新型扩频序列及其理论界研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在码分多址(CDMA)技术中,扩频序列扮演着十分重要的角色。扩频序列特性的好坏在很大程度上决定了码分多址通信系统的多址接入干扰与多径干扰的大小,从而直接影响着系统性能优劣和系统容量大小。扩频序列理论包含扩频序列理论界与扩频序列设计两个主要研究方面。本文研究了常规扩频序列理论界、新型扩频序列理论界、新型扩频序列构造及其性能分析、扩频序列在准同步(QS)CDMA通信系统中的应用等重要问题。
     首先,论文推广了Levenshtein提出的“权重向量法”,并通过选用特殊的权重向量,建立了常规二元直接扩频序列集和常规单位复根直接扩频序列集新的理论界,导出了序列长度、序列数目、最大非周期自相关边峰值和最大非周期互相关值等参数所满足的一些新的数学不等式。研究表明,本文得到的这些新理论界比已有的Sarwate界,Welch界、Levenshtein界和Boztas界更紧。
     基于广义正交直接扩频序列的概念,通过将“权重向量法”与低/零相关区(LCZ/ZCZ)的理论结合在一起,本文提出了研究广义正交(GO)扩频序列集理论界的有效方法,即“相关区法”。使用相关区法,建立了广义正交二元序列周期和非周期相关函数理论界、广义正交单位复根序列周期和非周期相关函数理论界。论文研究表明,这些新的理论界包含了已有的关于广义正交序列的Tang-Fan界;而关于常规序列的Sarwate界、Welch界、Levenshtein界和彭-范界则是新结果的特殊情况,并且在很多情形下广义相关函数理论界更紧。
     其次,论文研究了跳频(FH)扩频序列的理论界。对于常规跳频扩频序列集,建立了其序列长度、序列数目、频隙数目、最大周期(非周期)汉明自相关边峰值和最大周期(非周期)汉明互相值等参数所满足的几个理论约束关系(理论界)。对于所得到的周期汉明相关理论界,分析表明它们是已知Lempel-Greenberger界和Seay界的推广;而对于所得到的非周期汉明相关函数理论界,则是本论文首次导出。
     论文详细阐述了无/低碰撞区(NHZ/LHZ)跳频序列的概念,建立了广义正交跳频扩频序列集周期汉明相关函数的理论界。即对于广义正交跳频扩频序列集,建立了其序列长度、序列数目、频隙数目、相关区、在相关区内的最大周期汉明自相关边峰值和在相关区内的最大周期汉明互相关值等参数所满足的几个理论界。分析表明,常规跳频序列的Lempel-Greenberger界、Seay界、彭-范界和无碰撞区序列的Ye-Fan界只是本文结果的特殊情况。
The spreading sequences play a very important role in Code Division Multiple Access (CDMA) techniques. In general, the goodness of the spreading sequences determines largely the level of the multiple-access interference and multipath interference of CDMA system, therefore directly influences the performance and capacity of the CDMA systems. The theory of spreading sequence design includes two primary research aspects, i.e. the theoretical bounds and sequence design. In this thesis, theoretical bounds for the conventional spreading sequences and the new type of spreading sequences are investigated; the constructions and analysis of novel spreading sequences are also carried out, together with their applications in quasi-synchronous (QS) CDMA communication systems.First of all, based on Levenshtein's "weight vector method", several new theoretical bounds for the conventional binary direct spreading sequences and the conventional direct spreading sequences over complex roots of unity are established by selecting special weight vector. That is, new mathematics inequalities are derived to disclose the relationship between the sequence length, the family size, the maximum aperiodic autocorrelation sidelobe and the maximum aperiodic crosscorrelation value. It is shown that these new theoretical bounds are tighter than the existing bounds, such as Sarwate bounds, Welch bounds, Levenshtein bounds and Boztas bounds.Based on the concepts of generalized orthogonal (GO) direct spreading sequences, by merging "weight vector method" with the theory of low/zero correlation zone (LCZ/ZCZ), an effective new method called "correlation zone method' is proposed for deriving theoretical bounds of GO sequence sets. Using "correlation zone method', the theoretical bounds for the periodic (aperiodic) GO binary sequence and the periodic (aperiodic) GO sequences over complex roots of unity are established. It is shown that these new theoretical bounds include the existing Tang-Fan bounds on GO sequences, the known Sarwate bounds, Welch bounds, Levenshtein bounds and Peng-Fan bounds on conventional sequences, as special cases. In addition, the theoretical bounds for GO functions are tighter under some circumstances.
    Thereafter, the theoretical bounds on frequency hopping (FH) sequences are investigated. For the conventional FH sequence sets, several new theoretical restriction relations (theoretical bounds) that are satisfied by some parameters, such as the sequence length, the family size, the size of the frequency slot set, the maximum periodic (aperiodic) Hamming autocorrelation sidelobe and the maximum periodic (aperiodic) Hamming crosscorrelation value, are established. It is shown that the new periodic FH bounds include the known Lempel-Greenberger bounds and Seay bounds as special cases. Besides, the aperiodic FH bounds have not yet been previously reported.The concepts and properties of the no/low hit zone (NHZ/LHZ) on the FH sequences are then discussed in details, together with the theoretical bounds of periodic Hamming correlation functions on generalized orthogonal FH sequence sets. For GO FH sequence set, new theoretical inequalities are derived to disclose the relationship between sequence length, family size, size of the frequency slot set, correlation zone, maximum periodic Hamming autocorrelation sidelobe in the correlation zone and maximum periodic Hamming crosscorrelation value in the correlation zone. It is shown that the existing bounds on the conventional FH sequences, such as Lempel-Greenberger bounds, Seay bounds and Peng-Fan bounds, as well as the known Ye-Fan bounds on FH sequences with the no hit zone, are only special cases of the presented bounds.Next, the constructions and characteristics of the direct sequences are discussed. In order to judge the goodness of ZCZ direct sequence sets, a new concept, called ZCZ characteristic, is proposed. Then by defining a sequence operation called "correlation product", and establishing its basic properties, a new approach to construct sets of sequences with large zero correlation zone is presented. According to the proposed ZCZ characteristic measure, the new construction is near optimal with respect to the ZCZ bound. Besides, constructions and characteristics of frequency/time hopping (TH) sequences are also discussed. A general quadratic FH/TH sequences, a general cubic FH/TH sequences and polynomial FH/TH sequences are proposed and investigated in details. Based on the finite field theory, it is shown that the new frequency/time hopping sequence sets possess large family size and good Hamming correlation properties. Moreover, accurate analytical formulas for the average number of hits, the probability of full collisions on general
引文
[1] M. K. Simon, J. K. Omura, R. A. Scholtz and B.K. Levitt, Spread spectrum communications handbook, Posts and Telecommunications Press, 2002.
    [2] 曾兴雯,刘乃安,孙献璞,扩展频谱通信及其多址技术,西安电子科技大学出版社,第1版,2004年5月.
    [3] W. C. Lee, Overview of cellular CDMA, IEEE Trans. Veh. Technol., vol. 40, no. 2, 1991, pp.291-305.
    [4] R. L. Pickholta, L. B. Milstein and D. L. Schiling, Spread spectrum for mobile communications, IEEE Trans. Veh. Technol., vol. 40, no. 2, 1991, pp.313-322.
    [5] R. D. Gaudenzi, C. Elia and R. Viola, Bandlimited quasi-synchronous CDMA: a novel satellite access technique for mobile and personal communication systems, IEEE J. Select. Areas Commun., vol. 10, no. 2, 1992, pp. 328-343.
    [6] 李建业,LAS-CDMA—新一代的无线技术,电信科学,2001(1),pp.60-62.
    [7] 郝莉,基于广义正交序列的DS-CDMA系统及其性能分析,西南交通大学博士学位论文,2003年6月.
    [8] P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, New York: Wiley, 1996.
    [9] M. B. Pursley and D. V. Sarwate, Performance evaluation for phase-coded spread-spectrum multiple-access communications-Part Ⅰ: System analysis, IEEE Trans. Commun., vol. COM-25(8), 1977, pp.795-799.
    [10] M. B. Pursley and D. V. Sarwate, Performance evaluation for phase-coded spread spectrum multiple-access communications-Part Ⅱ: Code sequence analsis, IEEE Trans. Commun., vol. COM-25(8), 1977, pp.800-803.
    [11] V. M. Sidelnikov, Cross correlation of sequences, Probl. Kybem (in Russian), vol.24, 1971, pp. 15-42.
    [12] V. M. Sidelnikov, On mutual correlation of sequences, Soviet Math Doklady, vol.12, 1971, pp.197-201.
    [13] L. R. Welch, Lower bounds on the maximum crosscorrelation of signals, IEEE Trans. Inform. Theory, vol.IT-20, 1974, pp.397-399.
    [14] D. V. Sarwate, Bounds on crosscorrelation and autocorrelation of sequences, IEEE Trans. Inform. Theory, vol.25, 1979, pp.720-724.
    [15] J. L. Massey, On Welch's Bound for the crosscorrelation of a sequence set, Proceedings of EEE ISIT'90, Sept. 1990, pp.385.
    [16] P. V. Kumar and C. M. Liu, On lower bounds to the maximum correlation of complex roots-of-unity sequences, IEEE Trans. Inform. Theory, vol.36, no.3, 1990, pp.633-640.
    [17] V. I. Levenshtein, New lower bounds on aperiodic crosscorrelation of binary codes, IEEE Trans. Inform. Theory, vol. 45, no. 1, 1999, pp.284-288.
    [18] S. Boztas, New lower bounds on aperiodic cross-correlation of codes over m~(th) roots of unity, Research Report 13, 1998, Department of Mathematics, Royal Melbourne Institute of Technology, Australia.
    [19] D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudonoise and related sequences, In: Proceedings of The IEEE, vol.68, no.5, May 1980, pp.593-619.
    [20] R. Gold, Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inform. Theory, vol-13, October 1967, pp.619-621.
    [21] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory, vol-14, 1968, pp.154-156.
    [22] F. Adachi, M. Sawahashi and K. Okawa, Three-structured generation of orthogonal spreading codes with different length for forward link of DS-CDMA mobile radio, IEE Electron. Lett., vol.33, no. 1, 1997, pp. 27-28.
    [23] B. Gordon, W. H. Mills and L. R. Welch, Some new different sets, Canada. J. Math., vol.14, 1962, pp.614-625.
    [24] M. J. E. Golay, Complementary series, IEEE Trans. on Inform. Theory, IT-7, Apr. 1961, pp.82-87.
    [25] 彭代渊,范平志,二进制序列非周期相关函数的新下界,中国科学E辑,vol.34,no.6,2004,pp.629-645.
    [26] D. Y. Peng and P. Z. Fan, New theoretical bounds on the aperiodic correlation functions of binary sequences, Science in China, Ser. F, vol.48, no. 1, 2005, pp. 28-45.
    [27] P. Z. Fan, N. Suehiro, N. Kuroyanagi and X. M. Deng, A class of binary sequences with zero correlation zone, Electron. Lett., vol.35, no. 10, 1999, pp. 777-779.
    [28] P. Z. Fan and L. Hao, Generalized orthogonal sequences and their applications in synchronous CDMA systems, IEICE Trans. Fundamentals, vol.E83-A, no.l 1,2000, pp. 1-16.
    [29] L. Hao and P. Z. Fan, Performance evaluation for a new quasi- synchronous CDMA system employing generalized orthogonal sequences, IEICE Transaction on Information and systems, vol. E86-D, no. 9, 2003, pp.1513-1524.
    [30] D. B. Li, The perspective of large area synchronous CDMA technology for the fourth-generation mobile radio, IEEE Communication Magazine, vol. 41, no. 3, 2003, pp.114-118.
    [31]W. C. Y. Li, The most spectrum-efficient duplexing system: CDD, IEEE Communication Magazine, vol. 40, no. 3, 2002, pp.163-166.
    [32] W. C. Y. Li, Analysis and realization of a physical CDD system, Wireless Communications and Mobile Computing, vol. 3, no. 5, 2003, pp. 571-583.
    [33]P. Z. Fan, J. Li and Y. Pan, Special issue: coding and its applications in CDMA wireless systems, Wireless Communications and Mobile Computing, vol.3, no.5,2003,pp.549-551.
    [34] L. Hao and P. Z. Fan, On the performance of synchronous DS-CDMA systems with generalized orthogonal spreading codes, Chinese Journal of Electronics(English version), vol. 12, no. 2, 2003, pp. 219-224.
    [35] X. H. Tang and P. Z. Fan, A class of pseudonoise sequences over GF(p) with low correlation zone, IEEE Trans, on Information Theory, vol.47, no. 4, 2001,pp. 1644-1649.
    [36] T. Hayashi, A class of two-dimensional binary sequences with zero- correlation zone, IEEE Signal Processing Letters, vol.9, no.7, 2002, pp. 217-221.
    [37]X. H. Tang, P. Z. Fan and S. Matsufuji, Lower bounds on the maximum correlation of sequence set with low or zero correlation zone, Electron. Lett.,vol.36, no.6, 2000, pp. 551-552.
    [38] X. H. Tang and P. Z. Fan, Bounds on aperiodic and odd correlations of spreading sequences with low and zero correlation zone, Electronics Letters, vol.37, no.19, 2001, pp.1201-1203.
    [39] M. Saito, T. Yamazato, H. Okada M. Katayama and A. Ogawa, Generation of sets of sequences suitable for multicode transmission in quasi-synchronous CDMA systems, IEICE Trans, on Communication, vol.E84-B, no. 3, 2001, pp.576-580.
    [40] J. S. Kameda, M. Yokoyama, H. Nakase, K. Masu and K. Tsubouchi, New binary sequences with zero-correlation duration for approximately synchronised CDMA, Electron. Letters, vol.36, no. 11, 2000, pp. 991-993.
    [41]S. Matsufuji, Two families of sequence pairs with zero correlation zone, in Proceedings of The Fourth International Conference on Parallel and Distributedb Computing, Applications and Technologies (PDCAT'2003), P. Z. Fan and H. Shen, Eds., IEEE Press, Chengdu, China, August 27-29, 2003, pp.899-903.
    [42] D. B. Li, A high spectrum efficient multiple access code, Chinese Journal of Electronics, vol. 8, July 1999, pp.221-226.
    [43]X. B. Zhou and W. K. Lu, Performance analysis of LA codes in LAS-CDMA, in Proc. 6th International Conference on Signal Processing, vol. 2, Beijing, Chnia, August 2002, pp.1307-1311.
    [44]B. J. Choi and L. Hanzo, On the design of LAS spreading codes, in Proc. 56th IEEE Vehicular Technology Conference, vol. 4, Vancouver, Canada, September 2002, pp.2172-2176.
    [45]K. Takatsukasa, S. Matsufuji, Y. Watanabe, N. Kuroyanagi and N. Suehiro, Ternary ZCZ sequence sets for cellular CDMA systems, IEICE Trans. Fundamentals, vol. E85-A, no. 9, 2002, pp.2135-2140.
    [46] J. S. Cha, Class of ternary spreading sequences with zero correlation duration, Electron. Letters, vol.37, no. 10, 2001, pp.636-637.
    [47] H. M. Donelan and T. O. Farrell, Large families of ternary sequences with aperiodic zero correlation zones for a MC-DS-CDMA system, in Proc. of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 5, Lisbon, Portugal, September, 2002, pp. 2322-2326.
    [48] S. Matsufuji, N. Kuroyanagi, N. Suehiro and P. Z. Fan, Two Types of Polyphase Sequence Sets for Approximately Synchronized CDMA Systems, IEICE Trans. Fundamentals of Electronics, vol. E86-A, no. 1, 2003, pp.229-234.
    [49] X. M. Deng and P. Z. Fan, Sequences with zero correlation over Gaussian Integers, Electron. Letters, vol.36, no. 6, 2000, pp. 552-553.
    [50] X. H. Tang and P. Z. Fan, Generalized d-form sequence and LCZ sequences based on the interleaving technique, in Proc. 7th International Symposium on Communication, Theory and Applications, Ambleside, Lake District, UK, July 2003, pp. 276-281.
    [51] X. H. Tang, P. Z. Fan and N. Suehiro, Binary arrry set with zero correlation zone, Electron. Letters, vol.37, no. 13, 2001, pp. 841-842.
    [52] D. Y. Peng and P. Z. Fan, Generalized Sarwate bounds on periodic autocorrelations and cross-correlations of binary sequences, Electronics Letters, vol.38, no.24, 2002, pp.1521-1523.
    [53] D. Y. Peng, P. Z. Fan and T. Peng, New lower bounds on aperiodic correlations of LCZ (ZCZ) sequences, in Proc. the 1st Int. Workshop on Sequence Design and applications for CDMA Systems (IWSDA'2001), Southwest Jiaotong University Press, Sep. 2001, pp. 99-106.
    [54] D. Y. Peng and P. Z. Fan, Bounds on Aperiodic auto- and cross-correlations of binary sequences with low or zero correlation zone, in Proc. Of The 4th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), IEEE Press, ISBN: 0-7803-7840-7, August, 2003, pp. 882-886.
    [55] D. Y. Peng and P. Z. Fan, Generalized Sarwate Bounds on the Periodic Correlation of Complex Roots of Unity Sequences, in Proc. Of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'2003), IEEE Press, ISBN: 0-7803-7822-9, September, 2003, pp.449-452.
    [56] D. Y. Peng and P. Z. Fan, Generalized Sarwate bounds on the aperiodic correlation of complex roots of unity sequences, IEE Proceedings on Communications, vol. 151, no.4, 2004, pp.375-382.
    [57] 梅文华,杨义先,跳频通信地址编码理论,国防工业出版社,1996.
    [58] 梅文华,杨义先,周炯磐盘,“跳频序列设计理论的研究进展”,通信学报,vol.24,no.2,2003,pp.92-101.
    [59] A. W. Lam and D. V. Sarwate, Time-Hopping and Frequency-Hopping Multiple-Access Packet Communications, IEEE Trans. Commun., vol. 38, no, 6, 1990, pp.875-888.
    [60] S. V. Maric and E. L. Titlebaum, A class of frequency hop codes with nearly ideal characteristics for use in multiple-access spread spectrum communications and radar and sonar systems, IEEE Trans. Commun., vol. 40, no. 9, 1992, pp. 1442-1447.
    [61] 张靖,黎海涛,张平,超宽带无线通信技术及发展,电信科学,2001(11),pp.3-7.
    [62] M. Z. Win and R. A. Scholtz, Ultra-Wide Bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications, IEEE Trans. Commun., vol. 58, no.4, 2002, pp.679-691.
    [63] C. Muller, S. Zeisberg, H. Seidel and A. Finger, Spreading Properties of Time Hopping Codes in Ultra Wideband Systems, IEEE 7th Int. Symp. On Spread-Spectrum Tech. & Appl., Prague, Czech Republic, Sept. 2-5, 2002, pp.64-67.
    [64] A. Lempel and H. Greenberger, Families sequence with optimal Hamming correlation properties, IEEE Trans. Inform. Theory, vol. IT-20, 1974, pp. 90-94.
    [65] T. S. Seay, Hopping patterns for bounded mutual interference in frequency hopping multiple access, in Proc. 1982 IEEE MILCOM Conf., pp. 22.3.1-6.
    [66] R. M. Mcrsereau and Y. S. Seay, Multiple access frequency hopping patterns with low ambiguity, IEEE Trans. Aerosp. and Electron. Syst., vol. AES-17, July 1981, pp. 571-578.
    [67] W. H. Mei, Theoretical bounds on sets of nonrepeating sequences in frequency hopping multiple access, Proceedings of 1992 International Conference on Communication Technology(ICCT'92), Beijing, 1992, 18.06.1-18.06.3.
    [68] 梅文华,非重复跳频序列族的理论限制,电子科学学刊,vol.7,no.3,1995,pp.238-242.
    [69] 梅文华,宽间隔的非重复跳频序列族,通信学报,vol.15,no.6,1994,pp.63-68.
    [70] D. V. Sarwate and M. B. Pursley, Hopping pattems for frequency hopped multiple access communications, Proc. 1978 IEEE Int. Conf. On Commun., 1978, pp. 7.4.1-7.4.3.
    [71] 梅文华,基于m序列构造最佳跳频序列族,通信学报,vol.12,no.1,1991,pp.70-73.
    [72] 梅文华,杨义先,基于GF(p~k)上m序列的最佳跳频序列族,通信学报,vol.17,no.2,1996,pp.12-16.
    [73] L. I. Bluestein, A new technique for generating good frequency hopping patterns for multiple access, Technical Note 28, project 780-08, Communication System Laboratories, Sylvania Electronic Systems, Waltham, MA, March 1967.
    [74] G. Solomon, Optimal frequency hopping sequences for multiple access, in proc. 1973 Symp. Spread Spectrum Communication, vol. 1, AD 915852, pp. 33-35.
    [75] P. V. Kumar, Frequency hopping code sequence designs having large linear span, IEEE Trans. Inform. Theory, vol. 34, 1988, pp. 146-151.
    [76] P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, vol. 44, no. 4, 1998, pp. 90-94.
    [77] 梅文华,杨义先,宽间隔的跳频序列族,通信学报,vol.18,no.5,1997,pp.37-44.
    [78] 梅文华,张志刚,一类新的宽间隔跳频序列族的构造,电波科学学报,vol.17,no.1,2002,pp.16-20.
    [79] E. L. Titlebaum, Time-frequency hop signals part Ⅰ: coding based upon the theory of linear congruences, IEEE Trans. Aerosp. Electron. Syst., vol. 17, no.4, July, 1981, pp.490-493.
    [80] E. L. Titlebaum, Time-frequency hop signals part Ⅱ: coding based upon quadratic congruences, IEEE Trans. Aerosp. Electron. Syst., vol. 17, no.4, July, 1981, pp.494-499.
    [81] J. R. Bellegarda and E. L. Titlebaum, Time-frequency hop codes based upon extended quadratic congruences, IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 6, Nov., 1988, pp.726-742.
    [82] S. V. Maric, Frequency hop multiple access codes based upon the theory of cubic congruences, IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 6, Nov. 1990, pp.1035-1039.
    [83] A. V. Jovancevic and E. L. Titlebaum, A new receiving technique for frequency hopping CDMA systems: analysis and application, IEEE 47th Vehicular Technology Conference, vol.3, May 1997, pp.2187-2190.
    [84] M. S. Iacobucci and M. G. D. Benedetto, Multiple access design for impulse radio communication systems, IEEE International Conference on Communications, 2002, 4, pp.817-820.
    [85] M. S. Iacobucci and M. G. D. Benedetto, Time hopping codes in impulse radio
    ??multiple access communication systems, in proc. International Symposium 3G Infrastructure and Services, 2-3 July 2001, Athens, Greece.
    [86] P. Z. Fan, Spreading sequence design and theoretical limits for quasisynchronous CDMA systems, EURASIP Journal on Wireless Communications and Networking (JWCN, USA), vol. 1, no. 1, August, 2004, pp. 19-31.
    [87] W. X. Ye and P. Z. Fan, Two classes of frequency hopping sequences with no-hit zone, in Proceedings of the Seventh International Symposium on Communications Theory and Applications (ISCTA'2003), July 13-18, 2003, Ambleside, U.K., pp.304-306.
    [88] X. N. Wang and P. Z. Fan, A class of frequency hopping sequences with no hit zone, in Proceedings of The Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), August 27-29, 2003, Chengdu, China, pp.896-898.
    [89]N. Suehiro, A signal design without co-channel interference for approximately synchronized CDMA system, IEEE J. Sel. Areas Commun., vol. 12, June, 1994, pp.837-841.
    [90] K. Takatsukasa, S. Matsufuji and Y. Tanada, Formalization of Binary Sequence Sets with Zero Correlation Zone, IEICE Trans. On Fundamentals, vol. E87-A, no.4,2004,pp.887-891.
    [91]T. Hayashi, A Generalization of Binary Zero-Correlation Zone Sequence Sets Constructed from Hadamard Matrices, IEICE Trans. On Fundamentals, vol. E87-A, no.l, 2004, pp.286-291.
    [92] H. Torii, M. Nakamura and N. Suehiro, A new class of zero-correlation zone sequences, IEEE Trans, on Information Theory, vol. 50, no. 3, 2004, pp.559-565.
    [93]J. Wolfmann, Almost perfect autocorrelation sequences, IEEE Trans, on Information Theory, vol.38, no. 4, 1992, pp.1412-1418.
    [94] B. P. Popovic, Class of binary sequences for mobile channel estimation, Electron. Lett., vol.31, no. 12, 1995, pp.944-945.
    [95] Y. Han, On the minimization of overhead in channel impulse response measurement, IEEE Trans, on Vehicular Technology, vol. 47, no. 2, 1998, pp. 631-636.
    [96] X. M.Deng, P. Z.Fan and Y. Han, Comments on "On the minimization of overhead in channel impulse response measurement"[and reply], IEEE Trans. on Vehicular Technology, vol. 49, no. 5, 2000, pp. 2039-2040.
    [97] S. A. Yang and J. S. Wu, Optimal binary training sequence design for multiple-antenna systems over dispersive fading channels, IEEE Trans. on Vehicular Technology, vol. 51, no. 5, 2002, pp. 1271-1276.
    [98] P. Z. Fan snd W. H. Mow, On Optimal Training Sequence Design for Multiple-Antenna Systems over Dispersive Fading Channels and Its Extensions, IEEE Trans. on Vehicular Technology, vol. 53, No. 5, September, 2004, pp. 1623-1626.
    [99] T. Hayashi, Binary sequences with orthogonal subsequences and a zero-correlation zone: pair-preserving shuffled sequences, IEICE Trans. on Fundamentals, vol. E85-A, no.6, June 2002, pp. 1420-1425.
    [100] D. Y. Peng and P. Z. Fan, Theoretical limits on aperiodic correlations of spreading sequences with low or zero correlation zone, submitted to Science in China, Ser. F, 2004, pp.1-10.
    [101] D. Y. Peng, P. Z. Fan and N. Suehiro, Bounds on aperiodic autocorrelation and crosscorrelation of binary LCZ/ZCZ sequences, submitted to IEICE Trans. Fundamentals (accepted, to appear), 2004, pp. 1-8.
    [102] D. J. Torrieri, Mobile frequency-hopping CDMA systems, IEEE Trans. on Commun., vol. 48, 2000, pp.1318-1327.
    [103] T. Wu, C. Chao and K. Chen, Capacity of synchronous coded DSSFH and FFH spread-spectrum multiple-access for wireless local communications, IEEE Trans. Commun., vol. 45, 1997, pp.200-212.
    [104] J. J. Komo, S. H. Liu, Maximal length sequences for frequency hopping, IEEE J. Sel. Areas Commun., 1990, pp.819-822.
    [105] W. C. Kwong and G. C. Yang, Frequency-hopping codes for multimedia services in mobile telecommunications, IEEE Trans. Veh. Technol., vol. 48, 1999, pp. 1906-1915.
    [106] W. H. Mei and Z. G. Zhang, Construction of FH sequences with given minimum gap, in P. Z. Fan, N. Suehiro and M. Darnell (Eds.): 'Sequence Design and Applications for CDMA Systems' (Southwest Jiao- tong University Press, 2001, ISBN: 7-81057-609-7/TN.264), pp.31-38.
    [107] W. H. Mei and Y. X. Yang,基于GMW序列构造最佳跳频序列族,通信学报,vol.18,no.11,1997,pp.20-24.
    [108] W. H. Mei and Y. X. Yang, Theoretical bounds and practical constructions for families of one-coincidence sequences in FHMA, 通信学报,vol.16,no.4,1995,pp.74-78.
    [109] D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross-correlations of frequency-hopping sequences, IEEE Trans. Inform. Theory, vol. 50, no.9, 2004, pp. 2149-2154.
    [110] D. Y. Peng and P. Z. Fan, New lower bounds on the Hamming correlations of frequency-hopping sequences, in Proc. Of The Seventh International Symposium on Communication Theory and Applications (ISCTA'2003), July 13-18, 2003. Ambleside, U.K., pp. 307-310.
    [111] D. Y. Peng and P Z. Fan, Lower bounds on the Hamming auto- and cross-correlations of frequency-hopping sequences with low hit zone or no hit zone, submitted to Science in China, Ser. F, 2004, pp. 1-9.
    [112] 冯莉芳,汪晓宁,叶文霞,彭代渊,基于无碰撞区跳频码的准同步组网方案,西南交通大学学报,vol.39,no.6,2004,pp.776-779.
    [113] D. Y. Peng, P. Z. Fan and N. Suehiro, Construction of Sequences with Large Zero Correlation Zone, submitted to IEICE Trans. Fundamentals, (accepted, to appear), 2004, pp. 1-4.
    [114] V. P. Ipatov, Ternary sequences with ideal autocorrelation properties, Radio Eng. Electron. Phys., vol. 24, October, 1979, pp.75-79.
    [115] R. K. Yarlagadda and J. E. Herashey, Hadamard matrix analysis and synthesis with applications to communications and signal/image processing, Kluwer Academic Publishers, 1997.
    [116] D. Y. Peng, T. Peng and P. Z. Fan, On a general class of quadratic hopping sequences, submitted to Chinese Journal of Electronics, 2004, pp. 1-10.
    [117] D. Y. Peng T. Peng and P. Z. Fan, A generalized class of cubic frequency hopping sequences with large family size, submitted to IEE Proceedings on Communications (accepted, to appear), 2004, pp. 1-9.
    [118] P. Z. Fan, D. Y. Peng and M. H. Lee, New family of frequency hopping sequences with large family size and good Hamming correlations, in Proceedings of the Future Telecommunications Conference (FTC'2003), December 9-10,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700