaN_3处理微囊藻的分解率高于添加底泥而无NaN_3的处理,说明存在于底泥中的革兰氏阳性菌对微囊藻的分解起重要的作用。添加NaN_3后水中总溶解磷含量会快速升高,说明微囊藻群体中的磷可能大部分积聚在革兰氏阴性菌中;在无底泥处理中,总溶解磷占总磷的比例为64%-82%。分解实验表明微囊藻分解—沉积物—细菌之间存在较为复杂的关系。
     (3)沉积物与微囊藻中氮磷含量的季节变化表明,沉积物中总氮和总磷含量与微囊藻中的氮磷含量呈现负相关关系。沉积物中总氮和总磷含量8月份最低,而微囊藻中总氮和总磷含量却是8月份最高。沉积物中氮磷比夏秋季最高,其它季节较低。本研究说明微囊藻水华暴发期间,微囊藻的分解和对营养盐的吸收对沉积物中的氮磷含量影响较大。
Microcystis spp. is a dominant taxa during the cyanobacteria blooms in Lake Taihu. Phosphorus is limited factor to the growth of Microcystis, and nutrients released from the sediments have great influence on the eutrophication process of the lake. Our studies aimed to study the influence of Microcystis on the nutrient contents of the sediments, which would further help to understand the mechanism of cyanobacteria bloom and eutrophication control in the lake. Thus, through the field investigation and simulation experiment in the laboratory, we studied the temporal and spatial dynamics of total nitrogen and phosphorus in the colonies of Microcystis, relationship among Microcystis decomposition, the nutrients of the sediment and bacterial, temporal dynamics of the nutrient content in Microcystis and the sediment.
     (1) The contents of total nitrogen (TN) and total phosphorus (TP) in the colonies of Microcystis showed significantly linear relation with time (site), the colonial size and their interactions. In the time scale, the TP content had positive relation with temperature, while TN/TP had negative relation with temperature. TN/TP showed no significant difference in the space scale.
     (2) We conducted simulation experiment in the laboratory to study the effect of the sediment and gram-negative bacterial inhibitor (NaN_3) on the different sizes of the colonial Microcystis. The highest decomposed rates were recorded for the smallest size Microcystis fraction (<25μm). The decomposed rates were higher in the treatment with the sediment and NaN_3 than with the sediment and no NaN_3, which meant the important role of gram-positive bacterial in the Microcystis decomposition. The total dissolved phosphorus (TDP) increased sharply in the beginning of the experiment in the treatments with NaN_3, which means the most phosphorus accumulated in the gram-negative bacterial cells around the colony. The ratios of TDP concentration to initial TP concentration were 64%-82% in the no-sediment treatments. Our results suggest that both gram-negative and gram-positive bacteria play an important role in the decomposition of Microcystis cells and in the release of phosphorus from Microcystis colonies.
     (3) The field investigations on the nutrient contents in the sediments and Microcystis were made during 2006-2007. The contents of TN and TP in the sediments negatively related with the contents of TN and TP in Microcystis. The lowest contents of TN and TP in the sediment appeared in August when the highest values occurred in Microcystis. TN/TP in the sediments showed higher values in summer and autumn than in other seasons. Our results suggested that the contents of TN and TP in the sediment were affected by the decomposition and nutrient assimilation of Microcystis.
引文
[1]Marsden,M.W.,Lake restoration by reducing external phosphorus loading:the influence of sediment phosphorus release[J].Freshwater Biol,1989,21:139-162
    [2]Sondergaard M,Jensen J P,Jeppesen E,Role of sediment and internal loading of phosphorus in shallow lakes[J].Hydrobiologia,2003,509:135-145
    [3]Havens K E,Fukushima T,Xie P,et al.Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura(Japan),Donghu(PR China),and Okeechobee(USA)[J].Environmental Pollution,2001,111:263-272
    [4]Havens K E,Schelske C L.The importance of considering biological processes when setting total maximum daily loads(TMDL)for phosphorus in lakes and reservoirs[J].Environmental Pollution,2001,113:1-9
    [5]Varjoa E,Liikanen A,Salonen V.A new gypsum-based technique to reduce methane and phosphorus release from sediments of eutrophied lakes:Gypsum treatment to reduce internal loading[J].Water Res.,2003,37:1-10
    [6]秦伯强,胡维平,高光.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48,(17):1822-1831
    [7]肖化云,刘丛强.湖泊外源氮输入与内源氮释放辨析[J].中国科学,D辑,2003,33(6):576-582
    [8]范成新,张路,秦伯强等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学,D辑,2003,33(8):760-768
    [9]徐轶群,熊慧欣,赵秀兰.沉积物磷的吸附与释放研究进展[J].重庆环境科学,25(11):147-149
    [10]Holdren G C,David E.Armstrong,factors affecting phosphorus release from intact lake sediments cores[J].Environ.Sci.Tech.,1980,14(1):79-87
    [11]王晓蓉,华兆哲等.环境条件变化对太湖沉积物磷释放的影响[J].环境化学,1996,15(1):15-19
    [12]王庭健,苏睿等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):2-19
    [13]Liikanen A.N.U.Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake.Biogeochemistry,2002,59:269-286
    [14]Czyk T G,Casper P,Koschel R.Variations of phosphorus release from sediments in stratified lakes[J].Water Air Soil Pollute,1997,99(1/4):427-434
    [15]Gachter R,Meyer J,et al.Contribution of bacteria to release and fixation of phosphorus in lake sediments.Limnol Oceanogr,1988,33(6):1542-1558
    [16]Macia H,Bates N,Neafus J E.Phosphorus release from Sediments from Lake Carl Blackwell,Oklahoma[J].Water Res.,1980,14:1477-1481
    [17]Pomeroy L R,Smith E E,Grant C M.The exchange of phosphorus between estuarine water and sediments[J].Limnol.Oceanogr,1965,10(1):167-172
    [18]吴根福,吴雪昌等.杭州西湖沉积物释磷的初步研究[J].中国环境科学,1998,18(2):107-110
    [19]Xie L Q,Xie P.Long-term(1956-1999)changes of phosphorus in a shallow,subtropical Chinese lake with emphasis on the role of inner ecological process.Water Res.,2002,36(1):343-349
    [20]王晓燕,苑迎冬.密云水库水质特征及吸附、释放磷的实验研究[J].首都师范大学学报(自然科学版),1997,18(3):85-90
    [21]Xie L,Xie P,Tang H J.Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclose experiment in a hyper-eutrophic,subtropical Chinese lake.Environmental Pollution,2003,122:391-399
    [22]谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制[J].中国科学,D辑,2002,35(增刊Ⅱ):11-23
    [23]Viner A B.The sediment of Lake George(Uganda).I-Redox potentials,oxygen consumption and dioxide output.Archives of Hydrobiologia,1975,76:181-197
    [24]于世繁,张国峰,孟庆茹.白洋淀底质磷的释放及与水体中磷的关系[J].环境科学,1995,16(增刊):30-31,34
    [25]江耀慈,丁建清等.太湖藻类状况分析[J].江苏环境科技,2001,14(1):30-31
    [26]陈宇炜,高锡云,陈伟民等.太湖微囊藻的生长特征及其分离纯培养的初步研究[J].湖泊科学,1999,11(4):351-356
    [27]杨柳燕.太湖优势微囊藻生长代谢的营养动力学研究.In:秦伯强,胡维平,陈伟民.太湖水环境演化过程与机制[M].北京:科学出版社,2004,PP:209-217.
    [28]顾林娣,王清等.不同光强度对3种藻生长的影响[J].植物生理学通讯,2001,37(5):416-418
    [29]刘玉生,韩梅等.光照、温度和营养盐对滇池微囊藻生长的影响[J].环境科学研究,1995,8(6):7-11
    [30]史小丽,王凤平等.光照时间对外源性~(32)p在水体、铜绿微囊藻和沉积物中分配的影响[J].环境科学,2003,24(1):40-45
    [31]Foy R H,Gibson C E.Photosynthetic characteristics of planktonic blue-green algae:the response to twenty strains grown under high and low light[J].British Phycological Journal. 1982,17:169-182
    [32]刘静玲,盛连喜.不同温度下铜绿微囊藻生长特性的初步研究[J].农业与技术,1994(2):21-24
    [33]史小丽,王凤平,蒋丽娟等.温度对外源性~(32)p在水、铜绿微囊藻和沉积物中迁移的影响[J].应用生物学报,2003,14(11):1967-1970
    [34]史小丽,王凤平,蒋丽娟等.扰动对外源性磷在模拟水生态系统中迁移的影响[J].中国环境科学,2002,22(6):537-541
    [35]Krivtsov V,Bellinger E G,Sigee D C.Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion[J].Aquatic Ecology,2005,39:123-134.
    [36]刘冬梅,姜霞,金相灿:太湖藻对水-沉积物界面磷交换过程的影响[J].环境科学研究,2006,19:8-13.
    [37]杨柳燕,王勤,史小丽等.铜绿微囊藻磷代谢研究[J].农业环境科学学报,2005,24:686-689.
    [38]韩莎莎,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101
    [39]傅庆红,蒋新.湖泊沉积物中磷的形态分析及其释放研究[J].四川环境,1994,13(4):21-24
    [40]Xie P,Liu J K.Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms - a synthesis of decades of research and application in a subtropical hypereutrophic lake[J].Sci World,2001,1:337-356
    [41]Takeya K,Kuwata A,Yoshida M et al..Effect of dilution rate on competitive interactions between the cyanobacterium Microcystis novacekii and the green alga Scenedesmus quadricauda in mixed chemostat cultures[J].Journal of Plankton Research,2004,26:29-35.
    [42]Tezuka Y.C:N:P Ratio of Microcystis and Anabaena(Blue-Green Algae)and its Importance for Nutrient Regeneneration by Aerobic Decomposition[J].Japanese Journal of Limnology,1989,50:149-155.
    [43]陈伟民,蔡后建.微生物对太湖微囊藻的好氧降解研究[J].湖泊科学,1996,8:248-252
    [44]吴生才,陈伟民.太湖浮游植物生物量的周期变化[J].中国环境科学,2004,24:151-154.
    [45]Manage P M,Kawabata Z,Nakano S.Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality[J].Limnology,2001,2:73-78.
    [46]Rashidan K K,Bird D F.Role of predatory bacteria in the termination of a cyanobacterial bloom[J].Microbial Ecology,2001,41:97-105.
    [47]金丽娜,张维昊等.滇池水环境中微囊藻毒素的生物降解[J].中国环境科学,2002,22(2):189-192.
    [48]彭超,吴刚等.3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究,2003,16:37-40.
    [49]石苗,邹莉等.水华杀藻微生物的分离与分子生物学鉴定[J].水生生物学报,2005,29:587-590.
    [50]裴海燕,胡文容.两株溶藻细菌的鉴定及其溶藻特性[J].中国海洋大学学报,2006.5:368-374
    [51]李云晖,浦跃朴等.氧化铁纳米颗粒固定化溶藻菌的除藻作用[J].东南大学学报(自然科学版),2006,36:986-990.
    [52]孙顺才,黄漪平.太湖[M],北京:海洋出版社,1993,pp:159-162
    [53]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征[J].中国科学,D辑,2005,35(增刊Ⅱ):1-10
    [54]张运林,秦伯强.太湖水环境的演变情况[J].海洋湖沼通报.2001,2:8-15
    [55]杨清心.太湖水华成因及控制途径初探[J].湖泊科学,1996,8(1):67-74
    [1]Kulaev I,Vagabov V & Kulakovskaya T New aspects of inorganic polyphosphate metabolism and function[J].Journal of Bioengineering,1999,88(2):111-129
    [2]Rao N.N.,Roberts M.F.& Torriani A.Amount and chain length of polyphosphates in Escherichia coli depend on cell growth conditions[J].Journal of Bacteriology,1985,162:242-247
    [3]史小丽,王凤平,蒋丽娟等.扰动对外源性磷在模拟水生态系统中迁移的影响[J].中国环境科学,2002,22(6):537-541
    [4]金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    [5]林毅雄,韩梅.滇池富营养化的铜绿微囊藻(Microcystis aeroginosa Kutz)生长因素的研究[J].环境科学进展,1998,6(3):82-87
    [6]吴生才,陈伟民.太湖浮游植物生物量的周期变化[J].中国环境科学,2004,24:151-154
    [7]顾林娣,王清等.不同强度对3种藻生长的影响[J].植物生物学通讯,2001,37(5):416-418
    [8]刘玉生,韩梅等.光照、温度和营养盐对滇池微囊藻生长的影响[J].环境科学研究,1995,8(6):7-11
    [9]史小丽,王凤平等.光照时间对外源性~(32)P在水体、铜绿微囊藻和沉积物中分配的影响[J].环境科学,2003,24(1):40-45
    [10]Foy R.H.,Gibson C.E.Photosynthetic characteristics of planktonic blue-green alage:the response to twenty strains grown under high and low light[J].British phyeological Journal,1982,17:169-182
    [11]杨柳燕,王勤,史小丽等.铜绿微囊藻磷代谢研究[J].农业环境科学学报,2005,24:686-689.
    [12]Kimura T,Watanabe M,et al.Phosphorus metabolism during diel vertical migration in the raphidophycean alga,Chattonella antique[J].J Appl Phycol,1999,11:301-311
    [1]Krivtsov V,Bellinger E G,Sigee D C.Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion[J].Aquatic Ecology,2005,39:123-134.
    [2]刘冬梅,姜霞,金相灿.太湖藻对水-沉积物界面磷交换过程的影响[J].环境科学研究,2006,19:8-13.
    [3]杨柳燕,王勤,史小丽等.铜绿微囊藻磷代谢研究[J].农业环境科学学报,2005,24:686-689.
    [4]Xie L Q,Xie P,Tang H J.Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclose experiment in a hyper-eutrophic,subtropical Chinese lake[J].Environmental Pollution,2003,122:391-399
    [5]史小丽,王凤平,蒋丽娟等.温度对外源性~(32)P在水、铜绿微囊藻和沉积物中迁移的影响[J].应用生物学报,2003,14(11):1967-1970
    [6]Takeya K,Kuwata A,Yoshida M et al..Effect of dilution rate on competitive interactions between the cyanobacterium Microcystis novacekii and the green alga Scenedesmus quadricauda in mixed chemostat cultures[J].Journal of Plankton Research,2004,26:29-35.
    [7]Tezuka Y.C:N:P Ratio of Microcystis and Anabaena(Blue-Green Algae)and its Importance for Nutrient Regeneneration by Aerobic Decomposition[J].Japanese Journal of Limnology,1989,50:149-155.
    [8]陈伟民,蔡后建.微生物对太湖微囊藻的好氧降解研究[J].湖泊科学,1996,8:248-252
    [9]吴生才,陈伟民.太湖浮游植物生物量的周期变化[J].中国环境科学,2004,24:151-154
    [10]Manage P M,Kawabata Z,Nakano S.Dynamics of cyanophage-like particles and algicidal bacteria causing Microcystis aeruginosa mortality[J].Limnology,2001,2:73-78.
    [11]Rashidan K K,Bird D F.Role of predatory bacteria in the termination of a cyanobacterial bloom[J].Microbial Ecology,2001,41:97-105.
    [12]金丽娜,张维吴等.滇池水环境中微囊藻毒素的生物降解[J].中国环境科学,2002,22(2):189-192.
    [13]彭超,吴刚等.3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究,2003,16:37-40.
    [14]石苗,邹莉等,水华杀藻微生物的分离与分子生物学鉴定[J].水生生物学报,2005,29:587-590.
    [15]裴海燕,胡文容 两株溶藻细菌的鉴定及其溶藻特性[J].中国海洋大学学报,2006.5:368-374
    [16]李云晖,浦跃朴等.氧化铁纳米颗粒固定化溶藻菌的除藻作用[J].东南大学学报(自 然科学版),2006,36:986-990
    [17]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机制[M].北京:科学出版社,2004
    [18]杨柳燕.2004.太湖优势微囊藻生长代谢的营养动力学研究.In:秦伯强,胡维平,陈伟民.太湖水环境演化过程与机制[M].北京:科学出版社,2004,pp:209-217.
    [19]UNESCO,1968.Determinations of photosynthetic pigments in seawater,Rep[M].COR/UNESCO WG 17,UNESCO Monogr.Oeeanogr.Methodol.,1,Pads.
    [20]Ebina J,Tsutsui T,Shirai T.Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation[J].Water Research,1983,17:1721-1726.
    [21]Porter K G,Feig Y S.The use of DAPI for identifying and counting aquatic microflora[J].Limnology and Oceanography,1980,25:943-948.
    [22]Brunger A K.Contribution of bacteria in the mucilage of Microcystis spp.(Cyanobacteria)to benthic and pelagic bacterial production in a hypereutrophic lake[J].FEMS Microbiology Ecology,1999,29:13-22.
    [23]王保军,刘双江.细菌在典型湖泊沉积物中的分布特征.In:范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社,2007,pp:301-309.
    [24]Khoshmanesh A,Hart B T,Duncan A et al.Luxury uptake of phosphorus by sediment bacteria[J].Water Research,2002,36:774-778.
    [25]杨柳燕,蒋丽娟,秦伯强等.铜绿微囊藻与附生假单胞菌静态吸磷的比较[J].中国环境科学,2004,24(5):572-575.
    [26]Kiviranta J,Sivonen K,Lahti K et al.Production and biodegradation of cyanobacterial toxins-a laboratory study[J].Archiv fur Hydrobiologie,1991,121:281-294.
    [27]奚万艳,吴鑫,叶文瑾,杨虹.太湖梅梁湾水域微囊藻水华前与水华末期细菌群落结构的变化[J].应用与环境生物学报,2007,13:97-103.
    [28]戴欣,刘双江.湖泊沉积物细菌多样性及细菌解磷作用.2007.In:范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社,2007,pp:330-331.
    [1]Paerl H W,Fulto R S,Moisander P H,et al.Harmful freshwater algal blooms,with an emphasis on cyanobacteria[J].Sci World J,2001,1:76-113
    [2]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征[J].中国科学,D辑,2005,35(增刊Ⅱ):1-10
    [3]谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制[J].中国科学,D辑,2005,35(增刊Ⅱ):11-23
    [4]Scheffer M.Ecology of Shallow Lakes[M].Chapman & Hall,1998.357
    [5]Marsden M W.Lake restoration by reducing external phosphorus loading:the influence of sediment phosphorus release[J].Freshwater Biol,1989,21:139-162
    [6]Van der Molen D T,Boers P C N.Influences of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading[J].Hydrobiologia,1994,275/276:379-389
    [7]Graneli W.Internal phosphorus loading in Lake Ringsjon[J].Hydrobiologia,1999,404:19-26
    [8]Scharf W.Restoration of the highly eutrophic lingese reservoir[J].Hydrobiologia,1999,416:85-96
    [9]Havens K E,Fukushima T,Xie P,et al.Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura(Japan),Donghu(PR China),and Okeechobee(USA)[J].Environmental Pollution,2001,111:263-272
    [10]Havens K E,Schelske C L.The importance of considering biological processes when setting total maximum daily loads(TMDL)for phosphorus in lakes and reservoirs[J].Environmental Pollution,2001,113:1-9
    [11]Varjoa E,Liikanen A,Salonen V.A new gypsum-based technique to reduce methane and phosphorus release from sediments of eutrophied lakes:Gypsum treatment to reduce internal loading[J].Water Res.,2003,37:1-10
    [12]秦伯强,胡维平,高光.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822-1831
    [13]肖化云,刘丛强.湖泊外源氮输入与内源氮释放辨析[J].中国科学,D辑,2003,33(6):576-582
    [14]范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学,D辑,2003,33(8):760-768
    [15]余天应,杨浩.藻类生长对滇池沉积物磷释放影响的研究[J].土壤,2005,37(3):321-325
    [16]韩莎莎,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101
    [17]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征[J].中国科学,D辑,2005,35(增刊Ⅱ):1-10
    [18]金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.
    [19]Foy R H,Gibson C E.Photosynthetic characteristics of planktonic blue-green alage:the response to twenty strains grown under high and low light[J].British phycological Journal.1982,17:169-182
    [20]林毅雄,韩梅.滇池富营养化的铜绿微囊藻(Microcystis aeroginosa Kutz)生长因素的研究[J].环境科学进展,1998,6(3):82-87
    [21]吴生才,陈伟民.太湖底泥中微囊藻环境适应性的实验研究[J].海洋湖沼通报,2004,4:41-45
    [22]沈英嘉,陈德辉.不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响[J].湖泊科学,2004,16(3):285-288
    [23]刘春光,金相灿等.光照与磷的交互作用对两种淡水藻类生长的影响[J].中国环境科学,2005,25(1):32-36
    [24]Lena Suzuki.Carl Hirschie Johnson.Algae know the time of day:circadian and photoperiodie programs[J].Phycol,2001,37:933-942
    [25]Pomery L R,Smith E E,Grant C M.The exchange of phosphorus between estuarine water and sediments[J].Limnol Oceanogr,1965,10(2):167-172
    [26]Xie L Q,Xie P,Tang H J.Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclosure experiment in a hyper-eutrophic,subtropical Chinese lake[J].Environmental Pollution,2003,122:391-399
    [27]Sondergaard M,Kristensen P,Jeppesen E.Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso,Denmark[J].Hydrobiologia,1992,32:113-121
    [28]彭晓彤,周怀阳.海岸带沉积物中脱氮作用的研究进展[J].海洋科学,2002,26(5):31-34
    [29]Mackin J E,Aller R C.Ammonium adsorption in marine sediment[J].Limnol.Oceanog.1984,29:250-257
    [30]Rysgass S,Thastum P,et al.Effects of salinity on NH_4~+-N adsorption capacity,nitrification,and denitrification in Danish estuary sediments[J].Estuaries,1999,22:21-30
    [31]侯立军,刘敏等.河口潮滩沉积物对氨氮的等温吸附特征[J].环境化学,2003,22(6):268-572
    [32]刘敏,侯立军等.长江口潮滩表层沉积物对NH_4~+-N的吸附特征[J].海洋学报,2005,27(5):60-66
    [33]Slomp C P,Malschaert J F P,van Raaphorst W.The role of adsorption in sediment-water exchange of phosphorus in North Sea continental margin sediment[J].Limnol Oceanogr,1998,43(5):832-846
    [34]Lopez P,Lluch X et al.Adsorption of phosphorus on sediments of the Balearic islands (Spain)releated to their composition[J].Estuarian,Coastant and Science,1996,42:185-196
    [35]石晓勇,史致丽等.黄河口磷酸盐缓冲机制的探讨--Ⅰ.黄河口悬浮物对磷酸盐的吸附-解吸研究[J].海洋与湖沼,1999,30(2):192-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700