光叶楮耐盐无性系的筛选及其对NaCl胁迫的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以光叶楮为材料,建立了组培实验体系,从组织、器官、分子水平系统的研究了NaCl胁迫对光叶楮幼苗生长、部分生理特性、膜脂过氧化及抗氧化保护酶系统、光和特征以及脱水素基因表达的影响,丰富了木本植物对盐胁迫反应及抗性机理的理论基础,为提高构树耐盐性及耐盐构树选育提供实验依据。主要研究结论如下:
     1.光叶楮无菌体系建立过程中,以0.1%升汞溶液杀菌10~15min为宜,最优的增殖培养基为MS+6-BA 1.0 mg/1+IBA0.1 mg/1+30g/L蔗糖+卡拉胶6.5g/L,最佳生根培养基为1/2MS+IBA0.5 mg/1+NAA0.3 mg/1+30g/L蔗糖+卡拉胶6.5 g/L。
     2.不同浓度NaCl胁迫后,光叶楮组培苗的受害率,盐胁迫指数随着盐浓度的升高而增加,植株株高、鲜重、干重随着盐浓度的升高而降低。
     3.NaCl胁迫对可溶性蛋白、脯氨酸含量、抗氧化酶活性和MDA含量均产生一定影响。
     4.光叶楮幼苗受到盐胁迫后,叶绿素a呈下降趋势,叶绿素b和类胡萝卜素含量则升高,总叶绿素含量降低,类胡萝卜素/叶绿素显著高于对照。NaCl胁迫具有加速叶片衰老的破坏作用。
     5.光叶楮脱水素基因的转录水平在受盐胁迫后呈总体上升趋势。dhn1基因在未受胁迫的植株中也有微量表达,但转录水平较低;当浓度高于75 mmol/L时,脱水素的表达明显增加,100 mmol/L时达到最大。
Using Broussonetia papyrifera(L.) Vent(common name:paper mulberry),an economically important tree species,we established efficient experimental system of tissue culture and studied the effect of NaCl stress on plantlet growth,partial physiological nature, membrane lipid peroxidation,protective enzyme system,photosynthetic characters and Dehydrin gene expression.The major results were summarized as follows:
     1.The shoots of Bronssonetia Papyrifera disinfected for 10-15 minutes with 0.1% mercuric chloride could efficiently control contamination in sterile culture.The most suitable proliferation medium was MS+1.0mg/L 6-BA+0.1 mg/L IBA+3.0%sucrose+6.5 g/L carrageenan.Rooting medium is 1/2MS+0.5 mg/L IBA+0.3 mg/L NAA+3.0%sucrose+6.5 g/L carrageenan.
     2.The injury rate and salt stress index of Broussonetia papyrifera plantlet was increased with increased NaCl concentration.However,shoot height,fresh weight and dry weight decreased with the increased concentration.The suitable concentration for the selection of salt tolerance plant was 100 mM-125 mM.Meanwhile,the stress time was important to select salt tolerance plantlet.
     3.NaCl treatment caused a lot of changes in protein content,antioxidant enzyme activities and the content of proline and MDA.The results demonstrated that soluble protein content increased at low level of NaCl concentration,and when NaCl concentration exceeded 100mM it decreased.Moreover,proline contents markedly increased in response to salt stress.In our study,there was a positive relationship between salt concentration and proline content of tissues.Proline content significantly increased in tissues with increase in salinity.MDA content increased at low levels of salinity and then decreased at 125mM and 150 mM NaCl concentration. The decrease of MDA content probably results from up-regulation of the antioxidative system in response to salt stress.4.Under salt stress chla and total chlorophyl contents in the leaves tended to decline while chlb and carotenoid contents were increased,chla/chlb was decreased while car/chl was higher than control.NaCl stress could accelerate the senescence of leaves.Photosynthetic rate, evaporate and stomatal conductance of Broussonetia papyrifera plantlet was decreased with increased salt concentration.But CO_2 concentration was higher than control.The decrease of net photosynthetic rate of Broussonetia papyrifera plantlet was caused by non-stomatal limitation.The results of correlation analysis showed that: Pn(Photosynthesic rate),Tr(Evaporate) and Gs(Stomatal conductance) had significant negative correlation with treatment concentration,and the correlation between WUE(water use efficiency) and treatment concentration was not significant, Ci(CO_2 concentration) had no correlation with treatment concentration.The effects of 50 mM NaCl on the gas exchange parameters was not significant,which indicated that Broussonetia papyrifera has certain salt tolerance.
     5.Salt stress induced the expression of dehydrin gene in transcriptional levels. There was only a little expression for dhnl gene in control plantlet.When treatment concentration was more than 75mM,the expression of dhnl gene was increased obviously.The transcription level reached the highest when stress concentration was 100mM.
引文
[1]艾万东.高等植物调渗蛋白与耐旱耐盐基因工程[J].生物工程进展.1994,15(3):10-15
    [2]陈珈,朱美君.玉米根微粒体ABA与结合蛋白的性质与逆境胁迫的影响[J].植物生理学报,1996,22(1):63-68
    [3]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217
    [4]崔聪聪,郭世荣,冯吉庆,李军.盐胁迫对不同西瓜砧木品种幼苗生长及光合作用的影响[J].内蒙古农业大学学报.2007,28(3):134-139
    [5]丁丽娜,金华,殷鸣放,朱学静,赵允鹏,姜国斌.盐胁迫对杨树幼苗叶片光合色素及气体交换特征的影响[J].西北植物学报,2006,26(12):2523-2527
    [6]范月仙,张述义,李生泉.棉花苗期抗冷性与可溶性蛋白质含量增加关系研究[J].山西农业大学学报,1995,15(1):56-58
    [7]房玉林,惠竹梅,高邦牢,何建林,陈洁.盐胁迫下葡萄光合特性的研究土壤通报[J].2006,37(5):881-884
    [8]高光林,姜卫兵,俞开锦.盐胁迫对果树光合生理的影响[J].果树学报,2003,20(6):49-497
    [9]郭继勋,姜世成,孙刚.松嫩平原盐碱化草地治理方法的比较研究.应用生态学报,1998,9(4):425-428
    [10]顾红艳,于福安,魏天权,魏立军,赵长海,赵学东.耐盐碱水稻新品种津原85选育及栽培技术[J].农业科技通讯.2007,1:20-21
    [11]惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,23(1):5-9
    [12]华春。王仁雷.盐胁迫对水稻叶片光合效率和叶绿体超微结构的影响[J].山东农业大学学报(自然科学版),2004,35(1):27-31
    [13]江泽慧.1999年10月全国盐碱地绿化造林与可持续发展研讨会上的讲话[M].见:孙振元,蒋明义,荆家海,王韶唐.渗透胁迫对水稻光合色素和膜脂过氧化的影响[J].西北农业大学学报1991,19(1).79-83
    [14]克热木·伊力,侯江涛,买合木提,王丽娜.盐胁迫对扁桃光合特性和叶绿体超微结构的影响[J].西北植物学报,2006,26(11):2220-222
    [15]康俊水,张淑英,李牧,等.滨海盐碱地耐盐地被植物引种开发的研究[J],山东林业科技.2003,(4):1-7
    [16]李培夫.盐碱地的生物改良与抗盐植物的开发利用[J].垦殖与稻作.1999(3):3-40
    [17]李建东,郑惠莹.松嫩平原盐碱化草地改良治理的研究[J].东北师大学报,1995,27(1):110-115
    [18]李艳华,杨敏生,王海英,等.树木耐盐生理研究进展[J]河北林果研究.2000,15(2):189-196
    [19]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社.2000
    [20]李兆君,马国瑞,徐建民等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234-238
    [21]李伯林,梅慧生.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报.1989,15(1):6-12
    [22]李晶,秀峰,祖元刚.低温胁迫下红松幼苗活性氧的产生及保护酶的变化[J].植物学报.2000,42(2):148-15
    [23]李晓燕,宋占午,董志贤.植物的盐胁迫生理[J].西北师范大学学报(自然科学版),2004,40(3):106-111
    [24]李际红,孟凡志,邵小杰,郭丽红.光叶楮组织快繁技术的研究[J].山东林业科技.2002,4:13-14
    [25]廖祥儒等.玉米素对盐渍下葡萄叶圆片H2O2清除系统的影响[J].植物学报.1997,39(7):641-646
    [26]刘金,赵梁军.主编《盐碱土绿化技术》北京:中国林业出版社 2004.1-2
    [27]刘会超,孙振元,彭镇华.NaCl胁迫对五叶地锦生长及某些生理特性的影响[J].林业科学.2004,40(6):63-67
    [28]刘慧敏,朱月林,陈磊.组培条件下不同番茄品种及砧木自交系幼苗期硝酸盐耐性的比较[J].植物研究.2007,27(2):175-181
    [29]刘艳芝,庄炳昌.大豆子叶节组培耐盐突变体筛选[J].吉林农业科学.1998,4:38-39
    [30]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[M].见:余叔文,汤章成主编《植物生理与分子生物学》北京:科学出版社.1998.752-769
    [31]刘志华,时丽冉,白丽荣,赵可夫.盐胁迫对獐毛叶绿素和有机溶质含量的影响[J].植物生理与分子生物学学报,2007,33(2):16-172
    [32]林栖凤,李冠一.植物耐盐性研究进展[J],生物工程进展.2000,2:20-25
    [33]林栖凤,李冠一.耐盐植物分子育种[M].见:林栖凤主编《耐盐植物研究》北京:科学出版社.2004.135-149
    [34]刘山莉,朱祥春,金平.大豆叶组织游离脯氨酸含量的测定[J].农业与技术,1997,99(4):36-39
    [35]刘鹏,杨玉爱.钼、硼对大豆叶片膜脂过氧化及体内保护系统的影响[J].植物学报.2000,42(5):461-466
    [36]卢从明等,水分胁迫对小麦叶绿体色素蛋白复合体的影响[J].植物学报,1995,37(12):950-955
    [37]陆旺金,李雪平等.植物耐寒性的诱导及其与蛋白质的合成、基因表达的关系[J].华南农业大学学报,2000,21(1):82-85
    [38]吕士行,刘秋根等.盐胁迫对杨树新无性系苗生理和生化方面的影响[M].见:曹福亮,方升佐 主编.《水分(淹水)胁迫与林木适应性》.北京:中国林业出版社.2003.51-57
    [39]马艳,朱馨蕾,杨长庚,张富春,尹伟伦.Pedhn基因的克隆及表达分析.北京林业大学学报.2008,30(3):63-67
    [40]倪秀珍,张强,等.抗盐植物研究进展[J].Special Wild Economic Animal and Plant Research,2004,(4):58-62
    [41]牛爱国,张开春,阎国华,李文生,张晓明,周宇.樱桃砧木酸碱盐适应性评价.[J]果树学报.2004,21(5):482-484
    [42]潘瑞炽,董愚得.植物生理学[M](第三版).北京:高等教育出版社,1997
    [43]彭永康,张丰德 不同剂量60Co-γ射线对小麦、水稻幼苗生长的影响[J].华北农学报.1987,2(1):13-18
    [44]翟大勇,沈黎明.脱水蛋白研究进展[J].生物化学与生物物理学进展.1998,25(2):119-122
    [45]孙歆,雷韬,袁澍,林宏辉.脱水素研究进展.武汉植物学研究[J].2005,23(3):299-304
    [46]钱琼秋,魏国强,朱祝军,李娟.2004.不同品种黄瓜幼苗光合机构对盐胁迫的响应[J].科技通报,20(5):459-463
    [47]秦嘉海,吕彪,赵芸展.河西走廊盐土资源及耐盐牧草改土培肥效应的研究[J].土壤,2004,36(1):71-75
    [48]翟凤林,曹鸣庆等编译.植物的耐盐性及其改良[M].北京:中国农业出版社.1989
    [49]任东岁,段新玲.毛刺槐试管无性系的建立[J].塔里木农垦大学学报.2000,12(1):5-8
    [50]邵秋玲.耐盐植物引种、栽培、选育[M].见:林栖凤主编《耐盐植物研究》北京:科学出版 社.2004.263-266
    [51]沈义国,陈受宜.植物盐胁迫应答的分子机制[J].遗传.2001,23:365-369
    [52]史湘华,殷鸣放,赵辉,张雪峰.盐碱地与耐盐碱树种的选育[J].中国林副特产.2005,2:60-62
    [53]宋丽红,曹帮华.光叶楮的组织培养和快速繁殖[J].植物生理学通讯.2004,40(5):584
    [54]孙静,张万正,亓伟美,刘丽,王宪泽.盐胁迫和6-BA、Ca(NO3)2、SA对小麦POD的影响[J].山东农业大学学报,2006,37(4):517-520
    [55]王良睦,王文卿,王谨,等.厦门地区耐盐园林植物的筛选[J].园林植物栽培与繁育.2001,(6):65-67
    [56]王海英,孙建设,马宝焜,刘冬云,刘军侠.苹果砧木组培苗耐盐筛选技术研究[J].果树学报.2000,17(3):188-191
    [57]王振英,郑坚瑜,陈瑞阳.盐胁迫、辐射条件下耐盐与不耐盐水稻POD同工酶、全蛋白变化的研究[J].南开大学学报.1999,32(1):23-27
    [58]王中仁.植物等位酶的研究进展[J].生物多样性,1994,(2):91-95
    [59]王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002,25(4):11-14
    [60]汪贵斌,曹福亮.土壤盐分及水分含量对落羽杉光合特性的影响[J].南京林业大学学报(自然科学版),2004,28(3):14-18
    [61]武维华.植物生理学[M].北京:科学出版社,2003
    [62]许慰睽,陆炳章.应用免耕覆盖法改良新垦盐荒地的效果[J].土壤,1990,2(1):17-19
    [63]许兴,毛桂莲,李树华.NaCl胁迫和外源ABA对枸杞愈伤组织膜脂过氧化及抗氧化酶活性的影响[J].西北植物学报.2003,5:45-50
    [64]徐晓峰,朱才.小麦叶中脯氨酸测定方法的研究[J].生物技术,1997,7(1):40-42
    [65]姚荣江,杨劲松,刘广明.东北地区盐碱土特征及其农业生物治理[J].土壤.2006,38(3):256-262
    [66]严慧峻.培育淡化肥沃层对盐渍土改良效果的影响[J].土壤肥料.1992,(3):5-8
    [67]杨秀红,李建民,董学会,等.盐胁迫对甘草幼苗生长及生理指标的影响[J].华北农学报,2006,21(4):43-46
    [68]杨志民,陈煜,韩烈保等.不同光照强度对高羊茅形态和生理指标的影响[J].草业学报,2007,16(6):23-29
    [69]袁玉欣,王印肖,刘柄响,李子敬,梁海永,王连洲.木本植物耐盐选育研究进展[J].河北林业科技.2006,增刊:31-35
    [70]叶春江,赵可夫.盐分胁迫对大叶藻某些胞内酶耐盐性及其生理功能的影响[J].植物学报.2002,44(7):788-792
    [71]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998.761-762
    [72]郁萌萌.光叶褚再生体系的建立及农杆菌介导的AtNHX1基因转化光叶褚的初步研究[P].南京师范大学硕士学位论文.2005
    [73]郁继华,杨秀玲,许耀照等.NaCl胁迫对黄瓜自根苗和嫁接苗光合速率的影响[J].植物营养与肥料学报.2004(5):554-556
    174]曾韶西,王以柔,刘鸿先.不同胁迫预处理提高水稻抗寒期间膜保护系统的变化比较[J].植物学报.1997,39(4):308-314
    [75]张绮纹等.群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导[J].林业科学研 究.1995.(1):395-401
    [76]张晓娟,张林生,杨颖.水分胁迫下小麦类脱水素基因表达的半定量RT-PCR分析.西北植物学报.2007,27(11):2158-216
    [77]张殿忠,汪沛洪,赵会贤.测定小麦叶绿素叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,4:62-65
    [78]张建锋,邢尚军,郗金标,宋玉民.树木耐盐的生理指标测定[J].东北林业大学学报.2003,31(6):90-93
    [79]张建锋,宋玉民,邢尚军,马丙尧,郗金标.盐碱地改良利用与造林技术[J].东北林业大学学报,2002,30(6):124-129
    [80]张川红,沈应柏,尹伟伦.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002,38(2):27-31
    [81]张建锋,李吉跃,宋玉民,邢尚军,郗金标,马丙尧.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究.2003,16(2):16-22
    [82]张维成,王冬梅,丁国栋,赵名彦,李白旭.我国盐渍荒漠化综合治理技术研究综述[J].山东林业科技.2007,6:73-77
    [83]张云起,刘世琦,杨凤娟,等.耐盐西瓜砧木筛选及其耐盐机理的研究[J].西北农业学报,2003,12(4):105-108
    [84]赵可夫,宋杰,范海.植物耐盐生理[M].见:林栖凤主编《耐盐植物研究》北京:科学出版社.2004.92-96
    [85]赵可夫,李军.盐浓度对3种单子叶盐生植物渗透调节及其在渗透调节中的影响[J].植物学报.1999,41(12):1287-1291
    [86]赵可夫,李法曾.中国盐生植物[J].北京:科学出版社,1999.48-62
    [87]赵可夫.盐分胁迫和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,1993,35(7):519-523
    [88]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报.2005,25(2):413-418
    [89]郑海雷,林鹏.培养盐度对海莲和木榄幼苗膜保护系统的影响[J].厦门大学学报.1998,37(2):278-282
    [90]周荣仁.植物组织培养在选择耐盐植物方面的研究概况[J].阜师院学报.1984,植物抗盐生理专刊
    [91]周荣仁.利用组织培养研究植物耐盐机理与筛选耐盐突变体的进展[J].植物生理学通讯,1989(5):27-29
    [92]周俊国,朱月林,刘正鲁,王建国.NaCl胁迫对中国杂交南瓜和黑籽南瓜幼苗生长的影响[J].农业工程学报.2007,23(7):202-05
    [93]周俊国,朱月林,刘正鲁,王建国.NaCl胁迫对中国杂交南瓜和黑籽南瓜幼苗生长的影响[J].农业工程学报.2007,23(7):202-205
    [94]Abed S,Moshe TThe effect of salt stress on lipid peroxidation and antioxidanta in the leaf of the cultivated tomato its wild salt tolerant relative Lycopersicon pennellii Physiol[J].Planta.1998,104:169-174
    [95]Allagulova C R,Gimalov F R,Shak irova F M,Vakhitov V A.The plant dehydrins:structure and putative functions[J].Biochemistry.2003,68:945-951
    [96]A.M.Schwarz et al.The role of photosynthesis/light relationships in determining lower depth limits of characeae in South Island,New Zealand Lakes[J].Freshwater Biology,1996,35:69-80
    [97]Anderson MD,PrasadTK,Stewart C R.Changes in isozyme profiles of catalase,peroxidase and glutathione reductase dur-ing acclimation to chilling in mesocotyla of maize seedlings[J].Plant Physiol.1995,105:1247-1257
    [98] Benavides MP, Marconi PL, Gallego SM.Relationship between antioxidant defence system salt tolerance in Solanum tuberosum[J]. Aust J Plant Phoysiol. 2000,27:273-278
    [99] Berjak P.Pammenter N W.Progress in the understanding and manipulation of desiccation sensitive(recalcitrant)seeds[J].In:Ellis R H,Black M.Murdoch A J,eds.Basic and Applied Aspects of Seed Biology.Dordrecht,The Netherlands:Kluwer Academic Publishers.1997,689-703
    [100] Bowler C, Van Montagu M, Jnze DSuperoxide dismutase and stress tolerance[J].Plant Mol Biol.1992,43:83-116
    [101] Blaha G, Stelzl U, Spahn CMT Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy.Methods in Enzymology[J].2000,371:292-309
    [102] Burkhard Jakob, Ulrich Heber. Photoproduction and detoxifcation of hydroxyl radicals of photosystems 1 and 2[J]. Plant Cell Physiol. 1996, 37:629-635
    [103] Chazen O, Hartung W, Neumann PMThe different effects of PEG6000 and NaCl on leaf development are associated with differential inhibition of root water transport[J]. Plant Cell and Environment. 1995,25:727-735
    [104] Close T J,Fento R D,Moonan F.A view of plant dehydrins using antibodies specific to the carbrminal terminal peptide[J].Plant Molecular Biology.1993,23:279-286
    [105] Close T J.Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins[J].Physiologia Plantarum.1996,97:795-803
    [106] Farquhat G D,Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology.l982,33:317-345Flowers TJ, Yeo ARIon relations of plant under drought and salinity[J].Aust J Plant Physiol. 1986, 25:75-91
    [107] Frensch J, Hsiao TCTransient responses of cell turgor and growth of maize roots as affected by changes in water potential[J]. Plant Physiology. 1994,25:247-254
    [108] Fujiyama K, Taakemura H, Shibayama S Structure of the horseradish peroxidase isozymeegenes[J].Eur J Biochem. 1988,173:681-687
    [109] Greenway H, Munns R.Mechanisms of salt toleran ce in non-halophytes[J].Anna.Rev.Plant Physiology,1980,31:149-190
    [110] Hall T J,Harvey D M R, FlowersT J. Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima[J].Planta,1978.140:59-62
    [111] Hernandez JA, Almansa MS, L. del Rio,Secilla F. Effect of salinity on metalloenzymes of oxygen metabolism in two leguminous plants[J]. J.Plant Nutrition. 1993,16(12),2539-2554
    [112] Hu YC, Schnyder H, Schmidhalter U .Carbohydrate deposition and partitioning in elongating leaves of wheat under saline soil conditions[J]. Aust J Plant Physiol.2000, 231: 363-370
    [113] Jensen A B.Goday A.Figueras M,et al.Phosphorylation mediates the nuclear targeting of the maize RAB17 protein[J].Plant J. 1998,13:691-697
    [114] Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK Antioxdative response mechanisms in halophytes: their role in stress defence[J]. J Genet. 2006,85(3):237-254.
    [115] Kellog,E.W.And I. Fridovich.Superoxide,hydrogen peroxide and singlet oxygen in lipid peroxidation by a xanthine ox-idase system[J]. J. Biol. Chem. 1975,250:8812-8817
    [116] Krath B N, HoveJensen B. Organellar and cytosolicn localization of four phosphoribosy diphoribosy diphosphate synthase isozymes in Spinach[J]. Plant PhySiology. 1999, (19):497-505
    [117] Mehrnaz Khossravi and Ronald T. Borchardt. Chemical Pathways of Peptide Degradation. X:Effect of Metal Catalyzed Oxidation on the Solution Structure of a Histidine-Containing Peptide Fragment of Human Relaxin[J].Pharmaceutical Research.2000,17(7):851-858
    
    [118] Munns R.Comparative physiology of salt and water stress[J]. Plant Cell Environ. 2002,25:239-250
    [119] Munns R, Guo J, Passioura JB,Cramer GRLeaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley[J]. Aust J Plant Physiol. 2000,27:949-957
    [120] Mundy J , Chua N H. Abscisic acid and water-stress induce the expression of a novel rice gene [J].EM BO J, 1988, 7:2279-2286
    [121] Nyiander M.Svensson J,Palva E T.Weiin B V.Stress induced accumulation and tissue specific localization of dehydrins in Arabidopsis thaliana[J].Plant Mol.Biol.,2001,45:263- 279
    [122] Peng YK,Wang W,Qi zz.Effects of 1-4'C low temperature treatment on seedling growth and POD isozyme in high plants[J].Agri Boreali.1994,9:28-31
    [123] Raven JA Regulation of pH and generation of osmolarity in vascular plants:a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water[J]. New Phytologist.l985,25:25-77
    [124] Rosati, P., S. Predieri, B. Mezzetti, M. Ancherani,F. Fasolo, and S. Foscolo. In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate[J]. Acta Horticulturae 1990,280:409-416
    [125] Robert D. Locy et al. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plant[J]. Plant Physiol. 1994,105:331—339
    [126] Robertson M,Chandler P M.A dehydrin cognate protein from pea(Pisum sativum L.)with an atypical pattern of expression[J].Plant Mol.Biol.,1994,26:805-816
    [127] Sairam PK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants [J] .Current Sci ,2004 ,86 (3) :407-421
    [128] Sbehat A, Weiss C D, Bowen J H. Reducing external chiling injury in stored "Hass" avocados with dry heat treatment[J]. J Amer Sochort Sci.1995,110:531-537
    
    [129] Scandalios JG,. Oxygen stress and superoxide dismutases[J]. Plant Physiol. 1993,101:7-12
    [130] Singh, N.K., Bracker, C.A., Hasegawa, P.M., Handa, A.K., Buckel S., Hermodson, M.A., Prankoch,E., Regnier, R.E., and Bressan.R.A. 1987.Plant Physiol.85:739-743
    [131] Sibole JV,Montero E,Cabot C,Posehenrieder C,Barcelo J.Role of sodium in the ABA mediated long termgrowth response of beanto salt stress[J].Physiol Plant,1998,104:299-305
    
    [132] Sreenivasulu N, Grimm B, Wobus UDifferential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet[J]. Plant Physiol. 2000,109:641-654
    [133] Strogonov B P.Structure and function of plant cell in saline hahitats[M].New Yoke:Halsted Press,1973:78-83
    [134] Tester M, Davenport R.Na~+ tolerance and Na~+ transport in higher p!ants[J].Ann Bot(Lond).2003,91:503-527
    [135] Troncoso A., Matte C, Cantos M. and Lavee S.Evaluation of salt tolerance of in vitro-grown grapevine rootstock varieties[J].Vitis,1999,38 (2),55-60
    [136] Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H.A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification[J]. Plant Cell.1999,11;1195-1206
    [137] Verma M P, Sharma R P, Bourcier D R . Macromolecular interaction with cadmium and the effects of Zinc, copper, lead and Mercury ions[J]. Biological Trace Element Research, 1982, 4(l):35-43
    [138] Willekens H, Langebartels C, Tire CDifferential expression of catalase genes in Micotiana plumbaginifolia[J] .Proc Natl Acad Sic USA. 1994,91:10450-10454
    [139] Yamanchi M, peng X.Iron toxicity and stress induced ethylene production in rice leaves[J].Plant andSoil.1995,(173):21-33
    [140] Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJShort-and long-term effects of salinity on leaf growth in rice (Oryza sativa L) [J].Journal of Experimental Botany. 1991,25:881-889

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700