太湖富营养化水体和底泥中微生物群落的分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪以来,富营养化问题已经影响全球许多的淡水湖泊。而水体富营养化的显著特征就是在春夏季节会出现大规模的蓝细菌水华,其不仅严重破坏了水体中微生物的生态结构,同时会产生大量毒素,给公共安全带来重大的威胁。当前,我国湖泊的富营养化问题是非常突出的,但是对富营养化湖泊中微生物群落进行系统性的生态学特征研究却非常有限。因此,了解富营养化水环境中微生物群落的变迁,尤其是对水华的“罪魁祸首”蓝细菌的追踪,显得非常的必要,这将有助于人们全面认识蓝细菌水华暴发的过程以及富营养化对整个水生态系统的影响。
     本研究中,以典型的富营养化湖泊——太湖作为研究样本,通过克隆文库、DGGE指纹图谱和荧光定量PCR等分子生物学手段相结合,对太湖水体和底泥中的微生物群落结构和丰度进行研究,尤其是对蓝细菌群落变迁作了较为详细和系统的阐述,旨在揭示太湖水体中重要微生物(如蓝细菌)的群落结构和数量的动态变化规律,以及太湖长期的富营养化对底泥生态系统的影响,从而对太湖蓝细菌水华暴发、发展的机理有更全面的认识,为治理和控制太湖的富营养化问题提供理论依据。
     对太湖梅粱湾水域进行了为期一年的取样研究,基于16S rRNA基因特异性片段,并结合DGGE指纹图谱和荧光定量PCR技术对水体中蓝细菌群落结构和数量的动态变化进行了研究。结果显示:水体中蓝细菌群落是随季节变化而有所变迁的,其中夏季和冬季样品中的蓝细菌群落结构构成2个特征类群,而春季和秋季样品中蓝细菌的群落结构有很大的相似性。Synechococcus(聚球藻)和Microcystis(微囊藻)是夏季太湖水华暴发中占优势的蓝细菌,它们的大量生长很可能抑制了水体中其他蓝细菌的生长,从而导致了蓝细菌群落在水华暴发期间多样性的下降。在太湖水华暴发的过程中,Synechococcus和Microcystis显示了不同的生长动力学特征。在太湖蓝细菌水华暴发的初期,Synechococcus的生长速度大于Microcystis的生长速度;在水华暴发的后期,Microcystis的生长速度大于Synechococcus的生长速度;而当水华暴发结束后,太湖水体中Microcystis的降解速度要慢于Synechococcus。
     基于mcyA-Cd基因片段,对太湖水体中产微囊藻毒素(MC)蓝细菌的群落结构和丰度进行了研究,研究表明:太湖梅粱湾水域中产MC的蓝细菌几乎都属于Microcystis属。全年中产MC蓝细菌群落的多样性是随着水华的暴发而变化,水华暴发期中产MC蓝细菌群落的多样性高于非暴发期内产MC蓝细菌群落的多样性;而在水华暴发期间,暴发的前期(5月~6月)产MC蓝细菌的多样性要高于水华暴发后期(7月~10月)的产MC蓝细菌的多样性。同时,产MC蓝细菌群落结构的迁移滞后于水华暴发的程度。对太湖水体中产MC蓝细菌的mcyA-Cd基因片段定量的结果显示,太湖水体中产MC蓝细菌的数量随着水华的暴发急剧增加,在5月~10月水华暴发期,产MC蓝细菌的数量是相当高的;而在冬季非水华暴发期,水体中没有检测到MC的含量,但是mcyA基因仍然能检测到,显示了MC的潜在威胁在水华暴发期和非暴发期都是存在的。太湖水体中产MC蓝细菌的数量和MC的浓度之间并没有显示出显著相关,但产MC蓝细菌数量峰值的出现滞后水体中MC含量峰值的出现。
     在对太湖不同深度的6个底泥样品中沉积的蓝细菌群落结构和丰度进行了研究显示,太湖底泥中Microcystis和Synechococcus在整个蓝细菌的群落中呈现了很高的多样性,它们的数量是随着深度增加而减少。太湖底泥中Microcystis和Synechococcus的分布特征显示,随着太湖水体的富营养化程度从中营养向超富营养转变,Synechococcus也如同Microcystis一样也开始成为太湖水华中占优势的蓝细菌,并在水华暴发时有趋势超越Microcystis的数量。
     通过综合运用克隆文库、DGGE和实时荧光定量PCR等分子手段,结合16S rRNA基因同源性分析,对太湖不同深度的底泥中细菌和古菌群落结构和丰度的分布特征作了系统性研究,结果显示,太湖底泥中营养物质负荷的升高对细菌群落结构的影响较小,其不同深度的底泥样品之间细菌群落的结构相对还是比较相似的,其中δ-变形菌纲和Nitrospira(硝化螺菌)在底泥样品中呈现了很高的多样性。同时结果显示,底泥中细菌的数量随着底泥深度的增加也略有增加。太湖底泥样品中古菌群落主要由广古菌门和泉古菌门组成,其中产甲烷菌是一类重要的古菌群落,它们在底泥样品中显示了很高的多样性。古菌在不同深度的底泥样品中群落结构的变化比较大,但其数量水平并没有显示受到富营养化的显著影响,不同深度底泥中的古菌丰度变化相对不大。但和其他的中营养湖泊相比,太湖底泥中古菌的数量在原核生物中所占的比例提高了许多。同时发现,氨氧化古菌存在于太湖较深的底泥样品中。而太湖底泥中Nitrospira呈现了很高的多样性,并且Nitrospira的数量随着底泥深度的增加而减少。同时,和水样相比,Nitrospira更容易在泥样中发现。
Since the 20th century, eutrophication has affected many freshwater lakes worldwide. The characteristic of eutrophication in freshwater ecosystem is the annual cyanobacterial blooms in spring and summer, which could not only break the balance of microbial ecology in the water but also pose a health risk to the public due to the production of toxic compounds. Nowaday, eutrophication has become a serious environmental problem in China. However, few systematic investigations of the microbial community have been conducted on eutrophic lakes. As a prerequisite to the ecosystem level management of cyanobacterial bloom events, it is essential to understand the relationship between the distribution of microbial community (especially for cyanobacteria) and the development of eutrophication in freshwater ecosystem.
     Therefore, this study was conducted to characterize the composition and abundance of the microbial community in the water and sediment samples collected from Lake Taihu, using the clone library, denaturing gradient gel electrophoresis (DGGE) and real-time PCR technique. Specifically, this study focused on the variation of cyanobacterial populations in Lake Taihu. Therefore, the goals of this study were to reveal the composition, diversity and abundance of the important microorganisms in Lake Taihu, and to uncover the influence of eutrophication on the sediment ecosystem, which would provide the evidence for the management of eutrophication in Lake Taihu in the future.
     This study was conducted to provide a detailed understanding of the variation in cyanobacterial communities in the water of Lake Taihu around a year. Based on 16S rRNA gene, DGGE and real-time PCR techniques were conducted to describe the structure and shift of cyanobacterial community in the water. The results suggested that the diversity of the cyanobacterial populations in the pelagic water changed with the development of blooms. The cyanobacterial communities in winter and summer formed two distinguished clusters respectively, but the cyanobacterial communities in spring and autumn were very similar. Microcystis and Synechococcus were the two most dominant in the blooms, which would affect the growth of other cyanobacterial populations and cause the decrease of cyanobacterial diversity in the bloom season. Microcystis and Synechococcus showed different growth dynamics around a year. In the early period of blooms, Synechococcus grew faster than Microcystis, while Microcystis grew faster than Synechococcus in the late period of blooms. After the blooms, Microcystis seemed to better survive the winter than Synechococcus.
     The diversity and abundance of potential MC (Microcystin)- producing cyanobacteria was evaluated based on the mcyA-Cd gene fragment. The results revealed that all MC-producing genotypes detected in Lake Taihu belonged to the genus Microcystis. The MC-producing genotype communities changed with the development of blooms. The MC-producing genotype communities were more diverse during the bloom season than the non-bloom season. And during the bloom season, the diversity in the early bloom period (May-June) was higher than the diversity in the late bloom period (July-October). Furthermore, the quantitative results suggested that the abundance of MC-producing genotypes increased dramatically with the development of blooms and was very high in the bloom season. Although there was no detection of MC during winter (non-bloom season), MC-producing genotypes were still detected in the samples, which indicated that the potential MC threat is present both during the bloom season and the non-bloom season in Lake Taihu. There was no significant correlation observed between the MC concentration and MC-producing genotypes in Lake Taihu. However, the results suggested that the highest mcy gene concentration lagged behind the highest MC concentration.
     It was investigated that the structure and abundance of cyanobacterial communities in 6 sediment samples of different depth collected from Lake Taihu. The results suggested that Microcystis and Synechococcus showed high diversity in the sediment of Lake Taihu. There was a higher abundance of Microcystis and Synechococcus in the upper layers of the sediment than in the deeper layers. The distribution of Microcystis and Synechococcus in the sediment reflected a trend in which Synechococcus gradually became one of the major bloom-forming components instead of the Microcystis in the pelagic water of Lake Taihu when the water quality deteriorated from mesotrophic to hypertrophic.
     It was conducted to characterize the structure and abundance of the bacterial and archaeal communities at various depths in the sediment collected from Lake Taihu. To accomplish this, samples were evaluated using the clone library, denaturing gradient gel electrophoresis (DGGE) and real-time PCR technique. The results suggested that the eutrophication seemed to have little effect on the bacterial communities in the sediment of Lake Taihu. The composition of bacterial communities appeared to be relatively homogeneous among the sediment samples. The Deltaproteobacteria- and Nitrospira-related sequences were found to be very diverse in the sediment. The results also suggested that the abundance of bacterial groups increased slightly with depth. The archaeal communities were primarily related to Euryarchaeota and Crenarchaeota. Methanogenic archaeal communities were an important group in the sediment of Lake Taihu, and they were highly diverse and varied greatly in the sediment. The archaeal communities varied greatly among sediment samples whereas the concentration of Archaea was not significantly influenced by the eutrophication. However, the archaeal abundance contributed a larger proportion of the total prokaryotic community in Lake Taihu sediment than other mesotrophic lake sediment. Sequences related to putative ammonia-oxidizing Archaea were also detected in the deep layer of sediment sample in Lake Taihu. Nitrospira showed high diversity in the sediment and the quantity of Nitrospira decreased with depth. Meanwhile, it was easier to detect Nitrospira-like sequences in sediment samples than in water samples.
引文
[1] Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews. 1995, 59(1): 143-169.
    [2] Castro H., Ogram A., Reddy K.R. Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the Florida everglades. Applied and Environmental Microbiology. 2004, 70(11): 6559-6568.
    [3] Chen M., Chen F., Zhao B., Wu Q., Kong F. Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China. Aquatic Ecology. 2009.
    [4] Chen Y., Qin B., Teubner K., Dokulil M.T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of plankton research. 2003, 25(4): 445-453.
    [5] Chorus I., Bartram J. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. London: E & FN Spon. 1999: 41-111.
    [6] Dar S.A., Yao L., van Dongen U., Kuenen J.G., Muyzer G. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. 2007: 594-604.
    [7] Dionisi H.M., Harms G., Layton A.C., Gregory I.R., Parker J., Hawkins S.A., Robinson K.G., Sayler G.S. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Applied and Environmental Microbiology. 2003, 69(11): 6597-6604.
    [8] Eiler A., Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology. 2004, 6(12): 1228-1243.
    [9] Forsberg C., Ryding S.O. Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Archiv fur Hydrobiologie. 1980, 89(1-2): 189-207.
    [10] Fry J.C., Webster G., Cragg B.A., Weightman A.J., Parkes R.J. Analysis of DGGEprofiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiology Ecology. 2006, 58(1): 86-98.
    [11] Giovannoni S.J., Britschgi T.B., Moyer C.L., Field K.G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990, 345(6270): 60-63.
    [12] Gl?ckner F.O., Zaichikov E., Belkova N., Denissova L., Pernthaler J., Pernthaler A., Amann R. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology. 2000, 66(11): 5053-5065.
    [13] Jinglu W., Chengmin H., Haiao Z., Schleser G., Battarbee R. Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu, China: human impacts on a large shallow lake. Journal of Paleolimnology. 2007, 38(1): 13-23.
    [14] Koizumi Y., Kojima H., Fukui M. Characterization of depth-related microbial community structure in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rDNA and reversely transcribed 16S rRNA fragments. FEMS Microbiology Ecology. 2003, 46(2): 147-157.
    [15] Kolmonen E., Sivonen K., Rapala J., Haukka K. Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquatic Microbial Ecology. 2004, 36(3): 201-211.
    [16] Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006, 442(7104): 806-809.
    [17] Li S., Xiao X., Yin X., Wang F. Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles. 2006, 10(5): 461-467.
    [18] Moss B. Ecology of Fresh Waters: Man and Medium, Past to Future. Oxford: Blackwell Science. 1998.
    [19] Muyzer G., De Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 1993, 59(3): 695-700.
    [20] Myers R.M., Fischer S.G., Lerman L.S., Maniatis T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research. 1985, 13(9): 3131-3145.
    [21] Myers R.M., Fischer S.G., Maniatis T., Lerman L.S. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Research. 1985, 13(9): 3111-3129.
    [22] Nübel U., Garcia-Pichel F., Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology. 1997, 63(8): 3327-3332.
    [23] Olsen G.J., Lane D.J., Giovannoni S.J., Pace N.R., Stahl D.A. Microbial ecology and evolution: a ribosomal RNA approach. Annual Review of Microbiology. 1986, 40: 337-365.
    [24] Ouellette A., Handy S., Wilhelm S. Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microbial Ecology. 2006, 51(2): 154-165.
    [25] Qin Y.Y., Li D.T., Yang H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiology Letters. 2007, 268(1): 126-134.
    [26] Rinta-Kanto J.M., Wilhelm S.W. Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Applied and Environmental Microbiology. 2006, 72(7): 5083-5085.
    [27] Schippers A., Neretin L.N. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environmental Microbiology. 2006, 8(7): 1251-1260.
    [28] Schwarz J.I.K., Eckert W., Conrad R. Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Systematic and Applied Microbiology. 2007, 30(3): 239-254.
    [29] Sekiguchi H., Watanabe M., Nakahara T., Xu B., Uchiyama H. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Applied and Environmental Microbiology. 2002, 68(10): 5142-5150.
    [30] Shen J.P., Zhang L.M., Zhu Y.G., Zhang J.B., He J.Z. Abundance and composition ofammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology. 2008, 10(6): 1601-1611.
    [31] Stoeck T., Zuendorf A., Breiner H.W., Behnke A. A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microbial Ecology. 2007, 53(2): 328-339.
    [32] Tijdens M., Hoogveld H., Kamst-van Agterveld M., Simis S., Baudoux A.-C., Laanbroek H., Gons H. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic Lake. Microbial Ecology. 2008, 56(1): 29-42.
    [33] Tillett D., Parker D.L., Neilan B.A. Detection of toxigenicity by a probe for the microcystin synthetase a gene (mcyA) of the cyanobacterial genus Microcystis: Comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Applied and Environmental Microbiology. 2001, 67(6): 2810-2818.
    [34] Trusova M.Y., Gladyshev M.I. Phylogenetic diversity of winter bacterioplankton of eutrophic Siberian reservoirs as revealed by 16S rRNA gene sequences. Microbial Ecology. 2002, 44(3): 252-259.
    [35]Vaitomaa J., Rantala A., Halinen K., Rouhiainen L., Tallberg P., Mokelke L., Sivonen K. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Applied and Environmental Microbiology. 2003, 69(12): 7289-7297.
    [36]Van Der Gucht K., Vandekerckhove T., Vloemans N., Cousin S., Muylaert K., Sabbe K., Gillis M., Declerk S., De Meester L., Vyverman W. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiology Ecology. 2005, 53(2): 205-220.
    [37] Watanabe K., Watanabe K., Kodama Y., Syutsubo K., Harayama S. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Applied and Environmental Microbiology. 2000, 66(11): 4803-4809.
    [38] Watanabe T., Kimura M., Asakawa S. Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biology and Biochemistry. 2007, 39(11): 2877-2887.
    [39] Williams S.K., Kempton J., Wilde S.B., Lewitus A. A novel epiphytic cyanobacterium associated with reservoirs affected by avian vacuolar myelinopathy. Harmful Algae. 2007, 6(3): 343-353.
    [40] Yoshida M., Yoshida T., Takashima Y., Hosoda N., Hiroishi S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters. 2007, 266(1): 49-53.
    [41] Yoshida T., Yuki Y., Lei S., Chinen H., Yoshida M., Kondo R., Hiroishi S. Quantitative detection of toxic strains of the cyanobacterial genus Microcystis by competitive PCR. Microbes and Environments. 2003, 18(1): 16-23.
    [42] Zhang T., Fang H.H.P. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology. 2006, 70(3): 281-289.
    [43]史丹.我国湖泊富营养化问题及防治对策.资源开发与市场. 2005, 21(1): 17-18,27.
    [44]魏丽萍,梁美生.我国湖泊富营养化问题概述.化工文摘. 2008, 6: 38-40.
    [1] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. Journal of Molecular Biology. 1990, 215(3): 403-410.
    [2] Becker S., Fahrbach M., B?ger P., Ernst A. Quantitative tracing, by Taq nuclease assays, of a Synechococcus ecotype in a highly diversified natural population. Applied and Environmental Microbiology. 2002, 68(9): 4486-4494.
    [3] Callieri C., Stockner J.G. Freshwater autotrophic picoplankton: A review. Journal of Limnology. 2002, 61(1): 1-14.
    [4] Carmichael W.W., An J. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins. Natural Toxins. 1999, 7(6): 377-385.
    [5] Chen Y., Qin B., Teubner K., Dokulil M.T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of plankton research. 2003, 25(4): 445-453.
    [6] Chorus I., Bartram J. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. London: E & FN Spon. 1999: 41-111.
    [7] Chu Z., Jin X., Iwami N., Inamori Y. The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. Hydrobiologia. 2007, 581(1): 217-223.
    [8] Dodds W.K., Gudder D.A., Mollenhauer D. The ecology of Nostoc. Journal of Phycology. 1995, 31(1): 2-18.
    [9] Douglas S.E. Chloroplast origins and evolution. In: Bryant D.A. The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers. 1994: 91-118.
    [10] Dyble J., Paerl H.W., Neilan B.A. Genetic characterization of Cylindrospermopsis raciborskii (cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis. Applied and Environmental Microbiology. 2002, 68(5): 2567-2571.
    [11] Fay P. The Blue-Greens (Cyanophyta-Cyanobacteria). London: Edward Arnold. 1983.
    [12] Graham L.E., Wilcox L.W. Algae. New Jersey: Prentice Hall. 2000.
    [13] Harms G., Layton A.C., Dionisi H.M., Gregory I.R., Garrett V.M., Hawkins S.A., Robinson K.G., Sayler G.S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental Science and Technology. 2003, 37(2): 343-351.
    [14] Hongmei J., Aitchison J.C., Lacap D.C., Peerapornpisal Y., Sompong U., Pointing S.B. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles. 2005, 9(4): 325-332.
    [15] Hutchinson G.E. A Treatise on Limnology - II. Introduction to Lake Biology and the Limnoplankton. New York: John Wiley & Sons. 1967.
    [16] Innok S., Matsumura M., Boonkerd N., Teaumroong N. Detection of Microcystis in lake sediment using molecular genetic techniques. World Journal of Microbiology and Biotechnology. 2005, 21(8-9): 1559-1568.
    [17] Janse I., Meima M., Kardinaal W.E.A., Zwart G. High-resolution differentiation of cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Applied and Environmental Microbiology. 2003, 69(11): 6634-6643.
    [18] Kim S.G., Rhee S.K., Ahn C.Y., Ko S.R., Choi G.G., Bae J.W., Park Y.H., Oh H.M. Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. 2006: 3252-3258.
    [19] Kirkwood A.E., Buchheim J.A., Buchheim M.A., Henley W.J. Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microbial Ecology. 2008, 55(3): 453-465.
    [20] Kolmonen E., Sivonen K., Rapala J., Haukka K. Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquatic Microbial Ecology. 2004, 36(3): 201-211.
    [21] Kondo R., Yoshida T., Yuki Y., Hiroishi S. DNA-DNA reassociation among a bloom-forming cyanobacterial genus, Microcystis. International Journal of Systematic and Evolutionary Microbiology. 2000, 50(2): 767-770.
    [22] Kumar S., Tamura K., Jakobsen I.B., Nei M. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics. 2002, 17(12): 1244-1245.
    [23] Miller S.R., Castenholz R.W. Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Applied and Environmental Microbiology. 2000, 66(10): 4222-4229.
    [24] Moezelaar R., Stal L.J. A comparison of fermentation in the cyanobacterium Microcystis PCC7806 grown under a light/dark cycle and continuous light. European Journal of Phycology. 1997, 32(4): 373-378.
    [25] Muyzer G., De Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 1993, 59(3): 695-700.
    [26] Nübel U., Garcia-Pichel F., Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology. 1997, 63(8): 3327-3332.
    [27] Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M.M. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiology Letters. 1999, 172(1): 15-21.
    [28] Ouellette A., Handy S., Wilhelm S. Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microbial Ecology. 2006, 51(2): 154-165.
    [29] Postius C., Ernst A. Mechanisms of dominance: Coexistence of picocyanobacterial genotypes in a freshwater ecosystem. Archives of Microbiology. 1999, 172(2): 69-75.
    [30] Rai A.N. CRC handbook of symbiotic cyanobacteria. In. Boca Raton: CRC Press. 1990.
    [31] Raven J.A. The twelfth Tansley Lecture. Small is beautiful: The picophytoplankton. Functional Ecology. 1998, 12(4): 503-513.
    [32] Rinta-Kanto J.M., Ouellette A.J.A., Boyer G.L., Twiss M.R., Bridgeman T.B., Wilhelm S.W. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environmental Science and Technology. 2005, 39(11): 4198-4205.
    [33] Sompong U., Anuntalabhochai S., Cutler R.W., Castenholz R.W., Peerapornpisal Y.Morphological and phylogenic diversity of cyanobacterial populations in six hot springs of Thailand. ScienceAsia. 2008, 34(2): 153-162.
    [34] Song T., M?rtensson L., Eriksson T., Zheng W., Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiology Ecology. 2005, 54(1): 131-140.
    [35] Stanier R.Y., Niel C.B. The concept of a bacterium. Archives of Microbiology. 1962, 42(1): 17-35.
    [36] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25(24): 4876-4882.
    [37] Verspagen J.M.H., Snelder E.O.F.M., Visser P.M., Huisman J., Mur L.R., Ibelings B.W. Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? Journal of Phycology. 2004, 40(2): 260-270.
    [38] Welschmeyer N.A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography. 1994, 39(8): 1985-1992.
    [39] White A.W., Shilo M. Heterotrophic growth of the filamentous blue green alga Plectonema boryanum. Archives of Microbiology. 1975, 102(2): 123-127.
    [40] Yoshida M., Yoshida T., Takashima Y., Hosoda N., Hiroishi S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters. 2007, 266(1): 49-53.
    [41]谢平.论蓝藻水华的发生机制:从生物进化、生物地球化学和生态学视点.北京:科学出版社. 2007.
    [1] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. Journal of Molecular Biology. 1990, 215(3): 403-410.
    [2] Anne-Dorothee J., Brett A.N. Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Archives of Microbiology. 2006, 185: 107-114.
    [3] Carmichael W.W. Health Effects of Toxin-Producing Cyanobacteria: "The CyanoHABs". Human and Ecological Risk Assessment: An International Journal. 2001, 7(5): 1393 - 1407.
    [4] Carmichael W.W., Azevedo, S. M. F. O., An, J. S., Molica, R. J. R., . Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environmental Health Perspectives. 2001, 109(7): 663-668.
    [5] Chorus I., Bartram J. Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. London: E & FN Spon. 1999: 41-111.
    [6] Dittmann E., Borner T. Genetic contributions to the risk assessment of microcystin in the environment. Toxicology and Applied Pharmacology. 2005, 203(3): 192-200.
    [7] Dittmann E., Neilan B.A., Erhard M., Von D?hren H., B?rner T. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Molecular Microbiology. 1997, 26(4): 779-787.
    [8] Dittmann E., Wiegand C. Cyanobacterial toxins-Occurrence, biosynthesis and impact on human affairs. Molecular Nutrition and Food Research. 2006, 50(1): 7-17.
    [9] Frangeul L., Quillardet P., Castets A.M., Humbert J.F., Matthijs H.C.P., Cortez D., Tolonen A., Zhang C.C., Gribaldo S., Kehr J.C., Zilliges Y., Ziemert N., Becker S., Talla E., Latifi A., Billault A., Lepelletier A., Dittmann E., Bouchier C., de Marsac N.T. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics. 2008, 9.
    [10] Hisbergues M., Christiansen G., Rouhiainen L., Sivonen K., B?rner T. PCR-basedidentification of microcystin-producing genotypes of different cyanobacterial genera. Archives of Microbiology. 2003, 180(6): 402-410.
    [11] Kardinaal W.E.A., Janse I., Kamst-Van Agterveld M., Meima M., Snoek J., Mur L.R., Huisman J., Zwart G., Visser P.M. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology. 2007, 48(1): 1-12.
    [12] Kumar S., Tamura K., Jakobsen I.B., Nei M. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics. 2002, 17(12): 1244-1245.
    [13] Kurmayer R., Kutzenberger T. Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Applied and Environmental Microbiology. 2003, 69(11): 6723-6730.
    [14] MacKintosh C., Beattie K.A., Klumpp S., Cohen P., Codd G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters. 1990, 264(2): 187-192.
    [15] Mei?ner K., Dittmann E., Bor ner T. Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiology Letters. 1996, 135(2-3): 295-303.
    [16] Nishizawa T., Asayama M., Fujii K., Harada K., Shirai M. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. Journal of Biochemistry. 1999, 126(3): 520-529.
    [17] Nishizawa T., Ueda A., Asayama M., Fujii K., Harada K., Ochi K., Shirai M. Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. Journal of Biochemistry. 2000, 127(5): 779-789.
    [18] Ohtake A., Shirai M., Aida T., Mori N., Harada K.I., Matsuura K., Suzuki M., Nakano M. Toxicity of Microcystis species isolated from natural blooms and purification of the toxin. Applied and Environmental Microbiology. 1989, 55(12): 3202-3207.
    [19] Rantala A., Fewer D.P., Hisbergues M., Rouhiainen L., Vaitomaa J., B?rner T., Sivonen K. Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101(2): 568-573.
    [20] Rantala A., Rajaniemi-Wacklin P., Lyra C., Lepisto L., Rintala J., Mankiewicz-Boczek J., Sivonen K. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Applied and Environmental Microbiology. 2006, 72(9): 6101-6110.
    [21] Rinta-Kanto J.M., Ouellette A.J.A., Boyer G.L., Twiss M.R., Bridgeman T.B., Wilhelm S.W. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environmental Science and Technology. 2005, 39(11): 4198-4205.
    [22] Rinta-Kanto J.M., Saxton M.A., DeBruyn J.M., Smith J.L., Marvin C.H., Krieger K.A., Sayler G.S., Boyer G.L., Wilhelm S.W. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae. 2009, 8(3): 385-394.
    [23] Rinta-Kanto J.M., Wilhelm S.W. Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie. Applied and Environmental Microbiology. 2006, 72(7): 5083-5085.
    [24] Shen P.P., Shi Q., Hua Z.C., Kong F.X., Wang Z.G., Zhuang S.X., Chen D.C. Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environment International. 2003, 29(5): 641-647.
    [25] Song L., Chen W., Peng L., Wan N., Gan N., Zhang X. Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Research. 2007, 41(13): 2853-2864.
    [26] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25(24): 4876-4882.
    [27] Tillett D., Dittmann E., Erhard M., Von D?hren H., B?rner T., Neilan B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chemistry and Biology. 2000, 7(10): 753-764.
    [28]Vaitomaa J., Rantala A., Halinen K., Rouhiainen L., Tallberg P., Mokelke L., Sivonen K. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers forMicrocystis and Anabaena in lakes. Applied and Environmental Microbiology. 2003, 69(12): 7289-7297.
    [29] Vezie C., Brient L., Sivonen K., Bertru G., Lefeuvre J.C., Salkinoja-Salonen M. Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microbial Ecology. 1998, 35(2): 126-135.
    [30] Welker M., Erhard M. Consistency between chemotyping of single filaments of Planktothrix rubescens (cyanobacteria) by MALDI-TOF and the peptide patterns of strains determined by HPLC-MS. Journal of Mass Spectrometry. 2007, 42(8): 1062-1068.
    [31] Welker M., Von D?hren H., T?uscher H., Steinberg C.E.W., Erhard M. Toxic Microcystis in shallow lake Müggelsee (Germany) - Dynamics, distribution, diversity. Archiv fur Hydrobiologie. 2003, 157(2): 227-248.
    [32] Xi W., Wu X., Ye W., Yang H. Changes in bacterial community structure during preceding and degraded period of cyanobacterial bloom in the Meliliang Bay, Taihu Lake. Chinese Journal of Applied and Environmental Biology. 2007, 13(1).
    [33] Yoshida M., Yoshida T., Takashima Y., Hosoda N., Hiroishi S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters. 2007, 266(1): 49-53.
    [34]穆丽娜,刘建玲.太湖水体微藻毒素含量调查及其处理方法研究.中国公共卫生. 2000, 16(9): 803-804.
    [35]张青学,俞敏娟.铜绿微囊藻水华毒性及毒素的研究.环境科学学报. 1989, 8(1): 86-94.
    [36]许秋瑾,高光,陈伟民.太湖微囊藻毒素年变化及其与浮游生物的关系.中国环境科学. 2005, 25(1): 28-31.
    [1] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. Journal of Molecular Biology. 1990, 215(3): 403-410.
    [2] Barbiero R.P., Kann J. The importance of benthic recruitment to the population development of Aphanizomenon flos-aquae and internal loading in a shallow lake. Journal of plankton research. 1994, 16(11): 1581-1588.
    [3] Brunberg A.K., Blomqvist P. Benthic overwintering of Microcystis colonies under different environmental conditions. Journal of plankton research. 2002, 24(11): 1247-1252.
    [4] Chen Y., Qin B., Teubner K., Dokulil M.T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of plankton research. 2003, 25(4): 445-453.
    [5] Griffiths R.I., Whiteley A.S., O'Donnell A.G., Bailey M.J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Applied and Environmental Microbiology. 2000, 66(12): 5488-5491.
    [6] Jinglu W., Chengmin H., Haiao Z., Schleser G., Battarbee R. Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu, China: human impacts on a large shallow lake. Journal of Paleolimnology. 2007, 38(1): 13-23.
    [7] Kumar S., Tamura K., Jakobsen I.B., Nei M. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics. 2002, 17(12): 1244-1245.
    [8] Reynolds C.S. Growth and buoyancy of Microcystis aeruginosa Kutz. emend. Elenkin in a shallow eutrophic lake. Proceedings of the Royal Society of London - Biological Sciences. 1973, 184(1074): 29-50.
    [9] Ryan J., Estefan G., Rashid A. Soil and Plant Analysis Laboratory Manual. Aleppo, Syria, and Islamabad, Pakistan: International Center for Agricultural Research in the Dry Area (ICARDA) and the National Agricultural Research Center (NARC). 2001: 172.
    [10] Song X., Liu Z., Pan H., Yang G., chen Y. Phytoplankton community structure in Meiliang Bay and Lake Wuli of Lake Taihu. Journal of Lake Sciences. 2007, 19(6):643-651.
    [11] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25(24): 4876-4882.
    [12]吴生才,陈伟民,高光.太湖冬季底泥中活体藻类的检测.湖泊科学. 2003, 15(4): 339-344.
    [13]孙顺才,黄漪平.太湖.北京:海洋出版社. 1993.
    [14]张运林,秦伯强.太湖水体富营养化的演变及研究进展.上海环境科学. 2001, 20(6): 263-265.
    [15]许秋瑾,高光,陈伟民.太湖微囊藻毒素年变化及其与浮游生物的关系.中国环境科学. 2005, 25(1): 28-31.
    [16]谢平.太湖蓝藻的历史发展与水华灾害.北京:科学出版社. 2008.
    [17]饶钦止.五里湖1951年湖泊学调查:三、浮游植物.水生生物学集刊. 1961, 1: 74-92.
    [1] Adair K.L., Schwartz E. Evidence that Ammonia-Oxidizing Archaea are More Abundant than Ammonia-Oxidizing Bacteria in Semiarid Soils of Northern Arizona, USA. Microbial Ecology. 2007, 56: 1-7.
    [2] Alm E.W., Stahl D.A. Critical factors influencing the recovery and integrity of rRNA extracted from environmental samples: Use of an optimized protocol to measure depth-related biomass distribution in freshwater sediments. Journal of Microbiological Methods. 2000, 40(2): 153-162.
    [3] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. Journal of Molecular Biology. 1990, 215(3): 403-410.
    [4] Ambrosetti W., Barbanti L., Sala N. Residence time and physical processes in lakes. Journal of Limnology. 2003, 62(SUPPL): 1-15.
    [5] Arp D.J., Stein L.Y. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Critical Reviews in Biochemistry and Molecular Biology. 2003, 38(6): 471-495.
    [6] Banning N., Brock F., Fry J.C., Parkes R.J., Hornibrook E.R.C., Weightman A.J. Investigation of the methanogen population structure and activity in a brackish lake sediment. Environmental Microbiology. 2005, 7(7): 947-960.
    [7] Bernasconi S.M., Barbieri A., Simona M. Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnology and Oceanography. 1998, 42(8): 1755-1765.
    [8] Briée C., Moreira D., López-García P. Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Research in Microbiology. 2007, 158(3): 213-227.
    [9] Burrell P.C., Keller J., Blackall L.L. Microbiology of a nitrite-oxidizing bioreactor. Applied and Environmental Microbiology. 1998, 64(5): 1878-1883.
    [10] Cadillo-Quiroz H., Yashiro E., Yavitt J.B., Zinder S.H. Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Applied andEnvironmental Microbiology. 2008, 74(7): 2059-2068.
    [11] Cetecio?lu Z., Ince B.K., Kolukirik M., Ince O. Biogeographical distribution and diversity of bacterial and archaeal communities within highly polluted anoxic marine sediments from the marmara sea. Marine Pollution Bulletin. 2009, 58(3): 384-395.
    [12] Chachkhiani M., Dabert P., Abzianidze T., Partskhaladze G., Tsiklauri L., Dudauri T., Godon J.J. 16S rDNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Bioresource Technology. 2004, 93(3): 227-232.
    [13] Coolen M.J.L., Abbas B., Van Bleijswijk J., Hopmans E.C., Kuypers M.M.M., Wakeham S.G., Sinninghe Damste J.S. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: A basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environmental Microbiology. 2007, 9(4): 1001-1016.
    [14] Daims H., Nielsen J.L., Nielsen P.H., Schleifer K.H., Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology. 2001, 67(3-12): 5273-5284.
    [15] Dar S.A., Kuenen J.G., Muyzer G. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Applied and Environmental Microbiology. 2005, 71(5): 2325-2330.
    [16] Degans H., Z?llner E., Van Der Gucht K., De Meester L., Jürgens K. Rapid Daphnia-mediated changes in microbial community structure: An experimental study. FEMS Microbiology Ecology. 2002, 42(1): 137-149.
    [17] Dionisi H.M., Harms G., Layton A.C., Gregory I.R., Parker J., Hawkins S.A., Robinson K.G., Sayler G.S. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Applied and Environmental Microbiology. 2003, 69(11): 6597-6604.
    [18] Edlund A., Soule T., Sj?ling S., Jansson J.K. Microbial community structure in polluted Baltic Sea sediments. Environmental Microbiology. 2006, 8(2): 223-232.
    [19] Francis C.A., Roberts K.J., Beman J.M., Santoro A.E., Oakley B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.Proceedings of the National Academy of Sciences of the United States of America. 2005, 102(41): 14683-14688.
    [20] Galand P.E., Lovejoy C., Vincent W.F. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquatic Microbial Ecology. 2006, 44(2): 115-126.
    [21] Glissmann K., Chin K.J., Casper P., Conrad R. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: Effect of temperature. Microbial Ecology. 2004, 48(3): 389-399.
    [22] Gro?kopf R., Janssen P.H., Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Applied and Environmental Microbiology. 1998, 64(3): 960-969.
    [23] H?j L., Olsen R.A., Torsvik V.L. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. ISME Journal. 2008, 2(1): 37-48.
    [24] Hallam S.J., Mincer T.J., Schleper C., Preston C.M., Roberts K., Richardson P.M., DeLong E.F. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biology. 2006, 4(4): 520-536.
    [25] Hansel C.M., Fendorf S., Jardine P.M., Francis C.A. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Applied and Environmental Microbiology. 2008, 74(5): 1620-1633.
    [26] Harms G., Layton A.C., Dionisi H.M., Gregory I.R., Garrett V.M., Hawkins S.A., Robinson K.G., Sayler G.S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental Science and Technology. 2003, 37(2): 343-351.
    [27] He J.Z., Shen J.P., Zhang L.M., Zhu Y.G., Zheng Y.M., Xu M.G., Di H. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology. 2007, 9(9): 2364-2374.
    [28] Hideyuki T., Yuji S., Satoshi H., Kazunori N. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Applied and Environmental Microbiology. 2005, 71: 2162-2169.
    [29] Ingalls A.E., Shah S.R., Hansman R.L., Aluwihare L.I., Santos G.M., Druffel E.R.M., Pearson A. Quantifying archaeal community autotrophy in the mesopelagic ocean usinq natural radiocarbon. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(17): 6442-6447.
    [30] J?rgensen B.B., Marais D.J.D. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnology and Oceanography. 1990, 35(6): 1343-1355.
    [31] Jinglu W., Chengmin H., Haiao Z., Schleser G., Battarbee R. Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu, China: human impacts on a large shallow lake. Journal of Paleolimnology. 2007, 38(1): 13-23.
    [32] Jinglu W., Gagan M.K., Xuezhong J., Weilan X., Sumin W. Sedimentary geochemical evidence for recent eutrophication of Lake Chenghai, Yunnan, China. Journal of Paleolimnology. 2004, 32(1): 85-94.
    [33] Junier P., Witzel K.P., Hadas O. Genetic diversity of cyanobacterial communities in Lake Kinneret (Israel) using 16S rRNA gene, psbA and ntcA sequence analyses. Aquatic Microbial Ecology. 2007, 49(3): 233-241.
    [34] Jurgens G., G?ckner F.O., Amann R., Saano A., Montonen L., Likolammi M., Münster U. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiology Ecology. 2000, 34(1): 45-56.
    [35] K?nneke M., Bernhard A.E., De La Torre J.R., Walker C.B., Waterbury J.B., Stahl D.A. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005, 437(7058): 543-546.
    [36] Koizumi Y., Kojima H., Fukui M. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization. Applied and Environmental Microbiology.2004, 70(8): 4930-4940.
    [37] Koizumi Y., Takii S., Nishino M., Nakajima T. Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake. FEMS Microbiology Ecology. 2003, 44(1): 101-108.
    [38] Kondo R., Butani J. Comparison of the diversity of sulfate-reducing bacterial communities in the water column and the surface sediments of a Japanese meromictic lake. Limnology. 2007, 8(2): 131-141.
    [39] Koops H.P., Pommerening-R?ser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology. 2001, 37(1): 1-9.
    [40] Kowalchuk G.A., Stephen J.R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Review of Microbiology. 2001, 55: 485-529.
    [41] Kumar S., Tamura K., Jakobsen I.B., Nei M. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics. 2002, 17(12): 1244-1245.
    [42] Lehours A.C., Evans P., Bardot C., Joblin K., Gérard F. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Applied and Environmental Microbiology. 2007, 73(6): 2016-2019.
    [43] Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006, 442(7104): 806-809.
    [44] Lesaulnier C., Papamichail D., McCorkle S., Ollivier B., Skiena S., Taghavi S., Zak D., Van Der Lelie D. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environmental Microbiology. 2008, 10(4): 926-941.
    [45] Li S., Xiao X., Yin X., Wang F. Bacterial community along a historic lake sediment core of Ardley Island, west Antarctica. Extremophiles. 2006, 10(5): 461-467.
    [46] Liang J.B., Chen Y.Q., Lan C.Y., Tam N.F.Y., Zan Q.J., Huang L.N. Recovery of novel bacterial diversity from mangrove sediment. Marine Biology. 2007, 150(5): 739-747.
    [47] Lin L.H., Hall J., Onstott T.C., Gihring T., Lollar B.S., Boice E., Pratt L., Lippmann-Pipke J., Bellamy R.E.S. Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiology Journal.2006, 23(6): 475 - 497.
    [48] Liu B., Zhang F., Feng X., Liu Y., Yan X., Zhang X., Wang L., Zhao L. Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison. FEMS Microbiology Ecology. 2006, 55(2): 274-286.
    [49]Meyers P.A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Organic Geochemistry. 2003, 34(2): 261-289.
    [50] Muyzer G., De Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 1993, 59(3): 695-700.
    [51] Muyzer G., Stams A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology. 2008, 6(6): 441-454.
    [52] Nam Y.D., Sung Y., Chang H.W., Roh S., Kim K.H., Rhee S.K., Kim J.C., Kim J.Y., Yoon J.H., Bae J.W. Characterization of the depth-related changes in the microbial communities in Lake Hovsgol sediment by 16S rRNA gene-based approaches. The Journal of Microbiology. 2008, 46(2): 125-136.
    [53] Nealson K.H. Sediment bacteria: Who's there, what are they doing, and what's new? Annual Review of Earth and Planetary Sciences. 1997, 25: 403-434.
    [54] Nelson D.M., Ohene-Adjei S., Hu F.S., Cann I.K.O., Mackie R.I. Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microbial Ecology. 2007, 54(2): 252-263.
    [55] Orphan V.J., Hinrichs K.U., Ussler Iii W., Paull C.K., Taylor L.T., Sylva S.P., Hayes J.M., Delong E.F. Comparative analysis of methane-oxidizing Archaea and sulfate-reducing Bacteria in anoxic marine sediments. Applied and Environmental Microbiology. 2001, 67(4): 1922-1934.
    [56] Oude Elferink S.J.W.H. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. International Journal of Systematic Bacteriology. 1999, 49(2): 345-350.
    [57] Oude Elferink S.J.W.H., Maas R.N., Harmsen H.J.M., Stams A.J.M. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Archives of Microbiology. 1995, 164(2): 119-124.
    [58] Park S.J., Park B.J., Rhee S.K. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles. 2008, 12(4): 605-615.
    [59] Parkes R.J., Webster G., Cragg B.A., Weightman A.J., Newberry C.J., Ferdelman T.G., Kallmeyer J., Jorgensen B.B., Aiello I.W., Fry J.C. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature. 2005, 436(7049): 390-394.
    [60] Qin Y.Y., Li D.T., Yang H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiology Letters. 2007, 268(1): 126-134.
    [61] R?lleke S., Witte A., Wanner G., Lubitz W. Medieval wall paintings - A habitat for archaea: Identification of archaea by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments coding for 16S rRNA in a medieval wall painting. International Biodeterioration and Biodegradation. 1998, 41(1): 85-92.
    [62] Rippey B., Jewson D.H. The rates of sediment-water exchange of oxygen and sediment bioturbation in Lough Neagh, Northern Ireland. Hydrobiologia. 1982, 91-92(1): 377-382.
    [63] Rotthauwe J.H., Witzel K.P., Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology. 1997, 63(12): 4704-4712.
    [64] Routh J., Meyers P.A., Gustafsson ?., Baskaran M., Hallberg R., Sch?ldstr?m A. Sedimentary geochemical record of human-induced environmental changes in the Lake Brunnsviken watershed, Sweden. Limnology and Oceanography. 2004, 49(5): 1560-1569.
    [65] Rudolph C., Moissl C., Henneberger R., Huber R. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in cold sulfidic springs. FEMS Microbiology Ecology. 2004, 50(1): 1-11.
    [66] Sawayama S., Tsukahara K., Yagishita T. Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresource Technology. 2006, 97(1): 69-76.
    [67] Schwarz J.I.K., Eckert W., Conrad R. Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Systematic and Applied Microbiology. 2007, 30(3): 239-254.
    [68] Sekiguchi H., Watanabe M., Nakahara T., Xu B., Uchiyama H. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Applied and Environmental Microbiology. 2002, 68(10): 5142-5150.
    [69] Shaw A.K., Halpern A.L., Beeson K., Tran B., Venter J.C., Martiny J.B.H. It's all relative: Ranking the diversity of aquatic bacterial communities. Environmental Microbiology. 2008, 10(9): 2200-2210.
    [70] ?lapeta J., Moreira D., López-García P. The extent of protist diversity: Insights from molecular ecology of freshwater eukaryotes. Proceedings of the Royal Society B: Biological Sciences. 2005, 272(1576): 2073-2081.
    [71] Speksnijder A.G.C.L., Kowalchuk G.A., Roest K., Laanbroek H.J. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Systematic and Applied Microbiology. 1998, 21(2): 321-330.
    [72] Stein L.Y., La Duc M.T., Grund T.J., Nealson K.H. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environmental Microbiology. 2001, 3(1): 10-18.
    [73] Takai K., Horikoshi K. Rapid Detection and Quantification of Members of the Archaeal Community by Quantitative PCR Using Fluorogenic Probes. Applied and Environmental Microbiology. 2000, 66(11): 5066-5072.
    [74] Teske A., Hinrichs K.U., Edgcomb V., De Vera Gomez A., Kysela D., Sylva S.P., Sogin M.L., Jannasch H.W. Microbial diversity of hydrothermal sediments in the Guaymas Basin: Evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology. 2002, 68(4): 1994-2007.
    [75] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25(24): 4876-4882.
    [76] Tijdens M., Hoogveld H., Kamst-van Agterveld M., Simis S., Baudoux A.-C.,Laanbroek H., Gons H. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic Lake. Microbial Ecology. 2008, 56(1): 29-42.
    [77] Tourna M., Freitag T.E., Nicol G.W., Prosser J.I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology. 2008, 10(5): 1357-1364.
    [78] Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.-H., Smith H.O. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004, 304(5667): 66-74.
    [79] Wobus A., Bleul C., Maassen S., Scheerer C., Schuppler M., Jacobs E., R?ske I. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiology Ecology. 2003, 46(3): 331-347.
    [80] Wu X., Xi W., Ye W., Yang H. Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiology Ecology. 2007, 61(1): 85-96.
    [81] Zeng J., Yang L., Li J., Liang Y., Xiao L., Jiang L., Zhao D. Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World Journal of Microbiology and Biotechnology. 2009, 25(2): 225-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700