玉米骨干亲本及其衍生系重要生理性状演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米骨干自交系在育种中发挥着重要作用,但是针对其演变过程中的农艺性状与生理特性的变化缺乏系统研究。本试验于2007年~2008年在三个玉米主产区进行,主要生理特性及室内分析指标在山东农业大学作物生物学国家重点实验室进行。以黄早四及其衍生系、Mo17及其衍生系、掖478及其衍生系和衍生品种为试验材料,对骨干自交系演变过程中衍生系的产量、光合、植株性状、抗病性与生态适应性等性状的变化进行研究。研究结果表明:
     1、骨干亲本及其衍生系光合特性的变化
     新品种Pn的衰减率较低,花后30天新品种的Pn显著高于老品种四单19。各自交系间Pn基因型差异显著,但是与各类自交系的均值差异不一致;黄早四Pn高于改良、分离系的Pn,低于其衍生系回交改良系、单交选系、双交选系的Pn,而表现为明显的改良优势;Mo17及其衍生系Pn高于黄早四及其衍生系的Pn值,且Mo17的衍生系Pn与Mo17差异不明显,表现出遗传稳定性。
     各杂交种间的叶面积差异显著,ND108、ZD958、YD13的叶面积分别比SD19的叶面积增加了38.57%、21.87%、18.97%,新品种的叶面积高值持续期长;黄早四及其衍生系的叶面积大小顺序依次为:双交选系>单交选系>改良分离系>回交改良系>黄早四的叶面积,且衍生系的叶面积的高值持续期较长;Mo17及其衍生系的叶面积高于黄早四及其衍生系的叶面积,Mo17的叶面积在乳熟期之前高于衍生系的叶面积,乳熟期后低于单交选系和双交选系的叶面积。
     黄早四为典型的非保绿性自交系,叶绿素含量较低(1.52~2.63 mg·g~(-1)·FW),其衍生系的叶绿素含量均高于黄早四的叶绿素含量,衍生系的保绿性得到明显改良;Mo17具有较好的保绿性,其叶绿素含量(2.11 ~3.89mg·g~(-1)·FW)高于黄早四,但Mo17的叶绿含量后期下降较快,Mo17的衍生系遗传了保绿性的特点,且衍生系的叶绿素含量下降缓慢。
     2骨干亲本及其衍生系产量与干物质积累的变化
     2.1骨干亲本及其衍生系产量性状的变化
     杂交种的各产量性状、植株性状均表现出杂种优势,新品种的产量提高,穗粒数增加,千粒重增加,其他产量性状变化不大;生育期延长,且花后生育期占总生育期的比例增加。黄早四的生育期较短94天,其衍生系的生育期逐渐延长;掖478的生育期较长120天,其衍生系的生育期逐渐缩短;各骨干亲本的衍生系花后生育期占总生育期的比例均逐渐增加,有利产量的提高。Mo17的株高、穗位高较高(226.4cm, 91.8cm),其衍生系株高、穗位高逐渐降低;掖478的株高、穗位高较低(156.8cm, 52.8cm),其衍生系的株高、穗位高逐渐增加。各骨干亲本及其衍生系的穗行数逐渐增加,黄早四及其衍生系穗粗和穗粒数,Mo17、掖478及其衍生系的穗长变化较小,遗传过程中较稳定。
     2.2骨干亲本及其衍生系的物质积累与分配
     杂交种的生物量、籽粒产量、收获指数提高,且籽粒产量的杂种优势指数是各性状杂种优势指数最高的。黄早四的衍生系叶片重、茎秆重、轴重和生物量在演变过程中逐渐增加,收获指数降低,不利于产量的提高;Mo17的叶片重、茎秆重、生物量、籽粒产量、收获指数均较高,其衍生系略有降低;掖478的衍生系的生物量低于掖478,但是衍生系的籽粒产量、收获指数较高,在增加收获指数的同时,提高生物量是进一步提高自交系产量的途径。
     3骨干亲本及其衍生系的生态适应性
     3.1产量性状的生态适应性
     杂交种在哈尔滨的穗粒数最大,雅安的值最低;黄早四的穗粒数在泰安与哈尔滨的值相差不大,泰安的较高;Mo17的穗粒数在三试验地点间差异不明显,说明穗粒数的适应性较强;掖478由莱州农科所选育,其衍生系的穗粒数均以泰安最高,雅安最小;千粒重受环境的影响较大,各骨干亲本的衍生系均是哈尔滨的最大,雅安最小。
     3.2植株性状的生态适应性
     黄早四、Mo17、掖478及其衍生系、杂交种的株高、茎粗在泰安的值高于哈尔滨,黄早四、掖478及其衍生系的穗位高在泰安的值高于哈尔滨的值;植株性状均是雅安的值最低,且株高在三试验点的变异系数最小,穗位高在三试验点的变异系数最大,株高的稳定性较强,穗位高受外界环境的影响较大。
Maize elite inbred lines play a critical role in maize breeding; however, there was lack of system research on agronomic traits and physiological traits in the process of its evolution. For this reason, the study were carried out from 2007 to 2008 in main maize production region of china, and the important physiological traits and indoor analysis experiments were conducted in state key laboratory of crop biology of Shandong Agricultural University. To explore evolution law, Huang zaosi and its derived lines, Mo17 and its derived lines, Ye478 and its derived lines and maize hybrid were used as experiment materials at grop for the change of yield, photosynthetic characteristic, plant traits, disease resistance and ecological adaptability of derived lines in the process of evolution of elite inbred lines. The main results were as follows:
     1 The change of photosynthetic characteristic of elite inbred line and its derived lines
     Declined photosynthesis rate of new hybrid was lower than old,but Pn of new hybrid increased significantly than SD19. There was significantly genotypic difference in Pn of different inbred lines, while there existed inconsistent difference of different derived lines; Pn of Huang Zaosi was higher than improved or separated lines, and lower than backcross improvement lines, single cross lines and Double cross lines; although Pn of Mo17 and its derived lines was higher than Huang Zaosi and its derived lines, there is no significantly difference in Pn between Mo17 and its derived lines, displaying genetic stability.
     There were differences significantly on leaf areas among every hybrid, which of ND108、ZD958、YD13 increased by 38.57%、21.87%、18.97% in comparison with SD19 respectively, and the high leaf areas of new hybrid were lasting longer than old. The leaf areas of Huang zaosi and its derived lines represented Double cross lines > single cross lines > the backcross improvement lines > Huang zaosi, and the derived lines pass through succession into high leaf area value phases that were long lasting. For Mo17 and its derived lines, the leaf areas were higher than Huang zaosi and its derived lines. Mo17 was higher than its derived lines on the leaf area before milk phase,however, it was becoming lower than that of single cross lines and the backcross improvement lines after a milky phase.
     Huang Zaosi, a typical non-stay-green elite inbred line, was lower than its derived lines for chlorophyll content; Mo17, whose chlorophyll content is higher than Huang Zaosi, is stay-green elite inbred line. And chlorophyll content of Mo17 reduced faster than its derived lines at latest stage, which was because its derived lines inherit stay-green characteristic, and chlorophyll content of its derived lines reduced slowly.
     Huang Zaosi with low chlorophyll content(1.52~2.63mg·g~(-1)·FW), was a typical non-stay-green elite inbred line, chlorophyll content of whose was lower than its derived lines; chlorophyll content of Mo17 (2.11~3.89 mg·g~(-1)·FW), a stay-green elite inbred line, was higher than that of Huang Zaosi, and reduced faster than its derived lines at latest stage during its derived lines inherit stay-green characteristic and reducing chlorophyll content slowly.
     2 Yield and dry matter accumulation of elite inbred lines and its derived lines
     2.1 Yield traits of elite inbred lines and its derived lines
     Both yield traits and plant characteristics of hybrids were presented to illustrate heterosis, containing yield improving, 1000-grain weight increasing, while other traits changed little. Growth period of hybrids prolonged and enhanced on the percentage about after anthesis in total growth period. The growth period of Huang zaosi was very short, while its derived lines extended gradually; Ye478 was longer on growth period, while its derived lines shorten. It could provide yield advantages for the derived lines of all elite parents due to the increase of growth period percentage on after anthesis in total growth period. For plant height and Ear Height in maize, Mo17 was high, while its derived lines lowered step by step; differently with Mo17, Ye478 was low, while its derived lines rose step by step. On the whole, ear row numbers rose in elite parents and their derived lines gradually, while little change existed owing to inheritance stability in elite inbred lines and its derived lines, such as ear diameter and ear kernels in Huang zaosi, and ear length in Mo17 and Ye478.
     2.2 Matter accumulation and Partitioning of elite parent and its derived lines
     Biomass, gain yield, harvest index increased in hybrids, and the highest heterosis index were noted in gain yield. It was heighten on leaf weight, stem weight, axis weight, biomass, grain yield about Huang zaosi’derived lines in the course of evolution, while harvest index declined, which was the most strongly disadvantaged for yield . For Mo17, it was high on leaf weight, stem weight, biomass, grain yield, harvest index of elite parent, only was little fall founded on its derived lines. The derived lines of Ye478 were lower than its elite parent on biomass, but whose grain yield and harvest index was higher. Based on study above, the conclusion was showed that it could provide a key avenue for raising more yields of inbred lines through the improvement of biomass yields when harvest index was high.
     3 Ecological adaptability of elite parent and its derived lines
     3.1 Ecological adaptability of yield traits
     Kernels per ear of hybrid were the highest in Harbin among all experiment sites, and the lowest in Yaan. Kernels per ear of Huang Zaosi were the biggest in Taian, but the difference was small beween Taian and Harbin. Mo17 has a strong ecological adaptability on kernels per ear based on not being significant difference in three experiment sites. Ye478 was selected and bred from Agricultural Science Institute at Laizhou, the derived lines of whose owned the biggest on kernels per ear in Taian, the smallest in Yaan, and had impact on weight per 1000 kernels that the biggest was Harbin, the smallest Yaan.
     3.2 Ecological adaptability of plant traits
     Plant height and stem diameter in Huang Zaosi, Mo17, Ye478 and their derived lines, and hybrid were higher in Taian than that in Harbin, at the same time, ear heights on Huang Zaosi, Ye478 and their derived lines were higher in Taian than that in Harbin; all plant traits were the lowest in Yaan that ranked the smallest coefficient of variation for plant height, the biggest coefficient of variation for ear height, maintained stability strongly on plant height, to some extend, it also illustrated the influence on ear height which such factors as the external environment.
引文
[1]白永新,王早荣,钟改荣,等.玉米高配合力亲本自交系、杂交种棒三叶的性状分析及叶面积的相关性研究[J].玉米科学, 1999, 7(2): 24-26.
    [2]曹广才.实用玉米自交系[M].北京:气象出版社, 2000.
    [3]陈范骏,米国华,刘建安,等.玉米自交系木质部伤流液中氮素形态差异及其与氮效率的关系[J].中国农业科学, 1999, 32(5): 43-48.
    [4]陈国平.玉米干物质生产与分配[J].玉米科学, 1994, 2(1): 48-53.
    [5]陈素英,王绍仁,胡春胜.玉米自交系秸秆粗蛋白质背景值研究[J].玉米科学, 2002, 10(2): 24-26.
    [6]陈永欣,翟广谦,李彦良,等.糯玉米自交系、杂交种棒三叶与产量之间相关性分析[J].玉米科学, 2001, 9(2): 50-52.
    [7]春亮,陈范骏,李建生,等.玉米自交系对低氮反应的田间与盆栽评价[J].玉米科学, 2005, 13(1): 28-32.
    [8]董树亭,高荣岐,胡昌浩,等.玉米花粒期群体光合性能与高产潜力研究[J].作物学报, 1997, 23(3): 318-325.
    [9]董树亭,高荣岐,胡昌浩,等.玉米生理生态与产量品质形成[M].北京:高等教育出版社, 2006.
    [10]董树亭,胡昌浩,岳守松,等.夏玉米群体光合速率特性及其与冠层结构、生态条件的关系[J].植物生态与地植物学学报, 1992, 16(4): 372-378.
    [11]董树亭,胡昌浩,周关印.玉米叶片气孔导度、蒸腾和光合特性研究[J].玉米科学, 1993, 1(2): 41-44.
    [12]董树亭,王空军,胡昌浩.玉米品种更替过程中群体光合特性的演变[J].作物学报, 2000, 26(2): 200-204.
    [13]高荣耀,王米贵,赵殿轩.黄早四及其部分衍生系农艺性状与配合力分析[J].河北农业科学, 1994, 3: 9-13.
    [14]高伟政,栾化泉,李恒岭,张万志,周慧,张琳.玉米自交系骨干类群旅大红骨、四平头、Pn种群生态适应性研究[J].中国种业, 2009, 12: 37-39.
    [15]高翔,曹绍书,罗仕文,等.浅析唐四平头杂优群体选系及其改良系在中国玉米育种和生产中的作用[J].玉米科学, 2005, 13(增刊): 20-22, 25.
    [16]高翔,祝云芳,孙章和,等. Lan杂优群Mo17亚群选系及其衍生系在中国玉米育种和生产中的作用[J].种子, 2005, 24(2): 75-79.
    [17]关义新,林葆,凌碧莹,等.光氮互作对玉米叶片光合色素及其荧光特性与能量转换的影响[J].植物营养与肥料学报, 2000, 6(2): 152-158.
    [18]关义新,马兴林,向春阳,等.不同玉米自交系氮效率的分析[J].玉米科学, 2004, 12(1): 100-102.
    [19]郭望山,孟庆翔.杜马斯燃烧法与凯氏法测定饲料含氮量的比较研究[J].畜牧兽医学报, 2006, 37 (5): 464-468.
    [20]郭小强,赵明,李少昆.不同玉米自交系光合特性的研究[J].玉米科学, 1997, 5(3): 46-49.
    [21]胡昌浩,董树亭,王空军,等.我国不同年代玉米品种生育特性演进规律研究,II物质生产特性的演进[J].玉米科学, 1998, 3: 49-53.
    [22]胡昌浩,董树亭,岳守松,等.高产夏玉米群体光合速率与产量关系的研究[J].作物学报, 1993, 19(1): 64-69.
    [23]胡文新,彭少兵,高荣孚,等.国际水稻研究所新株型水稻的气孔特性[J].中国农业科学, 2002, 35(10): 1286-1290.
    [24]姜敏,刘静,赵辉,张喜华.玉米植株形态性状的配合力研究[J].杂粮作物, 2004, 24(3): 133-135.
    [25]蒋丽,刘延吉.不同玉米自交系耐低钾的酶学特性研究[J].沈阳农业大学学报, 2005, 36(3): 279-281.
    [26]柯永培,赖仲铭.我国玉米生产两个年代主要自交系性状的比较研究[J].四川农业大学学报, 1993, 11(1): 56-63.
    [27]兰进好,李新海,高树仁,等.不同生态环境下玉米产量性状QTL分析[J].作物学报, 2004, 31(10): 1253-1259.
    [28]李波,陈喜昌,高云,等.青贮玉米生物产量与植株主要农艺性状相关的研究[J].玉米科学, 2004, 13(2): 76-78.
    [29]李登海,张永慧,杨今胜,等.育种与栽培相结合紧凑型玉米创高产[J].玉米科学, 2004, 1: 69-71.
    [30]李登海.从事紧凑型玉米育种的回顾与展望[J].作物杂志, 2000, 5: 1-5.
    [31]李凤艳,张兴华,张仁和,等.不同世代玉米自交系产量配合力的研究[J].玉米科学, 2006, 14(6): 32-34.
    [32]李海英,倪红涛,杨庆凯.大豆叶片结构与灰斑病抗性的研究I大豆叶片气孔密度、茸毛密度与灰斑病抗性的关系[J] .中国油料作物学报, 2001, 23(3): 52-54.
    [33]李凌雨,阎彩清,邢亚静,等.中国玉米自交系植株性状分析[J].玉米科学, 2002, 10(4): 5-7.
    [34]李少昆,赵明,许启凤,等.我国常用玉米自交系光合特性的研究[J].中国农业科学, 1999, 32(2): 53-58.
    [35]李少昆.关于光合速率与作物产量关系的讨论[J].石河子大学学报(自然科学版), 1998, 5(3): 25-50.
    [36]刘纪麟主编.玉米育种学[M].北京:农业出版社, 1991, 204-206.
    [37]刘婷婷,樊明寿,李春俭.不同但效率玉米自交系对氮素供应的反映[J].华北农学报, 2005, 20(3): 83-86.
    [38]刘新芝,彭泽斌,思扬,等. 50个常用玉米自交系配合力的聚类分析[J].玉米科学, 1994, 2(3): 1-6.
    [39]刘勋甲,郑用琏,石永刚,等. 4个玉米合成群体及其亲本群体的遗传变异比较与利用[J].作物学报, 1999, 25(2): 208-214.
    [40]刘治先,赵宝和,韩静,等.山东省玉米杂交种的种质基础和创新利用分析[J].山东农业科学, 2001, 6: 21-24.
    [41]刘治先.山东省玉米主要育成推广杂交种系谱分析[J].中国种业, 1991, 4: 20-22.
    [42]刘宗华,王春丽,汤继华,等.氮胁迫对不同玉米自交系若干农艺性状和产量的影响[J].河南农业大学学报, 2006, 40(6): 573-577.
    [43]路贵和.黄淮海地区不同抗旱类型大豆种质资源气孔特性与抗旱性的研究[J].大豆科学, 2000, 19(1): 1-7.
    [44]米国华,刘建安,张福锁.玉米氮效率生理生化基础及遗传改良[J].玉米科学, 1997, 5: 9-13.
    [45]米国华,刘建安,张福锁.玉米杂交种氮效率的构成因素分析[J].中国农业大学学报, 1998, 3(增): 97-104.
    [46]牛连杰.不同年代玉米自交系性状改良趋势的研究[J].中国种业, 2004, 12:37-38.
    [47]汤继华,谢惠玲,黄绍敏,等.缺氮条件下玉米自交系叶绿素含量与光合效率的变化[J].华北农学报, 2005, 20(5): 10-12.
    [48]陶世蓉,初庆刚,东先旺,等.不同株型玉米叶片形态结构的研究[J].玉米科学, 1995, 3(2): 51-53.
    [49]佟屏亚.从植株形态指标评价玉米育种方向[J].玉米科学, 2006, 14(6): 1-3.
    [50]佟屏亚.玉米科技史[M].北京:中国农业科学技术出版社, 2000.
    [51]王建革.我国玉米自交系性状的改进[J].玉米科学, 1997, 5(4): 26-29.
    [52]王空军,董树亭,胡昌浩,等.我国1950s-1990s推广的玉米品种叶片光合特性演进规律研究[J].植物生态学报, 2001, 25(2): 247-251.
    [53]王庆成,牛玉贞,徐庆章,等.株型对玉米群体光合速率和产量的影响[J].作物学报, 1996, 22(6): 223-227.
    [54]王秀玲,赵明,王启现,等.玉米杂交种及亲本自交系气孔特征[J].作物学报, 2004, 30(3): 293- 296.
    [55]王艳,米国华,陈范骏,等.玉米自交系氮效率基因型差异的比较研究[J].应用与环境生物学报, 2002, 8(4): 361-365.
    [56]王懿波,王振华,陆利行,等.中国玉米种质基础、杂种优势群划分与杂优模式研究[J].玉米科学, 1998, 6(1): 9-13.
    [57]王懿波,张庆吉,朱良骅.我省玉米种质基础的综合分析与评价[J].河南农业大学学报, 1986, 20(1): 62-71.
    [58]王振华,王懿波,王永普.玉米自交系株型和产量性状的遗传改良效果[J].作物杂志, 2001, (1): 15-16.
    [59]王志永,赵明,李连禄.单株穗数对玉米后期物质生产的影响[J].玉米科学, 2007, 15(1): 33-36.
    [60]乌艳红,尚庆华,姜永,潘翔磊,孙雄松,卢小良.光周期遗传特性对青饲玉米植株生长的影响[J].华南农业大学学报, 2004, 25(1): 36-40.
    [61]吴景锋.我国玉米单交种二十年的发展[J].作物杂志, 1991, (1): 1-4.
    [62]吴景锋.我国主要玉米杂交种种质基础评述[J].中国农业科学, 1983, 16(2): 1-8.
    [63]向春阳,田秀平,杨克军,等.典型玉米自交系氮素吸收利用特点的研究[J].农艺科学, 2005, 21(3): 146-149.
    [64]谢振江,李明顺,李新海,等.华北地区骨干玉米自交系农艺性状与产量的相关性[J].沈阳农业大学学报, 2007, 38(3): 265-268.
    [65]邢吉敏,袁文忠,李永良.玉米自交系与姊妹交种花期授粉规律的研究[J].种子科技, 2001, (5): 288-289.
    [66]徐庆章,王庆成,牛玉贞,等.玉米株型与群体光合作用的关系研究[J].作物学报, 1995, 21(4): 492-496.
    [67]闫海霞,张宝石.浅谈我国玉米种质扩增、改良和创新的途径[J].玉米科学, 2006, 14(3): 20~24
    [68]杨海霞.玉米新政给燃料乙醇带来什么[J].中国投资, 2007, 11: 56-59.
    [69]姚启伦.“两群”主要玉米自交系部分性状的比较研究[J].西北农林科技大学学报(自然科学版), 2003, 31(4): 23-29.
    [70]曾三省.中国玉米杂交的种质基础[J].中国农业科学, 1990, 23(4): 1-9.
    [71]张建华,石春焱,张长珠. Lancaster基础与唐四平头基础群体选系探讨及其杂交优势利用[J].作物品种资源, 1997, 2: 20-21.
    [72]张丽颖,金连财.几个玉米骨干系在育种和生产中的应用[J].杂粮作物, 2000, 20(4): 7-10.
    [73]张天真主编.作物育种学总论[M].北京:中国农业出版社, 1991.
    [74]张银锁,宇振荣, P. M. Driessen.环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究[J].作物学报, 2002, 28(1): 104-109.
    [75]张泽民,李雪英,高书颖,等.不同育种年代玉米自交系和杂交种的过氧化物酶和酯酶同工酶的研究[J].华北农学报, 1997, 12 (4): 62-67.
    [76]赵博,刘新香,陈彦惠,康志河,唐瑞勤.不同生态环境对玉米杂交种粗脂肪含量的影响[J].河南农业科学, 2006, 12: 23-25.
    [77]赵殿轩,刘玉梅,苏方宏,等.京、津、冀、鲁、豫主要玉米种质基础及其演化利用钩沉[J].华北农学报, 1994, 9(增刊): 16-23.
    [78]赵羹梅,张鹏宴,蒋小满.过氧化物酶活性与玉米自交系对丝黑穗病抗性的关系[J].植物病理学报, 1996, 26(1): 37-39.
    [79]赵明,王美云,李少昆.玉米不同自交系叶片色素及其与光合速率的关系的研究[J].中国农业大学学报, 1998, 3(1): 83-87.
    [80]郑洪建.生态因素对玉米子粒发育影响及调控的研究[J].玉米科学, 2001, 9(1): 69-73.
    [81]周静芋,张淑莲,翻译.玉米自交系去雄期间的剪叶量与产量、质量和施氮量的关系[J].国外农学—杂粮作物, 1996, 2: 33-34.
    [82]周小辉,杨贤成,岳尧海,高智勇.不同生态类型区玉米自交系杂种优势利用研究[J].玉米科学, 2004, 12(4): 35-38.
    [83] A. Ahmadzadeh, E. A. Lee, and M. Tollenaar. Heterosis for Leaf CO2 Exchange Rate during the Grain-Filling Period in Maize. Crop Sci., 2004, 44: 2095-2100.
    [84] A. Forrest Troyer. Background of U.S. Hybrid corn II: Breeding, Climate, and Food. Crop Sci., 2004, 44(2): 370-380.
    [85] A. S. Haider, A. R. El-Shanshoury, A. Haider. Variation of storage proteins and isozymes within maize inbred lines. Biology plantarum, 2000, 43(2): 199-203.
    [86] Anne Elings. Estimation of Leaf Area in Tropical Maize. Agron. J., 2000, 92: 436-444.
    [87] Ardell D. Halvorson, Frank C. Schweissing, Michael E. Bartolo, et al. Corn Response to Nitrogen Fertilization in a Soil with High Residual Nitrogen. Agron. J., 2005, 97: 1222-1229.
    [88] Arnel R. Hallauer. History, Contribution, and Future of Quantitative Genetics in Plant Breeding Lessons From Maize. Crop Sci., 2007, 47(S3): S4-S19.
    [89] Bahman Eghball, Jerry Maranville W. Root development and nitrogen influx of corn Genotypes grown under combined drought and N stress. Agron. J., 1993, 85: 147-152.
    [90] Bernardo Ordas, Rosa A., Malvar, William G. Hill. Genetic variation and quantitative trait loci associated with developmental stability and the environmental correlation between traits in maize. Genet. Res., 2008, 90: 385-395.
    [91] Bushra maryam, David A. Jones. The genetics of maize (Zea mays L.) growing at low temperatures II. Harvesting time, number of kernels and plant height at maturity. Euphytica, 1985, 34: 475-482.
    [92] Ciha A.J, Brun W A. Stomata size and frequency in soybean. Crop Sci., 1975, 15: 309-313.
    [93] Duvick D N, Cassman K G. Post-green revolution trends in yield potential of maize in the North Central United States. Crop Sci., 1999, 39: 1622-1630.
    [94] Duvick D N. Dudley J W, Lambert R J, et al. Inbreeding depressing, inbred grain yields, and other traits of maize genotypes representing three eras. Crop Sci., 1984, 8(24): 545-54.
    [95] E. A. Lee, T. K. Doerksen, L. W. Kannenberg. Genetic Components of Yield Stability in Maize Breeding Populations. Crop Sci., 2003, 43: 2018-2027.
    [96] Edmeades G O, Banziger B, Mickelson H R. Developing drought and low N-tolerant maize proceedings of a symposium. Batan, 1997: 332-335.
    [97] Eichelberger K D, Lambert R J, Below R E, Hagcman R H. Divergent phenotypic recurrent selection for nitrate reductase activity in maize. 2. Efficient use of fertilizer nitrogen. Crop Sci., 1989, 29:1397-1402.
    [98] Eichelberger K D, Lambert R J, Below R E, Hageman R H. Divergent phenotypic recurrent selection for nitrate reductase activity in maize. 1. Selection and correlated responses. Crop Sci., 1989, 29:1393-1397.
    [99] Feil B, Thiraporn R, Stamp P. In vitro nitrate reductase activity of laboratory grown seedling as an indirect selection criterion for maize. Crop Sci., 1993, 33: 1280- 1286.
    [100] J. L. Stewart, A. J. dunsdon. The potential of some Neotropical Albizia species and close relatives as fodder resources. Agroforetry Systems, 2000, 49: 17-30.
    [101] J. Stephen C. Smith, D. N. Duvick, Oscar S. Smith, et al. Changes in Pedigree Backgrounds of Pioneer Brand Maize Hybrids Widely Grown from 1930 to 1999. Crop Sci, 2004, 44: 1935-1946.
    [102] James B Holland. Genetic architecture of complex traits in plants. Plant Biology 2007, 10: 156-161.
    [103] Jochen C. Reif, Martin Heckenberger, Hans peter, et al. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl genet, 2005, 111: 838-845.
    [104] K E D'Andrea, M E Otegui, A G Cirilo, et al. Genotypic Variability in Morphological and Physiological Traits among Maize Inbred Lines-NitrogenResponses. Crop Sci., 2006, 46(3): 1266-1276.
    [105] L. Ding, K. J. Wang, G. M. Jiang, M. Z. Liu, et al. Photosynthetic rate and yield formation in different maize hybrids. Biology Plantarum, 2007, 51(1): 165-168.
    [106] Laure Barthes, Eliane Deleens, Agnes Bousser, Jackson Hoarau, Jean Louis Prioul. Nitrate use and xylem exudation in detopped wheat seeding: an early diagnosis for predicting varietals differences in nitrogen utilization: Aust J. Plant Physiologic, 1996, 23: 33-44.
    [107] Lugg D. G, Sinclair T R. Variation in stomatal densital density with leaf position in field grown soybean. Crop Sci., 1987, 19: 407-409.
    [108] M. Brancourt-Hulmel, G. Doussinault, C. Lecomte, et al. Genetic Improvement of Agronomic Traits of Winter Wheat Cultivars Released in France from 1946 to 1992. Crop Sci., 2003, 43:37-45.
    [109] M. L. Warburton, J. C. Reif, M. Frisch, et al. Nontemperate Maize Germplasm: Landraces, Open Pollinated Varieties, and Inbred Lines. Crop Sci., 2008, 48: 617-624.
    [110] M. Tollenaar, A. Ahmadzadeh, E. A. Lee. Physiological Basis of Heterosis for Grain Yield in Maize. Crop Sci., 2004, 44: 2086-2094.
    [111] Masanori Yamasaki, Stephen I., Wright, Michael D. McMullen. Genomic Screening for Artificial Selection during Domestication and Improvement in Maize. Annals of Botany 2007, 100: 967-973.
    [112] Matthijs Tollenaar, William Deen, Laura Echarte, et al. Effect of Crowding Stress on Dry Matter Accumulation and Harvest Index in Maize. Agron. J., 2006, 98: 930-937.
    [113] Michael Lee. Maize Breeding and genomics: an historical overview and perspectives. Genomics Applications in Crops, 2007, 2: 129-146.
    [114] Miriam rukero munamava, A. Susana goggi, Linda pollak. Seed quality of maize inbred lines with different composition and genetic backgrounds. Crop sci., 2004, 44: 542-548.
    [115] Monkombu Sambasivan Swaminathan. An Evergreen Revolution. Crop Sci., 2006, 46: 2293-2303.
    [116] Oscar R. Valentinuz, Matthijs Tollenaar. Effect of Genotype, Nitrogen, Plant Density, and Row Spacing on the Area-per-Leaf Profile in Maize. Agron. J., 2006, 98: 94-99.
    [117] Ottavano E, A Camussi. Phenotypic and genetic relationships between yield components in maize. Euphytica, 1981, 30: 601-609.
    [118] Pablo D Rabinowicz, Jeffrey L Bennetzen. The maize genome as a model for efficient sequence analysis of large plant genome. Plant Biology, 2006, 9: 149-156.
    [119] Pepper G Z. Leaf orientation and yield of maize. Crop Sci., 1977, 17: 883-886.
    [120] Sherry A. Flint G., Michael D. McMullen, Larry L. Darrah. Genetic Relationship of Stalk Strength and Ear Height in Maize. Crop Sci., 2003, 43: 23-31.
    [121] Stephen Smith. Pedigree Background Changes in U.S. Hybrid Maize between 1980 and 2004. Crop Sci., 2007, 47: 1914-1926.
    [122] Tollenaar M. Physiological Basis of Genetic Improvement of Maize Hybrids in Ontario from 1959 to 1988. Crop Sci., 1991, 31: 119-124.
    [123] Trenton F. Stanger, Joseph G. Lauer. Corn Grain Yield Response to Crop Rotation and Nitrogen over 35 Years. Agron. J., 2008, 100: 643-650.
    [124] William L. Brown. Results of non-selective inbreeding in maize. Genet. Breed Res., 1993, 37(4): 155-159.
    [125] X. M. Fan, Y. M. Zhang, W. H. Yao, et al. Classifying Maize Inbred Lines into Heterotic Groups using a Factorial Mating Design. Agron. J., 2009, 101: 106-112.
    [126] Xing-Ming Fan, Manjit S. Kang, Hongmei Chen, et al. Yield Stability of Maize Hybrids Evaluated in Multi-Environment Trials in Yunnan, China. Agron. J., 2007, 99: 220-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700