大叶藻增殖生态学的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以海洋高等沉水植物大叶藻为研究对象,采用实验生态学、形态学、生物学以及生物数学等方法,主要调查了山东沿岸海域的海草种类,开展了山东半岛典型海域大叶藻的形态学、繁殖生物学、生活史等的基础研究,调查了山东半岛典型海域大叶藻草场生物资源和生态环境,开展了山东半岛典型海域受损大叶藻草场修复技术的研究。得出的主要结论有:
     一、2008年7月,对山东近岸海域海草的种类进行了初步调查,描述了分布于山东近岸海域海草的形态学特征,并分析了山东近岸海域海草资源的现状及退化原因。调查共发现海草种类四种,分别为大叶藻(Zostera marina L.)、丛生大叶藻(Zostera caespitosa Miki)、红须根虾形藻(Phyllospadix iwatensis Makino)及黑须根虾形藻(Phyllospadix japonicus Makino)。
     二、2008年6月,对山东荣成俚岛南起马他角,北至俚岛湾东端“外遮岛”之间2m以浅近岸海域大叶藻的分布、生物量、形态特征、花及栖息环境进行了调查。结果显示,该海域大叶藻呈片状分布,每片面积在1.5~2.0 m2之间,平均分布密度1650株/m2;大叶藻平均生物量为3.754 g/株;平均根重0.4324 g/株,根长范围2-14 cm,平均根长4.8295 cm,根的平均直径为0.1 mm;平均茎重0.4609 g/株,平均茎长4.407 cm/株,茎的平均直径为2.159mm;平均节数为9.27节/株,平均节长5.144mm;平均叶重2.294 g/株,叶长范围17-70 cm,平均叶宽5.28mm,平均叶长45.23 cm,平均叶鞘长6.824 cm;单性花,雌雄同株,两个雌花之间有两个雄花,每个花序轴上有雄花13~19个,雌花7-11个;底质环境为砾砂。
     三、2009年2月至2010年1月,对山东荣成天鹅湖大叶藻的根长、茎节长、叶长、叶宽等形态特征进行了逐月调查,并于2009年3月至8月,对天鹅湖大叶藻生殖枝形成与种子生长过程进行了取样调查。结果显示,该海域大叶藻根长范围在0.4cm-17.4cm之间,单株鲜重、干重范围分别在0.01g-2.47 g、0.01 g-0.55之间;茎节的长度范围在0.07 cm-7.1 cm之间,茎的直径长度范围在0.07cm~1.19 cm之间,单株茎的鲜重干重范围分别在0.01 g-4.57 g、0.01 g-0.88 g之间;叶的长度、宽度范围分别在0.28 cm-98.3 cm、0.1 cm-0.96 cm之间;叶鞘的长度范围在0.2 cm-28.5 cm之间;单片叶的鲜重、干重范围分别在0.09 g-0.9g、0.01 g-2.68 g之间。各生态学指标最高值发生在7月,最低值发生在1-3月。大叶藻生殖枝长度范围在29.5 cm~111.4 cm之间;生殖枝叶长、叶宽范围分别在6.5 cm-49.2 cm、0.18 cm-0.62 cm之间;生殖枝花序长度范围在3.5 cm-19.6 cm之间;每粒种子的鲜重、干重范围分别在0.0042 g-0.0096g、0.002 g-0.009 g之间;种子的长度、宽度范围分别在1.9 mm-3.5mm、0.7mm-1.0mm之间。天鹅湖海区大叶藻的叶与叶鞘生长呈幂函数关系,为异速生长型。
     四、2009年2月-2010年1月,以山东荣成天鹅湖为实验海区,调查分析了天鹅湖河流注入情况及大叶藻草场的底质性质,开展了天鹅湖大叶藻草场生态环境的四季度调查及生物资源的逐月调查。研究结果表明,共有5条河流注入天鹅湖,入湖河流均存在不同程度的污染;海草场底质为砂质粉砂及粉砂质砂;天鹅湖表层海水DO含量符合国家一类海水标准,BOD、COD、pH符合国家二类海水标准,氨氮和活性磷酸盐符合国家四类海水标准;在4个季度的调查中,共发现浮游生物55种,其中浮游植物33种,浮游动物22种,浮游生物种类和丰度最大出现在11月份,且浮游生物的种类和丰度从春季到冬季呈上升趋势;发现地笼网生物31种,其中鱼类22种,甲壳类5种,贝类2,头足类1种,棘皮动物1种,且在不同季节存在明显的群落演替规律。
     五、2008年10月至11月,利用沉子法、枚钉法、直插法、夹苗法和整理箱法,在山东荣成俚岛近岸海域进行了大叶藻移植试验,监测了移植后1个月内大叶藻的生长、存活的变化,比较了天然大叶藻和移植大叶藻之间的差异,并分析了移植海区主要环境因子与大叶藻生长与存活之间的关系。结果显示,5种移植方法大叶藻的平均存活率为沉子法(100%)>枚钉法(86.7%)>直插法(66.7%)>夹苗法(20%)>整理箱法(0%);移植大叶藻的平均绝对生长率为沉子法(0.358 cm·d-1)>直插法(0.242 cm·d-1)>对照组(0.211 cm·d-1)>枚钉法(0.083 cm·d-1)>夹苗法(0.067 cm·d-1);与天然大叶藻相比,移植后大叶藻根的渗透压显著升高,而茎和叶的渗透压则显著降低(P<0.01);移植后大叶藻的生长与存活和移植海区水流、光照、底质等主要环境因子显著相关。
     六、2009年04月至2009年12月,逐月在荣成天鹅湖采集健康大叶藻植株,利用枚钉法进行了植株移植,同时逐月监测了移植后大叶藻的成活率和各形态学指标,并分析了影响大叶藻移植成活的因素。监测结果表明,移植大叶藻生长良好,平均成活率达88%。综合各方面因素得出:天鹅湖海域大叶藻移植的最佳时间排序为7月>8月>9月>10月>11月。
The author mainly investigate the seagrass species in inshore areas of Shandong province and resource and ecological environment of seagrass bed, and study the morphology, reproducing biology, and life history of eelgrass(Zostera marina L.) and restoration of injured Z. marina Biome in a representative sea area. The most results are summarized as follows:
     Preliminary survey for seagrass species was performed in inshore areas of Shandong province in July 2008. In the meantime, morphological characteristics of seagrasses distributing in inshore areas of Shandong province were described. Also, status and degeneration causes of seagrass resources in inshore areas of Shandong province were analyzed. Four species of seagrasses including Zostera marina L. Zostera caespitosa Miki, Phyllospadix iwatensis Makino and Phyllospadix japonicus were found during the present investigation.
     The distribution, biomass, morphology, seed and habitat of eelgrass(Zostera marina L.) within the water depth of 2 m were surveyed in the inshore areas of Lidao Town of Rongcheng City (between Mata Jiao and "Waizhe Dao"of Lidao Bay) in June 2008. Eelgrasses in the survey areas show a patch-shape distribution and the area of each patch is between 1.5 and 2.0 m2. The average spacing density and biomass of eelgrass are 1650 ind/m2 and 3.754 g/ind, respectively. The root length range is 2-14 cm and the average root weight, root length, and root diameter are 0.4324 g/ind, 4.8295 cm and 0.1 mm, respectively. The average rhizome weight, rhizome length and rhizome diameter are 0.4609 g/ind,4.407 cm/ind and 2.159 mm, respectively. The average number of nodes and node length are 9.27 nodes/ind and 5.144 mm, respectively. The leaf length range is 17-70 cm and the average leaf weight, leaf width, leaf length and sheath length are 2.294 g/ind,5.28 cm,45.23 cm and 6.824 cm, respectively.The flower of eelgrass is monosexual and hermaphrodite. There are two female flowers between two male flowers. The numbers of male flowers and female flowers on each rachis are 13-19 and 7-11, respectively. The sediment under the eelgrass consists of gravel sand.
     The morphological characteristics (root length, node length, leaf length and leaf width) of eelgrass (Z. marina L.) were monthly surveyed in the Swan Lake of Rongcheng City, Shandong province from February 2009 to January 2010. The formation of reproductive shoots and growth of seeds are also sampled duiring March and August in 2009. The results show that the root length range of eelgrasses in the survey areas is 0.4 cm~17.4 cm, the fresh weight and dry weight are 0.01 g~2,47 g,0.01 g~0.55g, respectively. The node length range is 0.07 cm~7.1 cm, the node diameter range is 0.07 cm~1.19 cm, and the fresh weight and the dry weigt range of rhizome are 0.01 g~4.57 g and 0.01 g~0.88 g, respectively. The leaf length and width range are 0.28 cm~98.3 cm and 0.1 cm~0.96 cm, respectively. The sheath length range is 0.2 cm~28.5 cm. The fresh weight and dry weigh range of leaf are 0.09 g~0.9 g and 0.01 g~2.68 g, respectively. The maximum of morphological characteristics are observed in July and the minimum are observed from January to March. The reproductive shoot range of eelgrasses is 29.5 cm~111.4 cm. The leaf length and width range of reproductive shoot are 6.5 cm~49.2 cm and 0.18 cm~0.62 cm, respectively. The rachis length range of reproductive shoot is 3.5 cm~19.6 cm. The fresh weight and dry weigt range of seeds are 0.0042 g~0.0096 g and 0.002 g~0.009 g, respectively. The length and width range of seed are 1.9 mm~3.5 mm and 0.7 mm~1.0 mm, respectively. The growth charicteristic of eelgrasses in Swan Lake is allometric growth.
     The inflow river, sediment, ecological environment (quarterly) and resource (monthly) of seagrass meadow in Swan Lake are investigated from February 2009 to January 2010. The results show that there is 5 inflow river for Swan Lake, which is all polluted; the sediment of the eelgrass meadow consists of sandy silt and silty sand; the DO of the surface seawater in Swan Lake is conformed to the standard of 1st class seawater, BOD, COD and pH are conformed to the standard of 2nd class seawater, and ammonia-nitrogen and active phosphate are conformed to the standard of 4th seawater; 55 species of plankton are found in the four quartly survey, in which 33 species are phytoplankton and 22 species are zooplankton; The most species and the highest abundance of plankton are found in November, and these show a tendy to increasing from spring to winter; 31 species of Dilong net, including 22 species of Fishes,5 species of Crustacean,2 species of Mollusca and 1 specie of Echinoderms, are found, and the population fluctuation changed obviously with season.
     To find feasible method of transplant and restoration for eelgrass Zostera marina, eelgrass was transplanted using methods of rock planting, stapling, free planting, root gripping and box planting in the inshore areas of Lidao Town of Rongcheng City from October to November in 2008. Growth, survival and osmotic pressure of transplanting eelgrass were investigated after one month of transplanting. Difference between nature and transplanting eelgrass was compared. The relationship between growth and survival of transplanting eelgrass and primary environmental factors was analyzed. Results in the present study showed that survival rate of transplanting eelgrass was followed as rock planting (100%)>stapling (86.7%)>free planting (66.7%)>root gripping (20%)>box planting (0%).The growth of transplanting eelgrass was followed as rock planting (0.358 cm·d-1)>free planting (0.242 cm·d-1)>control (0.211 cm·d-1)>stapling (0.083 cm·d-1)>root gripping (0.067 cm·d-1). Osmotic pressure of roots in transplanting eelgrass was significantly higher than that in nature eelgrass, however, rhizomes and leaves showed opposite changes (P<0.01). There was a remarkable correlation between growth and survival of transplanting eelgrass and primary environmental factors. The findings will provide data for developing feasible and low-costing transplant and restoration technology of injured Z.marina biome.
     Eelgrass is monthly sampled and then is transplanted using the method of stapling in Swan lake. Survival rate and morphological charactericstics of transplanting eelgrass are monthly surveyed. The environmental factors that influence survival of eelgrass are also analyzed. Results indicate that transplanting eelgrass show a good growth and the average survival rate is 88%. It could be obtained through various factors that:the order of the best time for eelgrass transplanting in Swan Lake is followed as July> August> September> October> November.
引文
[1]陈伟,李经武,张起信.大天鹅的越冬栖息地—荣成天鹅湖调查初报.海洋湖沼通报,1991,2:56-61
    [2]陈永宁.广西合浦海草场生态系统及其可持续利用.见:广西环境科学学会,编.科学发展观与循环经济学术论文集,广西,2004.74-77
    [3]达维斯.海洋植物学,林鹏等译.厦门:厦门大学出版社,1989:305-322
    [4]邓超冰.北部湾儒良及海洋生物多样性.南宁:广西科学技术出版社,2002.45-52
    [5]董翠玲,刘晓丽,刘建.荣成天鹅湿地越冬大天鹅食性分析.动物学杂志,2007,42(6):53-56
    [6]范航清,郑杏雯.海草光合作用研究进展.广西科学,2007,14(2):180-185,192
    [7]范航清,彭胜,石雅君.广西北部湾沿海海草资源与研究现状.广西科学,2007,14(3):289-295
    [8]范航清,石雅君,邱广龙.中国海草植物.北京:海洋出版社,2009.9
    [9]冯东岳.许氏平触繁殖生物学及人工养殖技术的研究:[硕士学位论文].青岛:中国海洋大学,2003.1-14
    [10]冯志权,洛昊,林凤翱,等.2004年河北沿岸春、夏季浮游植物调查研究.海洋环境科学,2010,29(1):112-114
    [11]管华诗,王曙光.中华海洋本草(2):海洋矿物药与海洋植物药.北京:海洋出版社,2009.466-467
    [12]黄小平,黄良民,李颖虹,等.华南沿海主要海草床及其生境威胁.科学通报,2006,51(增刊Ⅱ):136-142
    [13]兰竹虹,陈桂珠.南中国海地区主要生态系统的退化现状与保育对策.应用生态学报,2006,17(10):1978-1982
    [14]李恒,李美珍.藻场的生态作用及人工藻场建设的现状.中国水产,2006(11):77-79
    [15]李文涛,张秀梅.海草场的生态功能.中国海洋大学学报,2009,39(5):933-939
    [16]林鹏.海洋高等植物生态学.北京:科学出版社,2006.85-89
    [17]刘洪军,戴玉蓉,张富君,等.日本蟳人工育苗及养殖技术研究.海洋科学.2000,24(8):22-27
    [18]刘亚林,姚炜民,张树刚,等.2008年夏季飞云江口浮游植物分布特征及与环境因子的 相关性.海洋环境科学,2009,28(1):31-34
    [19]刘元刚,王光辉.大叶藻移植在海参养殖中的应用.齐鲁渔业,2006,23(4):11
    [20]刘志刚.探访中国稀世民居-海草房.北京:海洋出版社,2008,1-30
    [21]马欣荣,姜国良.大叶藻组织培养及其Na+/H+逆向转运蛋白基因的初步研究:[硕士学位论文].青岛:中国海洋大学,2005
    [22]牟小燕,薛允传.山东半岛荣成湾月湖环境特征研究.青岛大学学报(工程技术版),1999,14(4),56-59
    [23]孙帼英,陈建国.斑尾复鰕虎鱼的成熟与产卵.水产科技情报,1996,23(3):99-101,107
    [24]孙儒泳.动物生态学原理(第二版).北京:北京师范大学出版社,1992.356-357
    [25]谭燕翔,黄祝坚.海龟的摄食生态学.海洋科学,1988,6:55-59
    [26]潘瑞炽.植物生理学.北京:高等教育出版社,2001.279-296
    [27]齐衍萍.夏、冬季黄东海浮游动物群落生态学研究:[硕士学位论文].青岛:中国海洋大学.2008
    [28]任国忠,张起信,王继成,等.移植大叶藻提高池养对虾产量的研究.海洋科学,1991,1:52-57
    [29]沈国英,施并章.海洋生态学.北京:科学出版社,2002.327-328
    [30]石雅君.两种海草植物与土壤的关系及其叶片不同发育阶段元素含量和热值的研究.[硕士学位论文].广西:广西大学,2008
    [31]宫春光,绕庆贺,胡小刚,等.长蛸的生物学特性及人工繁育技术.科学养鱼.2009,11:22
    [32]王钧宇.仿生无毒舰船防污涂料及其制法.中国专利,1392208,2003
    [33]吴征镒,路安民.中国被子植物科属综论.北京:科学出版社,2003,19
    [34]徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系.生态学杂志,1989,8(4):13-15
    [35]闫建国.荣成大天鹅自然保护区野生动物资源调查分析.山东林业科技,2003,(60):20-21
    [36]杨宗岱,吴宝玲.中国海草场的分布、生产力及其结构与功能的初步探讨.生态学报,1981,1(1):84-87
    [37]杨宗岱.中国海草植物地理学的研究.海洋湖沼通报,1979,2:41-46
    [38]杨宗岱,吴宝玲.青岛近海的海草场及其附生生物.黄渤海海洋,1984,2(2):55-66
    [39]叶春江,赵可夫.盐分胁迫对大叶藻某些胞内酶耐盐性及其生理功能的影响.植物学报,2002,44(7):788-794
    [40]叶春江,赵可夫.高等植物大叶藻研究进展及其对海洋沉水生活的适应.植物学通报,2002,19(2):184-193
    [41]于丹,种云霄,涂芒辉,等.中国水生高等植物受危种的研究.生物多样性,1998,6(1):13-21
    [42]俞存根,宋海棠,姚光展.东海日本蟳的数量分布和生物学特征.上海水产大学学报,2005,14(1):40-46
    [43]于函.大叶藻形态学及组织培养的研究:[硕士学位论文].辽宁:辽宁师范大学植物学,2008.
    [44]于函,马有会,张岩,等.大叶藻的生态学特征及其与环境的关系.海洋湖沼通报,2007,增刊:112-120
    [45]袁秀堂,杨红生,陈慕雁,等.刺参夏眠的研究进展.海洋科学.2007,31(8):88-90
    [46]张宝琳,孙道元.灵山岛浅海岩礁区刺参食性初步分析.海洋科学,1995,3:11-13
    [47]赵斌,范丽萍,王健.矛尾复暇虎鱼生物学繁养殖技术初报.渔业现代化,2005,6:26-27
    [48]中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1992.8:84-94
    [49]朱龙,隋风美.许氏平触的生物学特征及其人工养殖.现代渔业信息.1999,14(4):21-25
    [50]Abrahamson W.G. Demography and Vegetative Reproduction. Demography and evolution in plant populations. USA:University of California Press,1980.89-106
    [51]Ackerman J.D. Convergence of filiform pollen morphologies in seagrasses:functional mechanisms. Evolutionary Ecology,1995,9:139-153
    [52]Ackerman J.D. Submarine pollination in the marine angiosperm, Zostera marina L.The influence of floral morphology on fluid flow. American Journal of Botany,1997,84: 1099-1109
    [53]Addy C.E. Eelgrass planting guide. Maryland Conservationist,1947,24:16-17
    [54]Adams S.M. The ecology of eelgrass, Zostera marina (L). Journal of Experimental Marine Biology and Ecology,1976,22:269-291
    [55]Amanda C.J., Berglund A., Ahnesj I. Reproductive ecology of five pipefish species in one eelgrass meadow. Environmental Biology of Fishes,1995,44:347-361
    [56]Anthony S.C. Marine natural product antifoulants:status and potential. Biofouling,1996, 9(3),211-229
    [57]Arber A.R. Water plants:a study of aquatic angiosperms. Cambridge:Cambridge Press,1920. i-xvi436
    [58]Barrett S.C.H., Echert C.G, Husband B.C. Evolutionary processes in Aquatic plant populations. Aquatic Botany,1993,44:105-145
    [59]Beer S., Eshel A., Waisel Y. Carbon metabolism in seagrasses III. Activities of carbon-fixing enzymes in relation to internal salt concentrations. Journal of Experimental Botany,1980, 31(4):1027-1033
    [60]Bell A.D. Dynamic morphology:a contribution to plant population ecology. In:Dirzo R. Sarukhan J., eds. Perspectives on Plant Population Ecology. Sinauer. Sunderland,1984.48-65
    [61]Berkenbusch K., Rowden A.A., Myers T.E. Interaction between seagrasses and burrowing ghost shrimps and their influence on infernal assemblages. Journal of Experimental Marine Biology and Ecology,2007,341:70-84
    [62]Bos A.R., Bouma T.J., Kort G.L., et al. Ecosystem engineering by annual intertidal seagrass beds:Sediment accretion and modification. Estuarine, Coastal and Shelf Science,2007,74: 344-348
    [63]Bostrm C., Bonsdorff E. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research, 1997,37(1-2):153-166
    [64]Bouma T.J., De Vries M.B., Low E., et al. Trade-offs related to ecosystem engineering:a case study on stiffness of emerging macrophytes. Ecology,2005,86:2187-2199
    [65]Burkholder J.M., Tomasko D.A., Touchette B.W. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology,2007,350:46-72
    [66]Campbell S.J., McKenzie L.J. Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuarine, Coastal and Shelf Science,2004,60:477-490
    [67]Carruthers T.J.B., Dennison W.C., Longstaff B.J., et al. Seagrass habitats of northeast Australia:models of key processes and controls. Bulletin of Marine Science,2002,17(3): 1153-1169
    [68]Carlos A., Xu Q., Cutright T., et al. Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment. Colloids and Surfaces B:Biointerfaces,2005,41(2-3),83-93
    [69]Charpy-Roubaud C., Sournia A. The comparative estimation of phytoplanktonic and microphytobenthic production in the oceans. Marine Microbial Food Webs,1990,4 (1): 31-57
    [70]Churchill A.C., Cok A.E., Riner M.I. Stabilization of subtidal sediments by the transplantation of the seagrass Zostera marina L. New York Sea Grant Report Series,1978, NYSSGP-RS-78-15,48
    [71]Cockburn A. An Introduction to Evolutionary ecology (Ch7).USA:Blackwell Scientific, 1991Connolly R. Differences in composition of small, motile invertebrate assemblages from seagrass and unvegetated habitats in a southern Australian estuary. Hydrobiologia,1997, 346(1):137-148
    [72]Costanza R. The value of the world's ecosystem services and natural capital. Nature,1997, 387:253-260
    [73]Cox P.A., Knox R.B. Pollination postulates and two-dimensional Pollination in hydrophilous monocotyledons. Annals of the Missouri Botanical Garden,1988,75(3):811-818
    [74]Crawley M.J. Rabbit grazing, plant competition and seeding recruitment in acid grassland. Journal of Applied Ecology,1990,27:803-820
    [75]David M.B., Short F.T. The effects of boat docks on eelgrass beds in coastal waters of Massachusetts. Environmental Management.1999,23(2):231-240
    [76]Davis R.C., Short F.T. Restoring eelgrass, Zostera marina L, habitat using a new transplanting technique:the horizontal rhizome method. Aquatic Botany,1997,59:1-15
    [77]De Cock A.M. Flowering, pollination and fruiting in Zostera marina. Aquatic Botany,1980,9: 201-220
    [78]Den H.C. Effects of oil pollution on seagrass beds. In:Proceedings of the First International Conference on the Impact of Oil Spill in the Persian Gulf,1984:257-268
    [79]Den H.C. The seagrasses of the world. Amsterdam:North Holland Publication,1970. 234-275
    [80]Dennison W.C., Orth R.J., Moore K.A., et al. Assessing water quality with submersed aquatic vegetation. Bioscience,1993,43:86-94
    [81]Dole J.A. Reproductive assurance mechanisms in three taxa of the Minulus guttatus complex. American Journal of Botany,1992,81:521-659
    [82]Duarte C., Cebri J. The fate of marine autotrophic production. Limnology and Oceanography, 1996,41(8):1758-1766
    [83]Duarte C.M. Seagrass ecology at the turn of the millennium:challenges for the new century. Aquatic Botany,1999,65:7-20
    [84]Edga G.J., Shaw C, Watson G.F., et al. Comparisons of species richness, size-structure and production of benthos in vegetated and unvetated habitats in Western Port Victoria. Journal of Experimental Marine Biology and Ecology,1994,176:201-226
    [85]Edmund P.G., Short F.T. World Atlas of Seagrasses. USA:University of California press, 2003.
    [86]Fonseca, M., Kenworthy W., Thayer G.W. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Program Decision Analysis Series,1998,12:1-222
    [87]Fonseca M.S., Fisher J.S. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Marine Ecology Progress Series,1986,29:15-22
    [88]Fonseca M.S., Kenworthy W.J., Courtney F.X. Development of planted seagrass beds in Tampa Bay, Florida, USA.I. Plant components. Marine Ecology Progress Series,1996,132: 127-139
    [89]Fry B., Parker P.L. Animal diet in Texas seagrass meadows:evidence for the importance of benthic plants. Estuarine and Coastal Marine Science,1979,8:499-509
    [90]Fukuda T. Development of the techniques for marine macrophyte(Zostera marina) bed creation-Ⅷ:Manual for Zostera bed creation by the sowing method. Bulletin of the Fisheries Experiment Station, Okayama Prefecture,1987,2:35-37
    [91]Gacia E., Littler M.M., Littler D.S. An experimental test of the capacity of food web interactions (fish-epiphytes-seagrasses) to offset the negative consequences of eutrophication on seagrass communities. Estuarine, Coastal and Shelf Science,1999,48:757-766
    [92]Gambi M.C., NowellA R.M., Jumars P.A. Flume observations on flow dynamics inZostera marina(eelgrass) beds. Marine Ecology Progress Series,1990,61:159-169
    [93]Geiger T.H, Delavy P, Roland H, et al. Encapsulated Zosteric acid embedded in Poly[3-hydroxyalkanoate] coatings-protection against biofouling. Polymer Bulletin,2004, 52(1),65-72.
    [94]Grace J.B. The adaptive signification of clonal reproduction in angiosperms:an aquatic perspective. Aquatic Botany,1993,44:159-180
    [95]Granger S.L, Traber M.S., Nixon S.W. Propagation of Zostera marina L. from seed. In: Sheppard C.R.C, eds. Seas at the millennium:An Environmental Evaluation. Amsterdam: Science press,2000.4-5
    [96]Green E.P., Short F.T. World Atlas of Seagrasses. USA:University of California Press, 2006.1-20
    [97]Harrison P.G., Durance C. Variation in clonal structure in an eelgrass(Zostera marina) meadow on the Pacific coast of Canada. Canadian Journal of Botany,1992,70:653-657
    [98]Heck K.L., Orth R.J. Structural Components of Eelgrass(Zostera marina) Meadows in the Lower Chesapeake Bay-Fishes. Estuaries,1980,3(4):278-288
    [99]Heck J.R. Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology,2006,330:420-436
    [100]Heijs F.M.L. Annual biomass and production of epiphytes in three monospecific seagrass communities of Thalassia hemprichii (Ehrenb.) Aschers. Aquatic Botany,1984,20:195-218
    [101]Hemming M.A., Duarte C.M. seagrass Ecology. Cambridge:Cambridge University Press, 2000.2-23
    [102]Huamburg S.P., Homann P.S. Utilization of growth parameters of eelgrass, Zostera marina, for productivity estimation under laboratory and in situ conditions. Marine Biology,1986, 93(2):299-303
    [103]Irlandi E.A., OrlandoB.A., Biber P.D. Drift algae-epiphyte-seagrass interactions in a subtropical Thalassia testudinum meadow. Marine Ecology Progress Series,2004,279:81-91
    [104]Jackson E.L., Rowden A.A., Attrill M.J., et al. The importance of seagrass beds as a habitat for fishery species. Oceanology and Marine Biology An Annual Review,2001,39:269-303
    [105]Jagels R. Further evidence for osmoregulation in epidermal leaf cells of seagrasses. American Journal of Botany,1983,70(3):327-333
    [106]Jose A.F., Maria J.G., Huber H.F. Physiological evidence for a proton pmup and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. Journal of Experimental Botany,1999,50:1763-1768
    [107]Kalisz S., Wardel G.M. Life history Variation in Campanula americana:Pollination differentiation. American Journal of Botany,1994,81:521-527
    [108]Keddy C.J., Partriquin D.J. An annual form of eelgrass in Nova Scotia. Aquatic Botany,1978, 5:163-170
    [109]Kirchman D.L., Mazzella L., Alberte R.S., et al. Epiphytic Bacterial Production on Zostera marina. Marine Ecology Progress Series,1984,15:117-123
    [110]Kurz R.C., Tomasko D.A., Burdick D., et al. Recent trends in seagrass distribution in southwest Florida coastal waters. In:Bortone S.A., eds. Seagrass:Monitoring, Ecology, Physiology, and Management. USA:CRC Press,2000.157-166
    [111]Lalonde R., Roitberg B.G. Mating system, life history, and Reproduction in Canada this He(Cirsium arvense). American Journal of Botany,1994,81:21-28
    [112]Lewis R.R., Phillips R.C. Occurrence of seeds and seedings of Thalassia testudinum Banks ex Konig in the Florida Keys (USA). Aquatic Botany,1980,9:377-380
    [113]Lyngby J.E., Brix H. Heavy metals in eelgrass(Zostera marina L.) during growth and decomposition. Hydrobiologia,1989,176:189-196
    [114]Merkel K. Mission Bay Eelgrass Inventory:September 1992. Prepared for the City of San Diego,1992
    [115]Morgan M.D., Kitting C.L. Productivity and utilization of the seagrass Halodule wrightii and its attached epiphytes. Limnology and Oceanography,1984,29:1099-1176
    [116]Moriarty D., Iverson R., Pollard P.C.et al. Exudation of organic carbon by the seagrass Halodule wrightii Aschers. and its effect on bacterial growth in the sediment. Journal of Experimental Marine Biology and Ecology,1986,96(2):115-126
    [117]Newell S.Y. Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cord grass shoots. Limnology and Oceanography,2001,46(3):573-583
    [118]Olesen B. Reproduction in Danish eelgrass(Zostera marina L.) stands:size-dependence and biomass partitioning. Aquatic Botany,1999,65(1-4):209-219
    [119]Orth R.J. Effect of nutrient enrichment on growth of the eelgrass Zostera marina in the Chesapeake Bay, Virgina, USA. Marine Biology,1977,44:187-194
    [120]Orth R.J., Luckenbach M., Moore K.A. Seed dispersal in a marine macrophyte:implications for colonization and restoration. Ecology,1994,75:1297-1939
    [121]Orth R.J., Harwell M.C., Fishman J.R. A rapid and single method for transplanting eelgrass using single, unanchored shoots. Aquatic Botany,1999,64,77-85
    [122]Paling E.I., Van Keulen M., Wheeler K.D., et al. Improving mechanical seagrass transplantation. Ecological Engineering,2001,18:107-113
    [123]Park J.I., Kim Y.K., Park S.R. Selection of the optimal transplanting method and.time for restoration of Zostera marina habitats. Algae,2005,20 (4):379-388
    [124]Perez Llorens J.L., Visscher P., Nienhuis P.H., et al. Light-dependent uptake, translocation and foliar release of phosphorus by the intertidtal seagrass Zostera noltii Hornem. Journal of Experimental mMarine Biology and Ecology,1993,166(2):165-174
    [125]Pettitt J.M. Aspects of flowering and pollination in marine angiosperms. Oceanography Marine Biology Annual Review,1984,22:315-342
    [126]Reusch T.B.H. Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). Journal of Evolutionary Biology,2001,14:129-138
    [127]Reusch T.B.H., Stam W.T., Olsen J.L. Size and estimated age of genets in eelgrass, Zostera marina, assessed with microsatellite markers. Marine Biology,1998,133:519-525
    [128]Reusch T.B.H, Bostr M.C., Stam W.T., et al. An ancient eelgrass clone in the Baltic.Marine Ecology Progress Series,1999,183:301-304
    [129]Robertson A., Mann K. Disturbance by ice and life-history adaptations of the seagrass Zostera marina. Marine Biology,1984,80(2):131-141
    [130]Rooker R., Holt S.A, Sotom A, et al. Postsettelment patterns of habital use by sciaenid fishes in subtropical seagrass meadows. Estuaries,1998,21:318-327
    [131]Roger J.O., Greening H.S. Seagrass restoration in Tampa Bay:A resource based app roach to estuarine management. In:Bortone S.A., eds. Seagrass:Monitoring, Ecology, Physiology, and Management. USA:CRC Press.2000.279-294
    [132]Rucklshaus M.H. Estimates of out crossing rates and of inbreeding depression in a population of the marine angiosperm Zostera marina. Marine Biology,1995,123:583-593
    [133]Seregin I., Ivanov V. Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology,2001,48(4):523-544
    [134]Sheppard J., Lawler I.R., Marsh H., et al. Seagrass as pasture for seacows:Landscape-level dugong habitat evaluation. Estuarine, Coastal and Shelf Science,2007,71(1-2):117-132
    [135]Short F.T. Effects of sediment nutrients on seagrasses, literature review and mesocosm experiment. Aquatic Botany,1987,27(1):41-57
    [136]Short F.T. The Port of New Hampshire interim mitigation success assessment report. Unpublished technical report. Jackson Estuarine Laboratory. University of New Hampshire. Durham, New Hampshire.1993
    [137]Short F.T., Burdick D.M., Kaldy J.E. Mesocosm experiments quantify the effects of eutrophication on eelgrass,Zostera marina. Limnology and Oceanography,1995,40:740-769
    [138]Short F.T., Short C.A. Seagrass Filter:Purification of Estuarine and Coastal Waters.In: Kennedy V.S, eds. The Estuary as a Filter. Washington:Academic Press,1984.395-413
    [139]Short F.T., Korpp B.S., Gaeckle J., et al. Seagrass ecology and estuarine mitigation:a low-cost method for eelgrass restoration. Japan Fisheries Science,2002,68:1795-1762
    [140]Short F.T., Carruthers T., Dennison W., et al. Global seagrass distribution and diversity:A bioregional model. Journal of Experimental Marine Biology and Ecology,2007,350:3-2
    [141]Short F.T., Davis R.C., Kopp B.S., et al. Site-selection model for optimal transplantation of eelgrass, Zostera marina L. Marine Ecology Progress Series,2002,227:253-267
    [142]Short F.T, Fernandez E., Vernon A., et al. Occurrence of Halophila baillonii meadows in Belize, Central America. Aquatic Botany,2006,85(3):249-251
    [143]Short F.T., Wyllie-Echeverria S. Natural and human-induced disturbance of seagrasses. Environmental Conservation,1996,23:17-27
    [144]Staton J.L. Phylogenetic analysis of the mitochondrial cytochrome c oxidase subunit 1 gene from 13 sipunculan genera:intra- and interphylum relationships. Invertebrate Biology,2003, 122 (3):252-264
    [145]Stevenson, J. Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments. Limnology and Oceanography,1988,33(4):867-893
    [146]Thayer G.W., Kenworth W.J., Fonseca M.S. The ecology of eelgrass meadows of the Atlantic coast:A community profile. US Fish and Wildlife Service,1984,24:84-85
    [147]Thomas A.D., Haldorson L., Laur D.R., et al. The distribution of nearshore fishes in kelp and eelgrass communities in Prince William Sound. Environmental Biology of Fishes,2000,57: 271-287
    [148]Tomasko D.A., Lapointe B.E. Productivity and biomass of Thalassia testudinumas related to water column nutrient availability:field observations and experimental studies. Marine Ecology Progress Series,1991,75:9-17
    [149]Tomasko D.A., Dawes C.J., Hall M.O. The effects of anthropogenic nutrient enrichment on turtlegrass(Thalassia testudinum) in Sarasota Bay, Florida. Estuaries and Coasts,1996,19: 448-456
    [150]Turner S.J., Kendall M.A. A comparison of vegetated an unvegetated soft-sediment macrobenthic communities in the River Yealn, south-western Britain. Journal of the Marine Biological Association of the UK,1999,79:741-743
    [151]Valentine J., Heck K.J. The role of leaf nitrogen content in determining turtlegrass(Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology,2001,258(1):65-86
    [152]Van Katwijk M.M., Vergeer L.H.T., Schmitz G.H.W.,et al. Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series,1997,157:159-173
    [153]Waycott M., Longstaff B.J., Mellors J. Seagrass population dynamics and water quality in the Great Barrier Reef region:A review and future research directions. Marine Pollution Bulletin. 2005,51:343-350
    [154]Williams D.G., Black R.A. Phenotypic variation in contrasting temperature environments: Growth and photosynthesis in Pennisetum setaceum from different altitudes on Hawaii. Functional Ecology,1993,7:623-633
    [155]Wirsing A., Heithaus M.R., Dill L.M. Living on the edge:dugongs prefer to forage in microhabitats that allow escape from rather than avoidance of predators. Animal Behaviour, 2007,74(1):93-101
    [156]Xu Q.W., Barrios C.A., Cutright T., et al. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants, Environmental Toxicology,2005,20(5), 467-474
    [157]Zimmerman R., Reguzzoni J.L., Alberte R.S. Eelgrass(Zostera marina L.) transplants in San Francisco Bay:role of light availability on metabolism, growth and survival. Aquatic Botany, 1995,51(1-2):67-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700