基于X-ray图像重建算法研究及在集成电路领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着SMT组件的高密度化,在大规模集成电路制造组装过程中,实际生产中组装故障高达85%而现有的相关检测方法如人工目视检查自动光学检测等都只能对组件表面缺陷进行检测,对焊点在器件底面等不可视情况无能为力基于三维重建的缺陷检测在大规模集成电路领域的应用便是基于此背景诞生的,而国内在此方面的研究还处于空白阶段
     论文以基于X-ray的三维重建为研究内容,重点研究了二维切片图像重建环节,提出了相关的重建模型及数值算法,并将文中的算法结合大规模集成电路领域的特点进行了研究,具体内容如下:
     1)针对ART-TV算法迭代收敛速度缓慢的缺点,提出了基于多项式加速概念的P-TV新算法,并对算法中参数的取值进行了分析通过数值实验验证了算法的高效性,重建速度约提高了10倍另外,对实验过程中投影系数矩阵的获取和存储方法进行了改进,传统的投影系数矩阵通过建立射线源被测物体和探测屏的几何模型并求解获取,过程复杂耗时文中提出一种简单适用便于程序化操作的方法,并采用稀疏矩阵概念进行存储,极大地提高了实验的效率
     2)采用一阶TV函数作为正则项重建图像会出现伪边缘现象和阶梯现象,而采用高阶TV函数又使得重建图像边缘模糊化文中基于二者的优点提出两种混合优化目标函数,Multi-TV函数和Mix-TV函数,并分别针对各向同性TV定义和各向异性TV定义对这两种目标函数进行了讨论最后采用文中提出的基于多项式加速框架的P-Multi-TV算法和P-Mix-TV算法进行图像重建,得到了良好的重建质量
     3)在全变差函数空间内,分别讨论了ROF模型和高阶全变分模型的优劣,文中结合ROF模型和高阶模型的优点,提出一种基于全变分的混合模型采用基于Bregman距离的Split Bregman算法对混合模型进行求解,并从理论上证明了算法收敛性通过与多种算法的对比实验,验证了算法具有较好的自适应性和鲁棒性
     4)针对集成电路领域中图像的特点,简化了重建模型,并给出了相应的求解算法最后通过实验验证了算法在保证图像重建质量的前提下极大的提高了重建速度,更加适合实时检测的需要
With the SMT components' high density, the actual assembly faults are up to85%duringthe LSI manufacturing and assembly process.However, the existing detection methods such asartificial visual inspection, automated optical inspection are only useful for surface defects.These methods are helpless for the situation when the welding spot defects are on the bottomof the device and other invisible situations.Under such background; defect detection based onthree-dimensional reconstruction is applied in the LSI field. But up till now, domestic researchon this area is still a blank stage.
     In this thesis, the main research content is three-dimensional reconstruction based on theX-ray. We focus on the step of slice image reconstruction, proposed several reconstructionmodels and corresponding numerical algorithms. Finally, we do some research combined thecharacteristics of the LSI field with the proposed algorithms in the thesis, as follows:
     1) Because of the slowly converges of ART-TV iterative algorithm, we propose a newalgorithm called P-TV based on the concept of polynomial acceleration, and then,we make an analysis about the parameter values. Numerical experiments resultsshow that the new algorithm is efficient and reconstruction speed is about10timeshigher than ART-TV algorithm. In addition, the acquisition and storage of theprojection matrix method is improved during the experiment. Conventional methodis so complex and time consuming. So, a new simple method is proposed in thepaper and it is easy to programming for acquiring the projection matrix, and then,the concept of sparse matrix is applied to storing the projection matrix, whichgreatly improves the efficiency of the experiment.
     2) There are some ladder phenomena and pseudo-edge phenomena when we appliedfirst-order TV function as the regularization. However, it will lead to blurred edgeswhen we applied higher-order TV function as the egularization. The paper proposestwo mixing optimization objective function based on the advantages of first-orderTV and higher-order TV. That is Multi-TV function and Mix-TV function. Then, wemake discussion about isotropic TV and anisotropic TV definition. Finally, we makeexperiments with P-Multi-TV algorithm and P-Mix-TV algorithm under polynomialacceleration framework for image reconstruction, and we get a good reconstructionquality.
     3) We make a discussion about advantages and disadvantages of ROF model andhigher totalvariation model based on the definition of the total variation function space. This thesis presents a hybrid model based on total variation which combineshigher totalvariation model and ROF model. Verified by experiments, this newmodel and solution strategies have great contribution for reconstruction quality. Weapplied Split Bregman algorithm for solving the new model and show a detailedderivation about algorithm, and then, make a point of convergence of the algorithm.Finally, new algorithm shows great adaptability and robustness according tonumerical experiments compared to other algorithms.
     4) For the characteristics of the image in the field of integrated circuits, we prompt animplified reconstruction model and give the corresponding solution algorithm.Algorithm greatly improves the speed of reconstruction whileguarantees the qualityof the reconstruction image.So, the algorithm is verified more suitable for real-timedetection needs according to experiment analysis.
引文
[1]高剑.三维重建应用系统研究[D].济南:山东大学.2009.
    [2]魏彪,先武.工业CT技术及其NDT应用[J].现代物理知识.2000,51:77-79.
    [3]刘汉诚τ美υ,汪正平τ美υ等.电子制造技术[M].姜岩峰,张常年译.北京:化学工业出版社.2005.
    [4]周德俭.SMT组装质量检测与控制[M].北京:国防工业出版社.2007.
    [5]王静.面向复杂产品的工业CT图像重建与分析技术[D].西安:西北工业大学.2004.
    [6]谢强.计算机断层成像技术[D].北京:科学出版社.2006.
    [7]庄天戈等.CT原理与算法[M].上海:上海交通大学出版社.1992.
    [8]马敏,赵亮,姬晶晶.基于Wiener滤波的反投影图像重建算法[J].核技术.2012,9(35).
    [9]Yuchuan Wei and Ge Wang.An Intuitive Discussion on the Ideal Ramp Filter inComputerd Tomograghy[J].2004.
    [10]张朝宗,郭志平,董宇峰等.用几何参数表方法实现快速重建CT图象[J].清华大学学报(自然科学版),1998,38(7):47-49.
    [11]傅健,路宏年.扇束工业CT滤波反投影重构算法的快速实现[J].计算机应用研究,2003,3:51-53.
    [12]杨民,路宏年,黄朝志.用查找表和极坐标反投影法实现计算机断层扫描快速重建[J].兵工学报.2004,25(4):476-479.
    [13]虞湘宾,毕光国.长序列信号快速相关及卷积的算法研究[J].电路与系统学报,2001,6(4):78-82.
    [14]吕新华,武斌.基于圆周卷积的长序列小波变换快速实现[J].信号处理,2006,26(2):903-905.
    [15]D W Tufts, Xiao Yu, et al. The arithmetic Fourier Transform [J].IEEE APPS Mag.1988,5(1):13-17.
    [16]G Thomas, V K Govindan. Computationally Efficient Filtered-back Projection Algorithmfor Tomographic Image Reconstruction Using Walsh Transform[J]. Journal of VisualCommunication&Image Representation,2006,17(3):581-588.
    [17]乔志伟.高速高精度解析式图像重建算法研究[D].北京:北京交通大学.2011.
    [18]过传卫,胡福乔.扇束等距CT滤波反投影重建算法的研究[J].软件天地.2007,23(1).
    [19]张銮,桂志国.扇束等距CT极坐标反投影重建算法的速度优化[J].无损检测.2010.32(2).
    [20]马有为,渠刚荣.一种新的图像重建的扇束卷积反投影算法[J].科学技术与工程.2007.7(21):5463-5467.
    [21]叶海霞.工业CT窄角扇束卷积反投影并行图像重建研究[D].重庆:重庆大学.2003.
    [22]L. A. Feldkamp,L.C.Davis,J.W.Kress.Practical cone-beam algorithm [J].OpticalSociety of America.1984,1(6):612-619.
    [23]H. K. Tuy. An inversion formula for cone-beam reconstruction[J]. SIAM Journal onApplied Mathematics.1983,43(3):546-552.
    [24]H. Kudo, T. Rodet, F. Noo, and M. Defrise. Exact and approximate algorithm for helicalcone-beam CT. Physical Medical Biology[J].2004,49:2913-2931.
    [25]M Grass, Th K hler and R Proksa.3D cone-beam CT reconstruction for circulartrajectories[J]. Physics in Medicine and Biology.2000,45(2):329-347.
    [26]霍修坤.锥束CT直接三维成像算法研究[D].合肥:安徽大学.2005.
    [27]B. D. Smith. Image reconstruction from cone-beam projections necessary and sufficientconditions and reconstruction methods[J]. IEEE Transactions on Medical Imaging,1985,4:14-25.
    [28]Grangeat G. Mathematical framework of cone-beam3D reconstruction via the firstderivative of the Radon transform [J]. Mathematical Methods in Tomography. LectureNotes in Math,1991,1497:66-97.
    [29]M.Defrise, R. Clack.A cone-beam reconstruction algorithm using shift-variant Filteringand cone-beam back projection [J].IEEE Transactions on MedicalImaging,1994,13(l):186-195.
    [30]张东平,张定华,张丰收.一种基于Grengeat公式的锥束CT重建算法研究[J].中国图像图形学报.2008.13(9):1649-1654.
    [31]Alexander Katsevieh. Theoretically exact filtered backprojection-type inversionAlgorithm for spiral CT [J]. SIAM Journal on Applied Mathematics,2002,62(6):2012-2026.
    [32]Yangbo Ye, Shiying Zhao, Hengyong Yu, et al.A general exact reconstruction forcone-beam CT via back projection-filtration [J].IEEE.Transactions on Medical Imaging.2005,24(9):1190-1198.
    [33]马俊峰.三维锥束CT图像重建加速技术研究[D].山东大学硕士学位论文.2011.
    [34]R. Gordon, R. Bender, G. T.Herman. Algebraic Reconstruction Techniques for threeDimensional Electron Micoscopy and X-ray Photography[J]. Theory Biology.1970,29:471-481.
    [35]Andersen A H, Kak A C. Simultaneous Algebraic Reconstruction Technique(SART):anew implementation of the ART algorithm[J].Ultrasonic Image,1984,6:81-94.
    [36]江少恩,刘忠礼等.乘代数重建法和最大墒重建法比较研究[J].光子学报,1998,27(5).
    [37]Guan H,Gordon R.A Projection access order for speedy convergence of ART:Amultilevel scheme for computed tomography[J].Phys Med Biol,1994,39:1005-1022.
    [38]G. T. Herman, L. B. Meyer. Algebraic reconstruction technique can be madecomputationally efficient [J].IEEE Transactions on Medica. Imaging.1993,12(3):600-609.
    [39]Mueller K. The weighted distance scheme: A globally optimizing projection orderingmethod for ART[J].IEEE Transactions on Medical Imaging,1997,16(2):1-14.
    [40]T. Kohler. A Projection access Scheme for Iterative Reconstruction Based on the GoldenSection [J].2004IEEE Nuclear Science and Medical Imaging Conference,CDROMM10-200,Rome,Italy,2004,12(16-22):3961-3965.
    [41]王宏钧,路宏年,傅健.代数重建技术中投影序列选择次序的研究[J].光学技术,2006,32(3):389-392.
    [42]赵星,胡晶晶,张慧滔等.基于图形处理器的锥束CT快速迭代重建算法[J].北京理工大学学报.2010,30(11):1310-1314.
    [43]刘远.CT代数重建的并行加速和图像质量优化技术研究[D].西安:西北工业大学.2006.
    [44]Yongsheng Pan, Ross Whitaker, Arvi Cheryauka, Dave Ferguson. Feasibility ofGPU-assisted iterative image reconstruction for mobile C-arm CT. SPIE Proceedings.Medical Imaging2009: Physics of Medical Imaging.2009,7825.
    [45]秦中元,牟轩沁等.一种内存优化的代数重建算法及其快速实现[J].电子学报.2003,31(9):1327-1329.
    [46]张顺利,张定华等.锥束ART算法快速图像重建.仪器仪表学报[J].2009,30(4).
    [47]郭威.CT不完全投影数据重建算法研究[D].长春:吉林大学.2011.
    [48]刘宝东.工业CT截断投影数据重建算法研究[D].重庆:重庆大学.2010.
    [49]Shepp L.A., Vardi Y. Maximum likelihood reconstruction for emission tomography [J].IEEE Transactions on Medical Imaging.1982,1(2):113-122.
    [50]Hudson H.M., Larkin R.S.Accelerated image reconstruction using ordered subsets ofprojection data [J]. IEEE Transactions on Medical Imaging.1994,13(4):601-609.
    [51]吴琨.三维锥束OSEM算法中子集序列的研究[J].电子测试.2011.(1):1-5.
    [52]K. Mueller, R.Yagel, J F Cornhill. The Weighted Distance Scheme: A GloballyOptimizing Projection Ordering method for ART [J]. IEEE Transactions on MedicalImaging.1997,16(2):1-14.
    [53]Li Tianfang, Li Xiang, Wang Jing, et.al. Nonlinear sinogram smoothing for low-doseX-ray CT [J].IEEE Transactions on Nuclear Science.2004,51(5):2505-2513.
    [54]Wang J, Li T, Lu H, et al. Penalized weighted least-squares approach to sinogram noisereduction and image reconstruction for low-dose X-ray computed tomography [J].IEEETransactions on Medical Imaging.2006,25(10):1272-1283.
    [55]Whiting BR. Signal statistics in x-ray computed tomography[C]. In Proceedings, Physicsof Medical Imaging.2002,4682(53):.53-60.
    [56]O’Sullivan JA, Whiting BR, Snyder DL. Alternating minimization algorithms fortransmission tomography using energy detectors[C].Proc36th Asilomar Conf Signals,Systems and Computers (Monterey, CA,4–6Nov),2002.
    [57]Elbakri IA, Fessler JA. Efficient and Accurate Llikelihood for Iterative ImageReconstruction in X-Ray Computed Tomography[C]. Proceedingsof SPIE MedicalImaging: Image Processing5032:1839-1850.
    [58]Whiting BR, Massoumzadeh P, Earl OA, et al. Properties of preprocessed sinogram datain x-ray computed tomography [J]. Medical Physics,2006,33(9):3290-3303.
    [59]Lasio GM, Whiting BR, Williamson JF. Statistical reconstruction for x-ray computedtomography using energy-integrating detectors [J]. Physics in Medicine and Biology,2007,52(8):2247-2266.
    [60]Deák Z, Grimm JM, Treitl M, et al. Filtered back projection adaptive statistical iterativereconstruction and a model-based iterative reconstruction in abdominal CT: Anexperimental clinical study [J]. Radiology,2013,266(1):197-206.
    [61]Thibault JB, Bouman C, Sauer K, et al. A recursive filter for noise reduction in statisticaliterative tomographic imaging[C].Proc. of SPIE, Computational Imaging IV.2006,6065.
    [62]Nakanishi S, Silver MD, Zamyatin AA. Low dose CT Simulation Using ExperimentalNoise Model[C].Postdam,Germany,2011:203-205.
    [63]方林,李亮.自适应统计迭代重建技术在降低CT辐射剂量中的应用进展[J].CT理论与应用研究.2013.22(2),1-5.
    [64]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社.2008.
    [65]Aubert G, Kornprobst P. Mathematical problems in image processing: partial differentialequations and the calculus of variations. New York: Springer,2002.
    [66]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removalalgorithms[D]. Physica.1992,60:259-268.
    [67]E.Y. Sidky, C. Kao, and X. Pan. Accurate image reconstruction from few-views andlimited-angle data in divergent-beam CT [J]. Journal of X-Ray Science and Technology,(2006),14:119–139.
    [68]E.Y. Sidky and X. Pan. Image reconstruction in circular cone-beam computedtomography by constrained, total-variation minimization [J]. Physics in Medical andBiology,2008,53:4777–4807.
    [69]E.Casas, K. Kunisch and C.Pola. Regularization by functions of bounded variation andapplications to image enhancement[J]. Appl.Math.Optim.1999,40:229-257.
    [70]A.Chambolle and P.L.Lions. Image recovery via total variational minimization andrelated problems[J]. Numer. Math.,1997,76:167-188.
    [71]W.Ring. Structural properties of solutions of total variation regularizationproblems.ESAIM, Math Modeling and Numerical Analysis.2000,34:799-810.
    [72]C.R.Vogel. Computational Methods for inverse problems. Frontiers Appl.Math.23, SIAM,Philadelphia,2002.
    [73]Marquian A, Osher S. Explicit algorithm for a new time dependent model based on levelset moton for nonlinear deblurring and noise removal. SIAM Journal of ScientificComputing[J].2000,22:387-405.
    [74]Blomgren P V, Chen T F. Color TV: total variation method for restoration of vectorvalued images[J]. IEEE, IP,1998,7(3):304-309.
    [75]Aubert G, Vese A. A variational method in image recovery[J]. SIAM Journal ofNumerical Analysis.1997,35(5):1948-1978.
    [76]Martin Benning, Christoph Brune, Martin Burger, Jahn Müller. Higer-order TVmethods-enhancement via Bregman Iteration[J]. Journal of scientific computing.2013,Volume54(2-3):269-310.
    [77]Yi. D. Leo S. Fourth-order partial differential equations for imageenhancement[J].Applied Mathematics and Computation,2006,175:430-440.
    [78]Kim S, Lim H. Fourth-order parital differential equations for effective image denoising.Electronic Journal of Differential Equations, conference.2009.17:107-121.
    [79]Steidl G, Mannheim. A note on the dual treament of higher-order regularizationfunctionals.Computing,2006,76:135-148.
    [80]Hajiaboli M R. A self-governing fourth-order nonlinear diffusion filter for image noiseremoval[J]. IPSJ Transaction on Computer Vision and Applications,2010,2:94-103.
    [81]KATSAGGELOS,A. Iterative image restoration algorithms[J]. Optical engineering,1989,28(7):735-748.
    [82]庞亚红,毛幼菊.一种基于凸集投影(POCS)的数字图像超分辨率重建算法[J].计算机工程与应用.2005,41τ4υ:69-71.
    [83]CHAN,T,GOLUB,G,MULET,P. A nonlinear Primal-dual method for totalVariation-based image restoration[J]. SIAM journal on scientific computing.1999,20(6):1964-1977.
    [84]Vogel,C. R. Computational methods for inverse Problems[J]. Society for IndustrialMathematies,2002.415-419.
    [85]Chambolle,A. An algorithm for total variation minimization and applications[J]. Journalof Mathematical Imaging and Vision.2004,20(l):89-97.
    [86]Elad, M. Why simple shrinkage is still relevant for redundant representationsInformation Theory,IEEE Transactions on.2006,52(12):5559-5569.
    [87]Elad,M.,Matalon,B.,Zibulevsky,M. Image denoising with shrinkage and redundantrepresentations[C]. In: comput. Soc. Conference. Computer Vision and PatternRecognition.New York.2006,2:1924-1931.
    [88]Nowak,R D,Figueiredo,M A T. Fast wavelet-based image deconvolution using the EMalgorithm[C]. In35th Asilomar Conference Signals and Systems,Computers IEEE.2001,l:371-375.
    [89]Starck,J.,Donoho,D.,Candes,E. Astronomical image representations by the curvelettransform. Astronomy and Astrophysics. Berlin,2003,398(2):785-800.
    [90]Tarck,J.L.,Nguyen,M.K.,Murtagh,F. Wavelets and curvelets for image deconvolution:a combined approach[J]. Signal Processing.2003,83(10):2279-2283.
    [91]Bioucas-Dias, J.M., Figueiredo, M.A.T. A new TwIST: two-step iterativeshrinkage/thresholding algorithins for image restoration[J]. Image Proeessing,IEEETransactionson.2007,16(12):2992-3004.
    [92]Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm forLinear Inverse Problems[J]. SIAM J. imaging sciences.2009,2(1):183–202.
    [93]Bioucas-Dias,J.M.,Figueiredo,M.A.T.,Oliveira,J.P. Total variation-based imagedeconvolution: a majorization-minimization approach[J].In Eusipco Florence,Italy.2006,2:11-13.
    [94]Fu,H.,Ng,M.K.,Nikolova,M.,Barlow, J.L. Efficient Minimization Methods of Mixedl2-l1and l1-l1Norms for Image Restoration[J]. SIAM journal on Scientificcomputing.2005,27(6):1881-902.
    [95]Elaine T. Hale, Wotao Yin, and Yin Zhang. A Fixed-Point Continuation Method forL1-Regularized Minimization with Applications to Compressed Sensing[J]. Society ofIndustrial and Applied Mathematics.2008,19(3):1107-1130.
    [96]Zai Wen, Wen. Wotao, yin and Donald Goldfarb et al. A fast algorithm for sparsereconstruction based on shrinkage, subspace optimization, and continuation[J]. SIAMJoural of Scientific Computing.2010,32:1832-1857.
    [97]Osher,S.,Burger, M. Jinjun Xu and Wotao yin. An iterative regularization method fortotal variation-based image restoration[J]. Society for Industrial and AppliedMathematics, Multiscale Model Simulation.2005,4(2):460-489.
    [98]Wotao Yin, Osher. S, Donald Goldfarb, and Jerome darbon. Bregman iterative algorithmsfor L1-minimiaztion with applications to compressed sensing[J].Society for Industrialand Applied Mathematics, SIAM J. Imaging Sciences.2008,1(1):143-168.
    [99]Jianfeng Cai, Stanley Osher and Zuowei Shen. Linearized bregman iterations forcompressed sensing[J]. Mathematics of computation.2009,78(267):1515-1536.
    [100]Jianfeng Cai, Stanley Osher and Zuowei Shen. Convergence of the linearized bregmaniteration for L1-norm minimization[J]. Mathematics of computation.2009,78(268):2127-2136.
    [101]Goldstein, T., Osher, S. The split Bregman method for L1-regularizedProblems[J].SIAM Joumal on Imaging Seiences.2009,2:323-343.
    [102]Yang,J,Yin,W.,Zhang,Y,Wang,Y. A fast algorithm for edge-Preserving Variationalmultichannel image restoration[J]. SIAM Journal on Imaging Sciences.2009,2(2):569-592.
    [103]王丽艳,韦志辉,罗守华.总变差正则化断层图像重建的解耦Bregman迭代算法[J].中国图象图形学报.2011.16(3).
    [104]李亚峰,冯象初.L1投影问题的分裂Bregman方法[J].电子学报.2010.11.
    [105]鲁晓磊,黄本雄,王芙蓉.基于多步迭代方法的快速总变分图像复原[J].光电工程.2009,36(10).
    [106]史宝丽.几类全变差型图像恢复模型研究[D].长沙:湖南大学.2012.
    [107]刘炳初.泛函分析[M].北京:科学出版社,1998.
    [108]张恭庆,林源渠.泛函分析讲义τ上册υ[M].北京:北京大学出版社.1987.
    [109]H.L.Royden. Real analysis[M]. China Machine Press,2005.
    [110]Stephen Boyd, Lieven Vandenberghe.Convex Optimization[M].王书宁,黄晓霖等译.清华大学出版社.2013.
    [111]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社.2008.
    [112]R. Gordon, R. Bender, G. T.Herman. Algebraic Reconstruction Techniques for threeDimensional Electron Micoscopy and X-ray Photography [J]. Theory of Biology.1970,29:471-481.
    [113]张顺利,工业CT图像的代数重建方法研究及应用[D].西安:西北工业大学.2004.
    [114]袁亚湘,孙文瑜.科学出版社[M].最优化理论与方法.1997.
    [115]http://www.mathworks.cn/matlabcentral/fileexchange/29364-compressed-sensing-mri-phantom-v1-1.
    [116]PANG Z P, YANG Y F. A projected gradient algorithm based on the augmentedLagrangian strategy for image restoration and texture extraction [J]. ELSEVIER Imageand Vision Computing,2011,29(2-3):117-126.
    [117]Goldstein T, Osher S. The Split Bregman method for L1regularized problem [J].SIAMJournal on Imaging Sciences,2009,2(2):323-343.
    [118]S. Chen, D. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1998,20:33-61.
    [119]R. Tibshirani. Regression shrinkage and selection via the lasso [J]. Journal RoyalStatistical Society B.1996,58:267-288.
    [120]M. Wakin, J Laska, M. Duarte et al. An architecture for compressive image[C].InProceedings of the International Conference on Image Processing(ICIP), Atlanta,Georgia,2006.
    [121]M. Fornasier and H. Rauhut. Recovery algorithms for vector valued data with jointsparsity constraints. Society for Industrial and Applied Mathematics.[J] SIAM Journalof Numer. Analysis.2007:1-37.
    [122]W. Wang, M. Garofalakis and K. Ramchandran.Distributed sparse random projectionsfor refinable approximation.[C]Processings of International Conference on InformationProcessing in Sensor Networks(IPSN).2007:331-339.
    [123]J. Tropp, M Wakin, M. Duarte et al. Random filters for compressive sampling andreconstruction [J]. In proceedings of IEEE International Conference on Acoustics,Speech, and Signal Processing (ICASSP). Toulouse, France,2006.
    [124]J. Laska, S. Kirolos, M. Duarte et al. Theory and implementation of an analog-toinformation converter using random demodulation[J]. In Proceedings of the IEEEInternational Symposium on Circuites and Systems (ISCAS). New Orleans, Louisiana,2007,1959-1962.
    [125]I. Selesnick, R Van Slyke and O. Guleryuz. Pixel recovery via l1minimization in thewavelet domain[C].2004International Conference on Image Processing,2004,3:1819-1822.
    [126]M. Elad, J. C. Starck, P Querre and D.Donoho. Simultaneous cartoon and texture imageinpainting using morphological component analysis[J]. Journal on Applied andComputational Harmonic Analysis.2005,19(3):340-358.
    [127]S. J. Kim, K. Koh, B. Stephen. An Interior-Point method for large-scale l1-regularizedLogistic Regression[J]. Journal of Machine Learning Research.2007,8:1519-1555.
    [128]Figueiredo, M.A.T., Nowak, R.D. Wright, S.J. Gradient projection for sparsereconstruction:application to compressed sensing and other inverse problems [J]. IEEEJournal of Selected Topics in Signal Processing: Special Issue on Convex OptimizationMethods for Signal Processing.2007,1τ4υ:586-597.
    [129]R. Rockafellar. Convex Analysis [M]. Princeton University Press, Princeton,1970.
    [130]Jain A K, Dubes R C. Algorithm for Clustering Data.Prentice-Hall Advanced ReferenceSeries,1988.
    [131]Jain AK, Duin RPW, Mao J C. Statistical pattern recognition: A review. IEEETransactions on Pattern Analysis and Machine Intelligence.2000,22(1):4-37.
    [132]Sambasivam S, Theodosopoulos N. Advanced data clustering methods of mining Webdocuments. Issues in Informing Science and Information Technology.2006,(3):563-579.
    [133]Sanguthevar Rajasekaran. Efficient Parallel Hierarchical-Clustering Algorithms. IEEETransactions on Parallel and Distributed systems.2005,16(6).
    [134]Everitt, B.S., Landau, S. and Leese. Cluster analysis.[M]. London: Arnold.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700