沧州市不同盐碱地及主要树种离子分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对沧州市四种不同盐碱地树种调查,分析了树种分布规律,测定了不同盐分浓度胁迫下土壤和不同树种体内盐分离子含量,并对土壤离子采用主因素分析,对树种离子含量进行了相关性分析,由此得出以下结论:
     1不同盐碱区林木树种共有24个科,37个属,52个种。不同盐碱区分布的树种为包含关系,即除白刺除外,在高盐碱区分布的树种,在低盐碱区均有分布。林木种数随着各区域盐分浓度的增大,盐胁迫的加强,而逐渐减少,且盐分浓度越大,树种减少的越多,下降的趋势越明显。
     2不同盐碱度区域土壤中总盐分、Na~+、K~+、Ca~(2+)、Mg~(2+)含量,随着区域盐分浓度的升高,而迅速提高,但不同离子升高幅度不同,Na~+含量的增幅也最大。通过对土壤盐分离子的主因素分析,只有总盐和Na~+的特征根大于1,特征值分别为3.701和1.044,累计方差贡献率达94.889%。说明影响土壤盐碱度的高低的因素主要取决于总盐和Na~+的含量。
     3随着盐胁迫增强,各树种体内的Na~+含量均呈明显上升趋势;K~+的含量先上升,在重盐碱区又有所下降;Ca~(2+)的含量呈下降趋势;Mg~(2+)的含量变化趋势不太明显,总体表现为缓慢下降的趋势。在盐胁迫下,各树种根系中Na~+含量明显高于茎叶,茎叶中K~+、Ca~(2+)、Mg~(2+)的含量明显高于根系。
     随着盐浓度提高,不同树种不同器官中Na~+/K~+、Na~+/Ca~(2+)和Na~+/Mg~(2+)比值呈上升趋势,但在不同树种不同器官中上升幅度不同,根系明显高于茎、叶,柽柳、白榆、紫穗槐、白蜡、家桑明显高于其他树种。各树种RSK,Na、RSCa,Na、RSMg,Na值均随着盐分浓度的增加而提高,但是提高的幅度不同。在重盐碱区,柽柳、白榆、紫穗槐、白蜡、家桑的RSK,Na、RSCa,Na、RSMg,Na值高于沙枣、苦楝等树种。
     4不同盐碱区树种根系中Na~+含量与茎、叶中的Na~+之间存在极显著正相关性(P<0.01),说明根部控制Na~+进入植物体的最关键的环节,同时控制着运往植物体茎、叶中Na~+浓度;根系中与茎中的K~+含量、茎中与叶中的K~+含量之间均存在显著正相关性(P<0.05),这说明根系吸收的K~+较多地运往地上部,这对维持植株正常的生理功能具有重要作用,而叶片生长需要的K~+,则是从茎中运输,K~+是可移动性元素,向新生组织运输的特性;根系中与茎、叶中的Ca~(2+)含量之间均存在显著正相关性(P<0.05)。
     各树种根系中Na~+含量与K~+含量之间存在显著负相关性(P<0.05),与Ca~(2+)含量之间存在极显著负相关性(P<0.01);茎中K~+含量与Ca~(2+)含量之间存在显著正相关性(P<0.05),Ca~(2+)含量与Mg~(2+)含量之间存在极显著正相关性(P<0.01);叶片中仅Na~+含量与Mg~(2+)含量之间存在极显著正相关性(P<0.01)。说明随着盐分胁迫的加强,K~+、Ca~(2+)均能抑制根系中Na~+的吸收,缓解植株的盐胁迫;茎作为一个离子的传导组织,本身对离子没有积累作用;Mg~(2+)是植物的营养元素,与叶绿素合成和分解有重要的联系,所以当叶片中Na~+含量增加,植物受到盐分胁迫,此时叶片中Mg~(2+)含量升高有利于增强植株叶片的光合作用,从而增强植株的耐盐性。
Through surveying on the tree species of the four different saline-alkali soil in Cangzhou city, this paper analyzed the distribution of tree species, and measured at the salt ion contents of salt stress on the soil and different tree species. And studied on the ion content of the soil and tree species by methods of the main factor and correlation analysis.The results were as follows:
     1 The tree species included 52 species,37 genera,and 24 families.The tree species of distribution in different saline-alkali soil had being inclusion relations.That is,except of Nitraria schoberi,all the tree species in the high-saline area was contained in low-saline area. As the saline-alkali degree increased and the salt stress strengthened,the amount of the tree species were gradually reduced.And the greater the saline-alkali degree increased, the more obvious downward trend.
     2 As the saline-alkali degree increased,the content of total salt, Na~+,K~+,Ca~(2+) and Mg~(2+) in the different saline-alkali soil rapidly rising,but the increased rate of ions were different,and the Na~+ content was the largest increase.Through the main factor analyzed on the soil salt ions,only the eigenvalue of total salt and Na~+ was greater than 1,the eigenvalues were 3.701 and 1.044,respectively,the cumulative variance contribution rate was over 94.889%.It showed that the factors which influenced the level of soil saline-alkali degree depended mainly on the content of the total salt and Na~+.
     3 With the salt stress enhanced,the content of Na~+ showed obviously increasing trend in the body of the tree species.The content of K~+ rised in the first,and then declined in the high-saline area. The content of Ca~(2+) showed the downward trend always. The content change of Mg~(2+) showed was not clear,the overall performanced for the slow downward trend.Under salt stress, the content of Na~+ of the roots of the tree species was significantly higher than stems and leaves,but the content of K~+,Ca~(2+) and Mg~(2+) in the stems and leaves was significantly higher than the roots.
     As the salt concentration increased,the ratio of Na~+/K~+,Na~+/Ca~(2+) and Na~+/Mg~(2+) was being the upward trend,but the increased range was different in different organs or in different species.That is, the root was significantly higher than stems and leaves,and Tamarix chinensis,Ulmus pumila, Amorpha fruticosa,Fraxinus bungeana,and Mours mongolica were significantly higher than other tree species.The values of RSK,Na、RSCa,Na、RSMg,Na of various tree species increased with the salt concentration increased,but the increased range was different.In the high-saline area, the values of RSK,Na、RSCa,Na、RSMg,Na of Tamarix chinensis,Ulmus pumila,Amorpha fruticosa,Fraxinus bungeana,and Mours mongolica, were higher than Elaeagnus angustifolia,Melia azedarach and etc.
     4 There were very significant positive correlation between the Na~+ content of the roots and stems,leaves of tree species in different saline-alkali soil zones(P<0.01).That shows the roots were the most critical link which controlled Na~+ into the plant,at the same time controlled the Na~+ concentration of plant stems and leaves.Between roots and stems,and stems with leaves,the K~+ content was all significant positive correlation(P<0.05).It shows that the K~+ ion of root absorption transported more up,which is played an important role in maintaining normal physiological functions of plants.And the K~+ ion of leaf needs is transported from the stem, K~+ is the element of mobility to the transport properties of new organizations.Between roots and stems with leaves,the Ca~(2+) content was all significant positive correlation(P<0.05).
     There were the significant negative correlation between the contents of Na~+ and K~+ in the roots of the tree species(P<0.05).And between the contents of Na~+ and Ca~(2+) in the roots of the tree species,it was significant negative correlation(P<0.01).In the stems,the content of K~+ and Ca~(2+) were a significant positive correlation(P<0.05),and of Ca~(2+) and Mg~(2+) were a significant positive correlation(P<0.01).In the leaves,only the content of Na~+ and Mg~(2+) were a significant positive correlation(P<0.01).With the strengthening of salt stress,the ion of K~+ and Ca~(2+) could inhibit the roots in the absorption of Na~+ to ease the plants salt stress.Stems was being ion transmission organization,and it does not accumulate on the role of ion.Mg~(2+) is a plant nutrient element with chlorophyll synthesis and decomposition had important links.So the Na~+ content of leaf increased,the plants were under salt stress.And the higher Mg~(2+) content of leaves,was in favor of the enhancement of photosynthesis,thus increased the plants salt-tolerant sexual.
引文
[1]刘振虎.几种草坪草NaCl胁迫反应及其耐盐机制的分析研究[D].北京:中国农业科学院,农业自然资源和农业区划研究所,2001.
    [2] Epstein et al.In "Letter Crops For Food"(Ciba Foundation Symposium 97),Pitman,London,1983.61-82.
    [3] Yokoi S,Bressan R A,Husegawa P M.Salt stress tolerance of plant[J].JIRCAS Working Rep,2002,23(4):25-33.
    [4]赵可夫,冯立田.中国盐生植物资源[M].北京:科学出版社,2001.
    [5]史娟.小麦耐盐种质的鉴定和耐盐基因的SSR标记研究[D].北京:中国农科院硕士研究生论文,1999.
    [6]于海武.毛白杨无性系耐盐性比较与转耐盐基因的研究[D].北京:北京林业大学林木遗传育种,2004.
    [7]林凤栖,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,120(2):20-25.
    [8]谢承陶.作物品种的耐盐性及其机理.见:谢承陶主编.盐渍土改良原理与作物抗性[M].北京:中国农业科学技术出版社,184-185
    [9]张素娟.燕山东麓滨海地区生态景观林评价体系研究[D].保定:河北农业大学园林院,2008.
    [10]陈景和.华山森林公园旅游资源的综合评价[J].山东林业科技,2003,(3):20-21.
    [11]廖科,张合平,石强,等.城市森林系统评价指标体系研究[J].湖南林业科技,2006,33(3):27.
    [12]张颖.森林社会效益价值评价研究综述[J].世界林业研究,2004,17(3):6-11.
    [13]汤章城.植物的抗逆性.张德颐等编.植物分子生物学与生物工程[M].北京:科学出版社,1991.
    [14] Niu X,Bressan RA,Hasegawa PM, Pardo JM.Ion homeostasisin NaCl stress environments.Plant Physiol,1995,109:735-742.
    [15] Jeschke W D,Wolf O.Importance of mineral nutrient cyclingfor salinity tolerance of plants.In Lieth H Masoon AAl,(eds.).Towards the rational use of high salinity tolerant plant.Kluwer Academic Publishers.Netherland.1993.
    [16] Sabirov RZ,Azimov RR,Ando Akatsuka,M iyoshi T,OkadaY.Na sensitivity of ROM K1 K channel:role of theNaH antiporter.J M embrBiol,1999,172:67-76.
    [17] Delauney AJ,etc.Proline biosynthesis and osmoregulation in plants.Plant J,1993,4:215-223.
    [18] RoosensN H,etc.Prolinemetabolism in the wild type and in a salt to lerant mutant of Nicotiana plumbaginifolia studied by 13C2nuclear magnetic resonance imaging.Plant Physiology,1999,121:1281-1290.
    [19] Yoshiba Y,Kiyosue T,Nakashima K.Yamaguchi ShinozakiK Shinozaki K.Regulation of levels of proline as an osmolyte in plants under water stress.Plant Cell Physiol,1997,38:1095-1102.
    [20] Zhu JK, Hasegawa PM,Bressan RA.Molecular aspects of smotic stress in plants.Crit Rev Plant Sci,1997,16:253-277.
    [21] StrizhovN,etc.Different expression of two P5CS genes controlling proline accumulation during salt stress requires ABA and is regulated by ABI1 and AXR2 in A rabidopsis.Plant J,1999,12:557-569.
    [22] Poppet M,Polania J,Weiper M. Physiological adaption to different salinity levels in mangroves.Toward the rational use of high salinity tolerance plant[J ].Plant and Soil ,1993 ,148(1):217-224.
    [23]龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [24] Zhu JK.Salt and drought stress signal transduction in plants.Annu.Rev.PlantBiol,2002,53:247-73.
    [25] Sheen J.Ca-dependent protein kinases and stress signal transduction in plants.Science,1996,274:1900-1902.
    [26] HaiL P,etc.An A rabidopsis Gskshaggy-like Gene That Complements Yeast Salt stress sensitive mutants is induced by NaCl and Abscisic Acid.Plant Physiology,1999,124:941-948.
    [27] Hwang I,Goodman H.An A rabidopsis thaliana root specific kinase homolog is induced by dehydration,ABA and NaCl.Plant J,1995,8:37-43.
    [28] Kurkela S,FranckM.Cloning and characterization of a cold and ABA2inducible A rabidopsis gene.Plant Mol Biol,1990,15:137-144.
    [29] Mikami K,Katagiri T,Iuchi S,Yamaguchi,Shinozaki K,Shinozaki K.A gene encoding phosphatidylinositol-4- phosphate5-kinase is induced by water stress and abscisic acid in A rabidopsis thaliana.Plant J,1998,15:563-568.
    [30] Ishitani M,Xiong L,Stevenson B,Zhu J K.Genetic analysis of osmotic and cold stress signal transduction inA rabidopsis:interactions and convergence of abscisic acid2dependent andabscisic acid independent pathways.Plant Cell,1997,9:1935-1949.
    [31] Rudulier D.Elucidation of the role of osmoprotective compounds and osmoregulatory genes:The key role of bacteria.In L ieth,H;Masoon,A.A l.,(eds.)Towards the rational use of high salinity tolerant plant.KluwerAcademic Publishers.Netherland,1993.
    [32]冯鹤信,吕增起.沧州市深层地下水的开发、利用与保护[J].河北水利,2006,(2):29-31.
    [33]刘俊龙,范振铎.沧州水文地质环境问题及对策[R].沧州市水务局水文地质报告,沧州市水资源管理办公室,2000.
    [34]张方亮,张和军.蹼阳地区地下水水质现状及评价[J].地下水,2003,(12):215-217.
    [35]张改云.沧州市深层地下水资源评价及利用对策[D].南京:南京理工大学环境工程,2007.
    [36]叶洪雷.沧州市棉花产业发展对策研究[D].北京:中国农业大学,2005.
    [37]郭洪涛,张山起.沧州盐碱城区绿化树种的选择与养护[J].河北工程技术高等专科学校学报,2006(3):9-11.
    [38]纪清巨,闫继峰,胡富香,等.沧州市林木良种繁育基地建设情况、存在问题及建议[J].河北林业科技,2006.
    [39]任继周.草业科学研究方法[M].北京:中国农业出版社,1998.
    [40]张宝泽,赵可夫.刺槐和沙枣耐盐性能的研究[J].山东科学,1996.9 (2):53-55.
    [41]潘红伟.引种刺槐繁殖和耐盐性研究[D].保定:河北农业大学森林培育,2004.
    [42]周三,韩军丽,赵可夫.泌盐盐生植物研究进展[J].西北植物学报,2003,23(1):190-194.
    [43]鲍士旦主编.土壤农化分析[M].北京:中国农业出版社,2000.
    [44]中国林业科学研究院分析中心.现代实用仪器分析方法[M].北京:中国林业出版社.1994:14-16;358-359; 433-435.
    [45] Pitman M G.Transport across the root and shoot/root Interaction.in:Staples R.C.and Toenn isson G.A.ed.Salinity Tolerance in Plants.Wiley,1984.
    [46]杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报,2003,23(2):271-277.
    [47]林杰斌,陈湘,刘明德.SPSS11.0统计分析实务设计宝典[M].北京:中国铁道出版社,2002.
    [48]苏金明,傅荣华,周建斌,等.统计软件SPSS系列应用实战篇[M].北京:电子工业出版社,2002.
    [49]邢尚军,薄其祥,吕雷昌,等.滨海重盐碱地白刺耐盐性及其栽培技术研究[J].山东林业科技,2002(2):7-11.
    [50]李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展[J].山东科学,2002,15(2):8-14.
    [51]祁淑艳,储诚山.盐生植物对盐渍环境的适应性及其生态意义[J].天津农业科学,2005,11(2):42-45.
    [52]郝治安,吕有军.植物耐盐机制研究进展[J].河南农业科学,2004(11):30-33.
    [53] D A Baker,J L Hall.Solute transport in plant cells and tissues,Longman Scientific and Technical[M].Essex,1998, 498-537.
    [54]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,752-769.
    [55]裴鑫德.多元统计分析及其应用[M].北京:北京农业大学出版社,1991,196-247.
    [56]唐守正.多元统计分析方法[M].北京:中国林业出版社,1986,1-36.
    [57]杨俊霞,郭宝林,张卫红,等.核桃主要经济性状的主成分分析及优良品种选择的研究[J].2001,24(4):39-42.
    [58]赵福庚,刘友良,章文华.大麦幼苗叶片脯氨酸代谢及其与耐盐性的关系[J].南京农业大学学报,2002,25(7): 7-10.
    [59]孙方行,孙明高,夏阳,等.NaCl处理对海棠渗透调节的影响[J].西北林学院学报,2005, 20(3): 62-64.
    [60]周志文,李延菊,叶乃好,等.钠离子在葡萄和苹果植株体内的分布特征[J].中外葡萄与葡萄酒,2007,(1):4-7.
    [61]马翠兰,刘星辉,陈素英.盐胁迫下柚和橘幼苗体内矿质元素变化的比较研究[J].热带亚热带植物学报,2005,13(4):333-337.
    [62]王彩霞,陈现臣.盐环境下棉花体内离子分布研究[J].种子,2007,26(2):41-44.
    [63]王波,宋凤斌.盐碱胁迫对燕麦水势、干物质积累率以及K+、Na+选择性吸收的影响[J].农业系统科学与综合研究,2006,22(2):105-108.
    [64]汪良驹,马凯,姜卫兵,等.NaCl胁迫下石榴和桃植株Na+、K+含量与耐盐性的研究[J].园艺学报,1995,22(4):336-340.
    [65] Flowers T J,M A Hajibagheri.Salinity in Hordeum vulgare:ion concentration in root cells of cultivars differing in salt tolerance[J].Plant and Soil,2001,(231):1-91.
    [66]翁森红,聂素梅,徐恒刚,等.禾本科牧草K+/Na+与其耐盐性的关系[J].四川草原,1998,(2):22-23,301.
    [67]汪贵斌,曹福亮.盐分和水分胁迫对落羽杉幼苗的生长量及营养元素含量的影响[J].林业科学,2006,40(6):56-62.
    [68]王慧英,孙建设,张建光.NaCl胁迫对苹果砧木K+和Na+吸收的影响及其与耐盐性的关系[J].河北农业大学学报,2002,25(5):104-107.
    [69]张金凤.盐胁迫下8个经济林树种苗木反应特性的研究[D].泰安:山东农业大学森林培育,2004.
    [70] Munns R .Effect of high external NaCl concentrations on ion transport within the root of Lupinus albus[J]. Plant Cell and Environment,1988,11:283-289.
    [71]姜国斌,尚敏克,金华,等.苗木蒸腾和Na+吸收对切根及NaCl处理的响应[J].林业科学研究,2008,21(1):13-17.
    [72]孙方行,孙明高,夏阳.NaCl处理对海棠渗透调节的影响[J].西北林学院学报,2005,20(3):62-64.
    [73] Yeo A R,Flowers T J.Accumulation and localisation of sodium ions within the shoot of rice(Oryza sativa) varieties differing in salinity resistence[J].Physiol Plant, Copenhagen,1982,56:343-348.
    [74]邱念伟,杨洪兵,丁顺华,等.植物根部的拒Na+作用与叶片Na+含量的相关性分析[J].曲阜师范大学学报,2001,27(1):65-68.
    [75]刘炳响,袁玉欣,梁海永,等.不同盐碱条件下白榆器官中K+、Na+、Ca2+和Mg2+分布特征[J].西北林学院学报,2008,23(5):56-58.
    [76] BrownG.E.Changes in Phenylalanine ammonia-lyase,soluble Phenolies and ligninin in jured orange exoearP.Proeeedings of the Annual Meeting of the Florida State Hortieulture Soeiety,1991,103:234-237.
    [77]王素平,郭世荣,胡晓辉,等.NaCl胁迫对黄瓜幼苗体内K+、Na+和Cl-分布的影响[J].生态学杂志,2007,26 (3):348-354.
    [78]刘伟,魏日凤,潘廷国.NaCl胁迫及外源Ca2+处理下甘薯幼苗叶片多胺水平的变化[J].福建农林大学学报:自然科学版,2005,34(2):244-247.
    [79]霍书新,杜国强,张小红.钙缓解植物盐害的作用机制研究进展[J].土壤肥料,2005(6):3-6.
    [80]李彦强,方升佐,姚瑞玲,等.NaCl胁迫对不同种源青钱柳幼苗离子分配、吸收与运输的影响[J].植物资源与环境学报,2007,16(4):29-33.
    [81]戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响[J].中国农学通报,2003,19(3):97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700