钢筋混凝土拱桥的弯矩增大系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土拱桥的设计计算常采用拱圈截面线弹性计算的弯矩乘以弯矩增大系数来考虑几何、材料等非线性效应,弯矩增大系数的合理取值一直困扰着设计计算人员。本文研究钢筋混凝土拱桥在截面承载能力极限状态下的弯矩增大系数。
     钢筋混凝土拱桥承载能力极限状态应分为截面承载能力极限状态和结构整体承载能力极限状态,结构整体承载力大于截面承载力,除罕遇地震等特殊工况外,拱桥的设计计算应保证结构不进入截面承载能力极限状态。本文采用理论分析、模型试验和折减刚度的几何非线性分析相结合,研究钢筋混凝土拱桥的弯矩增大系数。
     对钢筋混凝土无铰拱进行了静力平衡理论分析。钢筋混凝土拱桥非线性计算弯矩比线性计算弯矩更大。弯矩增大的原因在于水平推力与竖向位移作用、竖向反力与水平位移作用、外荷载与位移作用产生了附加弯矩。在常规设计的矢跨比下,拱脚竖向反力和水平推力一般在同一数量级,计算截面的水平位移和竖向位移一般也在同一数量级,竖向反力的附加弯矩和水平推力的附加弯矩均不能忽略。分析的隔离体拱段内,外荷载可能增大、也可能减小非线性弯矩。
     分离拱座法可用于拱圈截面弯矩的实测。将连接钢筋混凝土无铰拱拱脚的拱座与地基分离,形成分离拱座。利用集成的压力传感器群测试分离拱座的竖向反力和水平推力,按照静力等效,获得拱脚的竖向反力、水平推力和弯矩,进而结合相关参数,获得拱圈任一截面的弯矩及轴力、剪力。
     弯矩零点法可用于拱脚截面弯矩的实测。拱脚水平推力和竖向反力基本不受非线性影响,线弹性计算值可视为实测值,若限于条件,可不再实测拱脚水平推力和竖向反力,可不用再分离拱座。最靠近拱脚的非线性计算或实测的弯矩零点,确定为第一弯矩零点。将无铰拱拱脚截面和第一弯矩零点截面之间的拱段作为隔离体,对该隔离体进行静力平衡分析,结合相关拱轴线位移的实测值,就可以计算得到拱脚截面非线性弯矩。
     轴力法也可用于拱圈截面弯矩的实测。钢筋混凝土拱圈的轴力基本不受非线性的影响,根据模型试验的截面承载能力极限状态对应的荷载测试结果,计算出截面的线弹性轴力。结合拱圈截面尺寸、配筋,应用线弹性轴力,进行截面的N-M承载力计算,确定截面承载能力极限状态的弯矩,该极限弯矩也即为截面的非线性弯矩或实测弯矩。
     对钢筋混凝土拱桥进行了弯矩增大系数的模型试验研究。试验模型采用相似关系模型,恒载内力与实桥相似,试验模型上的移动荷载的加载采用影响线加载。基于JTG D62-2004规范的C40混凝土弹性模量进行了选材、配合比设计和复杂的工艺处理,实现了试验模型用混凝土的弹性模量达到设计规范要求。加载和测试采用智能微调千斤顶,通过将压力传感器集成到千斤顶的轴向加力杆上,保证了压力传感器和千斤顶同心、无偏斜,实现了加载测试一体化,尽量减小了荷载测量误差。采用分离拱座法实测计算的弯矩增大系数为1.039。采用弯矩零点法,实测的弯矩增大系数为1.046。采用轴力法,实测的弯矩增大系数为1.050。三种方法获得的弯矩增大系数接近。
     采用折减刚度的几何非线性分析方法,基于98根钢筋混凝土偏心受压直柱试验、16根钢筋混凝土偏心受压曲柱试验、4个钢筋混凝土拱模型试验结果,并对比了有关规范的相关计算取值。钢筋混凝土偏心受压直柱的刚度折减系数值为0.195~0.934,平均值为0.540,直柱非线性计算的刚度折减系数也可统一取为0.230;钢筋混凝土偏心受压曲柱刚度折减系数值为0.225~0.465,平均值为0.336,曲柱非线性计算的刚度折减系数可统一取为0.225;钢筋混凝土拱的刚度折减系数在0.432~0.645之间,平均值为0.512。钢筋混凝土拱的刚度折减系数,按照钢筋混凝土偏心受压直柱或者曲柱刚度折减系数的相对偏心距公式来计算,计算结果偏小。建议钢筋混凝土拱的刚度折减系数取值为0.4。
     对4个模型拱在试验加载条件下,以及5座钢筋混凝土肋拱桥在设计荷载作用下,对拱圈进行折减刚度的几何非线性分析。钢筋混凝土拱桥折减刚度的几何非线性分析内力可直接进行截面设计验算,不需要再考虑弯矩增大系数等非线性因素。弯矩增大系数的非线性计算值均小于JTG D62-2004等6个设计规范的相应计算值。
     变化刚度折减系数值,对弯矩增大系数等拱结构的行为进行刚度折减系数的敏感性分析。拱圈截面弯矩增大系数随刚度折减系数的减小而增大,刚度越低,非线性效应越强,对刚度越敏感。刚度折减系数大于0.4,非线性弯矩增大较少;刚度折减系数小于0.4,非线性弯矩相对增大较多。线弹性计算的轴力可以直接用于钢筋混凝土拱桥拱圈截面尺寸和配筋设计,钢筋混凝土拱桥可以进行基于轴力的设计。
     钢筋混凝土拱桥线弹性屈曲稳定系数大于4-5并不一定能保证其承载安全性。对拱结构折减刚度的几何非线性计算结果进行分析,提出弯矩增大系数的简化计算公式。对打磨滩桥、石田水库桥、黑水凼桥、南充市西河桥、龙洞背桥进行了拱圈截面的N-M承载力验算,除应对黑水凼桥拱圈进行加固处理外,其余4座桥的拱圈可不进行加固。
     采用分离拱座法、弯矩零点法和轴力法测试钢筋混凝土拱圈截面弯矩,结果合理,具有推广价值。钢筋混凝土拱桥采用折减刚度的几何非线性分析,计算精度和计算效率较好,可以用于实际拱桥计算。
In design calculation of the reinforced concrete arch bridge, bending moment from linear elastic calculation of arch ring cross-section multiplied by bending moment magnification factor is often used to reflect geometric and material nonlinear effects. But it is always challenge to define the right moment magnification factors. Here is focused on how to define moment magnification factors under the cross-section carrying capacity limit state of reinforced concrete arch bridge.
     The carrying capacity limit state of reinforced concrete arch bridge exists in cross-sections and overall bridge, the latter one is usually greater than the former one, except for rare cases like under earthquake. Therefore, reinforced concrete arch bridge should be designed to have overall bridge carrying capacity limit state no greater than that of the cross-section. This dissertation combined theoretical analysis, model test and geometric nonlinear analysis of stiffness reduction, to study moment magnification factor of reinforced concrete arch bridge.
     The static equilibrium analysis was conducted in reinforced concrete hingeless arch. The bending moment of reinforced concrete arch bridge from the nonlinear calculation is greater than that from the linear calculation. The greater moment resulted from the extra bending moment generated from the interaction of horizontal thrust against vertical displacement, vertical reaction force against horizontal displacement, external load against displacement. Under normal rise-span ratio, the arch foot vertical reaction force and horizontal thrust is generally at the same order of magnitude, and the horizontal and vertical displacement of the section is also at the same order of general magnitude. Therefore the extra bending moment from vertical reaction force and horizontal thrust could not be ignored. Based on the analysis of isolation body arch section, external load may increase or decrease the non-linear bending moment.
     Separation method of arch abutment could be applied to measure the bending moment of arch cross section. Firstly separating arch abutments of hingeless arch feet from ground base to form separated arch abutments. Secondly to measure the vertical reaction force and the horizontal thrust with the integrated pressure sensors to figure out the arch feet's vertical reaction force, the horizontal thrust and the bending moment, with the reference of relative factors, then to calculate the bending moment, axial force and hearing force of any arch cross section.
     Moment zero point method could be applied to measure the bending moment of Arch feet. As arch feet horizontal thrust and the vertical reaction force was not impacted by the nonlinear calculation, the liner elastic calculation result could be used as measured value. If limited to conditions, there is no need to measure horizontal thrust and the vertical reaction force or to separate arch abutments. The moment zero point from Nonlinear calculation or actual measurement of the closest point of arch feet, could be used as the first moment zero point. The arch between hingeless arch feet and first moment zero point could be set as isolation body, to analyze its static equilibrium and combine with measured value of relative arch axis displacement, and then could calculate the nonlinear moment of arch feet.
     Axial force method could be applied to measure the bending moment of arch ring section. The axial force of reinforced concrete arch ring is generally not impacted by nonlinear calculation. Based on the loading test of the section bearing capacity under limit state, its linear elastic axial force could be calculated. The section N-M bearing capacity could also be calculated based on arch ring section size, reinforcement, applied linear elastic axial force, and define its moment of section bearing capacity under limited state. Such moment could be also used as its nonlinear bending moment or measured bending moment.
     Model test on reinforced concrete arch bridge were made to study the bending moment magnifier. Similarity relation model was adopted to have constant load internal force similar to real bridge and infection line method was adopted to load moving load. Model test was finally reached to requirements of design code JTG D62-2004for concrete elastic modulus, through material selection and mix ratio and complicated treatment process of C40concrete elastic modulus. Intelligent fine-tuning jack were used in loading and measurement, the pressure was accumulated into axial strength stem through pressure sensors, to ensure the pressure sensors are concentric, reducing the errors of loading test. The bending moment from bending moment zero method, bending moment zero method and Axial force method are respectively1.039,1.046and1.050, which are very close to one another.
     Using geometric nonlinear analysis of stiffness reduction, based on eccentric compression test on test98reinforced concrete straight columns, eccentric compression test on16reinforced concrete curved columns and model test on4reinforced concrete arches, comparing with the value from the relative codes, stiffness reduction factor of eccentric compressed straight columns was0.195~0.934, average value was0.540, while stiffness reduction factor from straight columns'non-liner calculation was0.230. Stiffness reduction factor of eccentric compressed curved columns was0.225~0.465, average value was0.336, while stiffness reduction factor from curved columns'non-liner calculation was0.225. Stiffness reduction factor of reinforced concrete arch was0.432~0.645, average value was0.512. Stiffness reduction factor of reinforced concrete arch if calculated on eccentricity formula will be smaller. Here suggested using0.4as Stiffness reduction factor.
     The stiffness reduction of reinforced concrete arches was analyzed in geometrically nonlinear methods under the loading test of4model arches5reinforced concrete ribbed arch bridge. The geometrically nonlinear analysis shows that the inner force could be directly used to section design, not need to consider the nonlinear factor of bending moment magnification factor. The moment magnification factor from nonlinear calculation was less than the values documented in the6design code, such as JTG D62-2004, etc.
     It was also analyzed on how sensitive the bending moment was responding to stiffness reduction. It was shown that the moment magnification factor of arch ring section was increasing with the decreasing of stiffness reduction. The lower stiffness reduction was, the stronger the nonlinear impact was, the more sensitive the bending moment to stiffness reduction. When stiffness reduction is more than0.4, the nonlinear bending moment increase less, while when stiffness reduction is less than0.4, the nonlinear bending moment increase more. The axial force from linear elastic calculation could be directly used to design the arch ring section size and reinforcement. The design of reinforced concrete arch bridge could be based on axial force design.
     The linear elastic buckling stability coefficient of reinforced concrete arch bridge more than4-5, could not ensure its safety of bearing capacity. Based on the result analysis of geometrically nonlinear calculation on stiffness reduction of arch structure, the simplified formula was proposed for the moment magnification factor. The N-M bearing capacity calculation of arch ring sections in Bridge of Damotan, Shitian reservoir bridge, Heishuidang Bridge, West River Bridge of Nanchong City, Longdongbei Bridge, except Heishuidang Bridge needs reinforcement treatment, the other4bridges didn't need reinforcement.
     The three different methods applied in the calculation of bending moment of reinforced concrete arch ring section, showed reasonable results and its application value, including separation arch support method, bending moment zero method and axial force method. The geometrically nonlinear methods to calculate the stiffness reduction of reinforced concrete arches showed accurate and efficient, so that could be applied to arch bridge design calculation.
引文
[1]楼庄鸿.少箱薄壁多段施工的大跨径钢筋混凝土拱桥设计中的几个问题.公路交通科技,1984(4)
    [2]楼庄鸿,李玉敏.拱桥设计中的两个具体问题,中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议论文集,北京:人民交通出版社,2005
    [3]殷荫龙.拱桥稳定分析探讨.重庆交通学院学报.1985(3)
    [4]成文山,程翔云,阳旺云.钢筋混凝土偏压曲柱的强度试验研究.重庆交通学院学报.1988(1)
    [5]成文山,阳旺云,程翔云.钢筋混凝土曲柱的纵向弯曲.土木工程学报.1989(4)
    [6]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1992
    [7]张贵忠.武胜嘉陵江桥设计简介.一九九三年桥梁学术讨论会论文集.四川省公路学会桥梁专业委员会、四川省交通运输厅公路规划勘察设计院,1993
    [8]卫星.钢筋混凝土肋拱二阶设计方法研究.西南交通大学博士学位论文.2005
    [9]李本伟,黄道全,谢邦珠.横置桥面板肋拱桥病害整治.中国公路学会桥梁和结构工程学会2003年全国桥梁学术会议论文集,北京:人民交通出版社,2003
    [10]中交公路规划设计院有限公司标准规范研究室.公路桥梁设计规范答疑汇编.北京:人民交通出版社,2009
    [11]谢幼藩,车惠民,何广汉等.铁路钢筋混凝土桥(下册).北京:中国铁道出版社,1982
    [12]铁道部第一勘测设计院,兰州铁道学院主编.铁路工程设计技术手册·涵洞与拱桥.北京:中国铁道出版社,1994
    [13]杨福源,冯国明,叶见曙编.结构设计原理计算示例.北京:人民交通出版社,1994
    [14]中华人民共和国交通部标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ 023-85).北京:人民交通出版社,2000
    [15]钱连萍,项海帆.桥梁结构第一类弹塑性稳定分析及实用计算方法.第一届全国城市桥梁学术会议论文集.1987
    [16]李美军.青神岷江大桥设计.一九九三年桥梁学术讨论会论文集.四川省公路学会桥梁专业委员会、四川省交通运输厅公路规划勘察设计院,1993
    [17]郑振飞,张尚杰,彭大文等.钢筋混凝土拱的极限承载能力试验研究.福州大学学报.1982,(2)
    [18]黄卿维,陈宝春.钢筋混凝土箱拱面内受力全过程试验研究.福州大学学报(自然科学版).2009(3)
    [19]项海帆,刘光栋著.拱结构的稳定与振动.北京:人民交通出版社.1991
    [20]钱冬生.关于桥式的构思.桥梁建设,1979(1)
    [21]李国豪.桥梁结构稳定与振动(修订版).北京:中国铁道出版社,1996
    [22]郑振飞,彭大文.超静定钢筋混凝土拱的非线性分析.福州大学学报.1985(2)
    [23]郑振飞,陈宝春.钢筋混凝土无铰拱非线性平面有限元分析.工程力学.1988(4)
    [24]肖汝诚.系杆拱桥拱肋偏心增大系数的实用公式.华东公路.1990(5)
    [25]谢邦珠,杨稚华等中国拱桥技术的最新进展.四川省公路学会桥梁专委会2000~2001年桥梁学术讨论会论文集
    [26]李本伟,谢邦珠,肖世卫等.龙洞背桥病害检测与加固方案.中国公路学会桥梁和结构工程学会2003年全国桥梁学术会议论文集,北京:人民交通出版社,2003
    [27]徐威,周益云.黑水凼大桥的加固设计.公路与汽运.2004(5)
    [28]罗世勋主编.当代四川公路桥梁.成都:四川科学技术出版社,1988
    [29]罗风林.钢筋混凝土肋拱桥的几个问题探讨.四川省公路学会桥梁专委会2000~2001年桥梁学术讨论会论文集
    [30]杨嘉璞,胡玉山.肋拱横置桥面板桥型结构的讨论.四川省公路学会桥梁专委会2000~2001年桥梁学术讨论会论文集
    [31]谢幼藩,陈克济.拱桥面内稳定性计算的探讨.西南交通大学学报.1982(3)
    [32]陈克济.钢筋混凝土拱面内承载力的非线性分析.桥梁建设.1983(1)
    [33]陈克济.钢筋混凝土拱桥面内承载力的非线性分析.西南交通大学研究生学位论文.1981
    [34]谢幼藩,刘以娟,陈克济等.钢筋混凝土拱桥面内稳定性的研究—面内承载力的非线性分析.西南交通大学,1982年3月
    [35]刘以娟.钢筋混凝土拱桥的发展.西南交通大学学报.1992(3)
    [36]西南交通大学结构工程试验中心拱桥课题组,万县长江大桥钢筋混凝土拱模型试验研究.西南交通大学学报.1994(4)
    [37]谢幼藩,赵雷,谢冀萍,等.万县长江大桥420m钢筋混凝土箱形拱的施工稳定性分析研究.桥梁建设.1995(1)
    [38]陈家夔,崔锦.钢筋混凝土偏心受压中长柱的纵向弯曲.西南交通大学学报.1980(3)
    [39]陈家夔,崔锦.关于修改我国钢筋混凝土结构设计规范(TJ10-74)中偏心距增大系数η值的建议.西南交通大学学报.1982(3)
    [40]金国生.钢筋混凝土矩形截面偏心受压中长柱纵向弯曲效应.西南交通大学硕士学位论文.1981
    [41]孟庆伶.拱轴线位移对拱肋内力的影响.铁道建筑.1995(5)
    [42]李国豪.钢桥设计.上海:龙门书局.1954
    [43](苏)И.П.普洛柯费耶夫著,陈英俊等译.结构理论,第一卷.北京:高等教育出版社.1956
    [44]川口昌宏,新津良夫,殷荫龙译.钢筋混凝土拱在平面内的承载力.国外公路.1980(21)
    [45]殷荫龙,陈学源.拱屈曲的二阶分析方法.工程力学.1986(1)
    [46]顾懋清,石绍甫主编.公路桥涵设计手册·拱桥(上册).北京:人民交通出版社,1994
    [47]顾安邦,孙国柱主编.公路桥涵设计手册·拱桥(下册).北京:人民交通出版社,1994
    [48]项海帆.高等桥梁结构理论.北京:人民交通出版社,2001
    [49]程翔云.世界混凝土拱桥概况.国外公路.1990(4)
    [50]胡大琳,陈祥宝.拱式拱上结构钢筋混凝土拱桥极限承载力分析.西安公路学院学报.1994(4).
    [51]金伟良.钢筋混凝土拱桥的极限承载力.浙江大学学报.1997,31(4)
    [52]周长晓.大路径钢筋混凝土拱桥承载力分析方法的现状.公路交通技术.1998,(3)
    [53]奉龙成,罗小华.钢筋混凝土拱桥面内极限承载能力的非线性分析.土木工程学报.2002(3)
    [54]程进,江见鲸,肖汝诚,项海帆.拱桥结构极限承载力的研究现状与发展.公路交通科技.2002(4)
    [55]赵华.钢筋混凝土拱的承载能力研究.中南公路工程.2004(1)
    [56]刘来君,王东阳.大跨径拱桥极限承载力.长安大学学报.2004(2)
    [57]夏旻.大跨径有推力无铰拱桥极限承载力.同济大学博士学位论文.2005
    [58]李晓斌.大跨度钢筋混凝土拱桥悬臂浇注施工控制与模型试验研究.西南交通大学博士学位论文.2008
    [59]罗惠智,郑皆连.钢筋混凝土箱形拱桥在广西修建情况及经济性分析.中南公路工程.1985(4)
    [60]刘呈秀.拱的变形理论初步概念.铁道标准设计.1965(3)
    [61]何福照,郭临义,李子青.拱的挠度理论—按非线性理论设计大跨径拱桥.中国土木工程学会桥梁及结构工程学会第八届年会论文集.1988
    [62]贺栓海,何福照,张翔.拱桥的几何非线性分析—挠度理论.中国公路学报.1991(3)
    [63]贺栓海.拱桥挠度理论.北京:人民交通出版社,1997
    [64]王志军.钢筋混凝土铰支柱和框架柱二阶效应及稳定问题研究.重庆建筑大学博士学位论文.1996
    [65]王志军,白绍良,高晓莉.对钢筋混凝土偏压杆件偏心距增大系数中截面曲率修正系数的讨论.重庆建筑大学学报.1999(5)
    [66]刘毅,魏巍,白绍良.考虑非弹性特征的钢筋混凝土框架杆件刚度折减系数.重庆建筑大学学报.2000(1)
    [67]刘毅,魏巍,王志军,白绍良.采用截面分层及弧长法的钢筋混凝土杆系结构非线性分析.重庆建筑大学学报.2000(5)
    [68]白绍良,魏巍,刘毅,高晓莉.考虑钢筋混凝土框架整体二阶效应规律的改进η-10法.重庆建筑大学学报.2000,22(增刊)
    [69]中国建筑科学研究院.混凝土结构设计.北京:中国建筑工业出版社.2003:90-121
    [70]颜全胜,骆宁安,韩大建,王卫锋.大跨度拱桥的非线性与稳定分析.华南理工大学学报.2000(6).
    [71]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析—Ⅰ.平面问题.计算结构力学及其应用.1995(1)
    [72]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析—Ⅱ.三维问题.计算结构力学及其应 用.1995(2)
    [73]吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论.计算结构力学及其应用.1995(11)
    [74]陈绪,张铱,段滋华.平面梁的几何非线性有限元分析.太原工业大学学报.1997(1)
    [75]朱慈勉,吴维华,陈栋.TL法和UL法对刚架弹性大位移分析的适用性.力学季刊.2001(1)
    [76]刘磊,张光卿,袁长卿.杆系结构的高精度非线性分析.土木工程学报.2006(1).
    [77]陈军明,陈应波,吴代华.几何大变形三维梁单元的U.L列式.武汉理工大学学报.2001(11)
    [78]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法.西南交通大学学报.2006(6)
    [79]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003
    [80]过镇海.混凝土的强度和本构关系—原理与应用.北京:中国建筑工业出版社,2004
    [81]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1996
    [82]潘家英,张国政,程庆国.大跨度桥梁极限承载力的几何与材料非线性耦合分析.土木工程学报.2000(1)
    [83]刘磊.大跨混凝土桥耦合非线性分析.北方交通大学博士学位论文.2001
    [84]向天宇,赵人达,刘海波.混凝士结构全过程非线性分析的弧长法研究.铁道学报.2002(3)
    [85]石少华.钢筋混凝土拱桥弯矩增大系数的分析.西南交通大学硕士学位论文.2003
    [86]陈宝春.拱桥技术成就与展望.第二届全国公路科技创新高层论坛论文集,2004
    [87]陈宝健,许有胜,陈宝春.日本钢筋混凝土拱桥调查与分析.中外公路.2005(4)
    [88]陈宝春.超大跨径混凝土拱桥的研究进展.第十七届全国桥梁学术会议论文集(上册).2006
    [89]李晓辉,陈宝春.大跨径拱桥的发展.世界桥梁.2007(1)
    [90]陈宝春,陈友杰.钢管混凝土肋拱面内受力全过程试验研究.工程力学,2000(2)
    [91]林英,陈宝春,陈友杰.钢管拱面内对称加载试验.福州大学学报.2001(2)
    [92]陈宝春.钢管混凝土拱桥(第二版).北京:人民交通出版社,2007
    [93]陈宝春,叶琳.我国混凝土拱桥现状调查与发展方向分析.中外公路.2008(2)
    [94]陈宝春.拱桥技术的回顾与展望.福州大学学报(自然科学版).2009(1).
    [95]韦建刚,陈宝春.国外大跨度混凝土拱桥的应用与研究进展.世界桥梁.2009(2)
    [96]陈宝春主编.钢管混凝土拱桥实例集(一).北京:人民交通出版社,2002
    [97]陈宝春,陈友杰,秦泽豹.钢管混凝土拱极限承载力简化计算的等效梁柱法.第十六届全国桥梁学术会议.北京:人民交通出版社,2004
    [98]陈宝春,韦建刚,林英.管拱面内两点非对称加载试验研究.土木工程学报.2006(1)
    [99]陈宝春,韦建刚.管拱面内五点对称加载试验及其承载力简化算法研究.工程力学.2007(6)
    [100]韦建刚,陈宝春,吴庆雄.压弯钢管拱极限承载力计算的等效梁柱法.计算力学学报.2009(1)
    [101]张建民,郑皆连,肖汝诚.钢管混凝土拱桥的极限承载能力分析.中南公路工程.2004(4)
    [102]M.Z.Cohn.Analysis up to Collapse of Elasto-Plastic Arches.Computers and Structures.1976,6(6)
    [103]American Association of State Highway and Transportation Officials(2007). LRFD Bridge Design Specifications,4th Ed., AASHTO,Washington, D. C.
    [104]ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary. New York:Detriot Press,2002.
    [105]Standards Australia, AS 3600, Concrete Structures,1994
    [106]BS 8110:Part 1, Structural Use of Concrete, Part 1, Code of Practice for Design and Construction, British Standards Institution, London, UK,1985, Issue2 1989
    [107]EN V 1992-1-1, Eurocode 2:Design of Concrete Structures, Part 1, General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium,1992.
    [108]CSA A23.3-94, Design of Concrete Structures-Structure Design, Canada Standards Association, Toronto, Ontario, Canada,1994
    [109]J. Radic,Z. Savor,A. Kindij. Innovations in concrete arch bridge design. Proceedings of the Institution of Civil Engineers. Bridge Engineering.2006.159
    [110]J.Radie,Z.Savor,A.Kindij. Development of arch bridge. Proeeedings of the 4th International Confereneeon New Dimensions of Bridges.Fuzhou,China:2005.249-256.
    [111]Z.Savor, N. Mujkanovic, G. Hrelja. Design and construction of Krka river arch bridge. Chinese-Croation Joint Colloquium. Brijuni Islands.2008
    [112]D.Goodyear, B.Klameru, R.Turton. Unique blend of components characterize colorado river arch bridge. HDR bridgeline.2005,14(2)
    [113]Z.Savor, J.Bleiziffer. Long Span Con-crete Arch Bridges of Europe. Proceedings of Chinese-Croatian Joint Colloquium on Long Span Arch Bridges. Brijuni Islands, Croatia,2008
    [114]J.Radic,A.Kindij,A.Mandic. History of Concrete Application in Development of Concrete and Hybrid Arch Bridges. Proceedings of Chinese-Croatian Joint Colloquium on Long Span Arch Bridges. Brijuni Islands, Croatia,2008
    [115]Santiago Perez-Fadon, JoseEmilio Herrero Beneitez, Juan JoseSanchez. Los Tilos Arch on La Palma Island (Canary Islands). Hormigony Acero,2005
    [116]D.A.Nettleton,J.S.Torkelson. Arch bridges. Bridge Division Office of Engineering Federal Highway Administration U.S. Department of Transportation Washington, D.C.20590
    [117]S Talcahashi,K Osada,M Sadamitsu,N Wctanabe. Design and Construction of Fujikawa Concrete Arch Bridge.Third International Arch Bridge Conference. Paris,2000
    [118]Timo K.Tikka. Examination of second-order effects in structural concrete columns and braced frames. Thesis Ph.D. University of Manitoba, Canada.2001
    [119]L.N.B. Gummadi, A.N.Palazotto. Finite element analysis of arches undergoing large rotations I: Theoretical comparison. Finite Elements in Analysis and Design.1997.24:213-235
    [120]A.N.Palazotto, L.N.B. Gummadi, J.C.Bailey. Finite element analysis of arches undergoing large rotations-II:Classification.1997.24:237-252
    [121]Yong-Lin Pi,N.S.Trahair. Nonlinear inelastic analysis of steel beam-columns. Ⅰ:Theory. Journal of Structural Engineering, ASCE,1994.120(7):2041-2061
    [122]Yong-Lin Pi, N.S.Trahair. Three-dimensional nonlinear analysis of elastic arches. Engineering Structures.1996,18(1)
    [123]Yong-Lin Pi, N.S.Trahair. In-plane Inelastic Bucking and Strength of Steel arches. J.Struct.Engrg., 1996,122(7)
    [124]Yong-Lin Pi, N.S.Trahair. Non-linear bucking and post-buckling of elastic arches. Engineering Structures.1998,20(7)
    [125]Yong-Lin Pi, N.S.Trahair. Inelastic lateral buckling strength and design of steel rches. Engineering Structures,2000.22:993-1005.
    [126]Yong-Lin Pi, M.A.Bradford, B.Uy. In-plane stability of arches. International Journal of Solids and Structures,2002,39:105-125
    [127]J.Dario Aristizabal-Ochoa. Second-order axial deflections of imperfect 3-D beam-column. J.Struct.Engrg.,2000.126(11).
    [128]I.S.Sohnl, N.A.Syed.Inelastic Amplification factor for design of steel beam-columns. J.Struct.Engrg.,1992.118(7).
    [129]Sheng-Jin Chen, Wu-Chyuan Wang. Moment amplification factor for P-δ effect of steel beam-column. J.Struct.Engrg.,1999.125(2).
    [130]W.Zhou, H.P.Hong. Statistical analysis of strength of slender RC columns. J.Struct.Engrg.,2001. 127(1).
    [131]S.Kalaga, S.M.R.Adluri. Beam-columns with finite deflections. J.Struct.Engrg.,2000.126 (2).
    [132]Morteza A.M.Torkamani, Mustafa Sonmez. Inelastic large deflection modeling of steel beam-columns. J.Struct.Engrg.,2001.127(8).
    [133]Andrew Miller. Second-order analysis of building and industrial structures. The Structural Engineer.2001.79(3).
    [134]M.S.Zarghamee,J.M.Shah. Stability of space frames. ASCE.1968.94:371-384
    [135]J.Cannor, R.D.Logcher, S.E.Chan. Non-linear analysis of elastic frames.ASCE.1968. 94:1525-1547
    [136]S.S.Tezcan, B.C.Mahapatra. Tangent stiffness matrix for space frames. ASCE.1969. 95:1257-1270
    [137]K.H.Chu, R.H.Rampatstreiter. Large deflection of buckling of space frames. ASCE.1972. 98:2701-2722
    [138]C. Oran. Tangent stiffness in space frames. Journal of the Structural Division ASCE. 1973.99:987-1001
    [139]K.J.Bathe, Borourchi. Large displacement analysis of 3D beam structures. IJNME.1979. 14:961-986
    [140]GNarayanan, C.S.Krishnamoorthy. An investigation of geometric non-linear formulation of 3D beam element. Int. J. Non-linear Mechanics.1990.25 (6):643-662
    [141]GA.Wempner, Finite elements finite rotations and small strains of flexible shells. International Journal of Solids and Structures.1969.5:117-153
    [142]T.Belytschko, B.J.Hsieh. Non-linear transient finite element analysis with convected coordinates. International Journal for Numerical Methods in Engineering.1973.7:255-271
    [143]K.M.Hsiao, H.J.Horng, Y.R.Chen, A corotational procedure that handles large rotations of Spatial beam structures. Computers and Structures.1987.27:769-781
    [144]Kuo Mo Hsiao, Jer Yan Lin, Wen Yi Lin. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput. Methods Appl. Mech. Engrg.1999(169):1-18.
    [145]C.C. Rankin, F.A.Brogan. An element independent corotational procedure for the treatment of large rotations. J Press Vess Technol.1991.108:165-174.
    [146]T. J. R. Hughes, J.Winget. Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. International Journal of Numerical Methods and Engineering.1980.15:1862-1867.
    [147]Kuo Mo Hsiao, Wen Yi Lin. Co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams. Computer Methods in Applied Mechanics and Engineering. 2000.188:567-594.
    [148]P.K.V.V.Nukala,D.W.White.A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput.MethodsAppl.Mech.Engrg.2004.19:2507-2545
    [149]R.L.Taylor,F.C.Filippou,A.Saritas,F.Auricchio. A mixed finite element method for beam and frame problems. Computational Mechanics.2003.31:192-203
    [150]K.Lee. Analysis of large displacements and large rotations of three-dimensional beam by using small strain and unit vectors. Communications in numerical methods in engineering. 1997.13:987-997
    [151]M.A. Crisfield, G.F. Moita. A unified co-rotational framework for solids, shells and beams. International Journal of Solids and Structures.1996.33:2969-2992.
    [152]C.A.Felippa, B.Haugen. A unified formulation of small-strain corotational finite elements:I. Theory. Computer Methods in Applied Mechanics and Engineering.2005.194,2285-2335
    [153]M.A. Crisfield. Non-linear finite element analysis of solids and structures, Volume 1:Essentials. Wiley, Chichester,1991.
    [154]M.A. Crisfield. Non-linear finite element analysis of solids and structures Volume 2:Advanced Topics. Wiley. Chichester,1997.
    [155]G.Jelenic, M.A.Crisfied, Geometrically exact 3D beam theory:implementation of a strain-invariant finite element for static and dynamic, Comput. Methods Appl. Mech. Engrg.1999 (171):141-171.
    [156]Lip H.Teh, Murray J.Clarke.Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements. Journal of Constructional Steel Research 1998,48:123-144.
    [157]J.-M.Battini,C.Pacoste. Plastic in stability of beam structures using co-rotational elements. Comput. Methods Appl. Mech. Engrg.2002.191:5811-5831
    [158]J.H.Argyris. An excursion into large rotations.Comp. Meths. Appl. Mech. Engrg.1982.32:85-155
    [159]M.A.Crisfield. An arc-length method including line searches and accelerations.International Journal for Numerical Methods in Engeering.1982.19:1269-1289
    [160]P.N.Chatterjee. On the deflection theory of ribbed two-hinged elastic arches.Thesis PhD., The University of Illinois,1948.
    [161]Paola Ronca, M. Z. Cohn.Limit Analysis of Reinforced Concrete Arch Bridges. Journal of the Structural Division, ASCE.1979.105:313-326
    [162]A.S.Vlahino, J.Ch.Ermpoulos,Yang-Cheng Wang.Buckling analysis of steel arch bridges. Journal of Construction Steel Research,1993.26:59-71
    [163]Sadao Komatsu, Tatsuro Sakimoto.Ultimate load-carrying capacity of steel arches.Journal of the Structural Division, ASCE,1977,103,ST12:2323-2336
    [164]S.Kuranishi,T.Yabuki. Lateral load effect on steel arch bridge design. Journal of Structural Engineering, ASCE,1984.110(9):2263-2274
    [165]P.Clemente, A.Occhiuzzi,A.Raithel. Limit behavior of stone arch bridges. Journal of Structural Engineering,1995,121(7):1045-1050
    [166]K.H.Ng,C.A.Fairfield,A.Sibbald. Finite-element analysis of masonry arch bridges. Proceedings of the Institution of Civil Engineers, Structures and Buildings,1999.134(2):119-127
    [167]A.S.Nazmy. Stability and load-carrying capacity of three-dimensional long-span steel arch bridges. Computers and Structures,1997.65(6):857-868
    [168]Morteza A.M.Torkamani,Mustafa Sonmez,Jianhua Cao. Second-order elastic plane-frame analysis using finite-element method. Journal of Structural Engineering, ASCE,1997.123(9):1225-1235
    [169]L.H.Teh,M.J.Clarke. Plastic-zone analysis of 3D steel frames using beam elements. Journal of Structural Engineering, ASCE,1999.125(11):1328-1337
    [170]T.Sakimoto,S.Komatsu.Ultimate strength of arches with bracing systems. Journal of the Structural Division, ASCE.1982.108:1064-1076
    [171]G.Zanardo,C.Pellegrino,C.Bobisut,C.Modena. Performance evaluation of short span reinforced concrete arch bridges. Journal of bridge engineering.2004.9(5)
    [172]J.Heyman. The assessment of strength of masonry arches. Proc.2nd International Arch Bridges Conference, Venice,1998:95-98
    [173]M.Gilbert. Limit analysis applied to masonry arch bridges:state-of-the-art and recent developments. ARCH'07-5th International Conference on Arch Bridge,13-28
    [174]J.Muller. On design and construction of long span concrete arch bridge.Proceedings of the Third International Conference on Arch Bridge. Paries France.2001,17-26
    [175]G. James, R.Karoumi. Monitoring of the New Svinesund Bridge (Report 1). KTH, Sweden,2003
    [176]J.GMacGregor, U.H.Oelhafen, S.E.Hage. A Re-Examination of the El Value for Slender Columns. ACI Special Report,SP 50-1:1-40.1975.
    [177]楼庄鸿.楼庄鸿桥梁论文集.北京:人民交通出版社,2004
    [178]王国鼎.拱桥连拱计算(第三版).北京:人民交通出版社,2009
    [179]温诒鸿.湖南冷水江大桥的设计及试验简介.中南公路工程.1992(4)
    [180]吴明东.拱的极限荷载.重庆交通学院学报,1983(4)
    [181]魏建东.南部嘉陵江大桥的维修加固.中南公路工程.2004(4)
    [182]王承礼.铁路钢筋混凝土拱桥合理结构型式刍议.长沙铁道学院学报.1983(2)
    [183]刘钊,秦卫红,惠卓.日本新浜寺桥—一座大跨度尼尔森—洛斯体系的桥梁.国外桥梁.1999(4)
    [184]戴公连,李德建,曾庆元,等.单拱面预应力混凝土系杆拱桥空间稳定极限承载力分析.中国公路学报.2002(2)
    [185]曹建平.单拱面预应力混凝土系杆拱桥空间稳定试验研究.中外建筑.2003(4)
    [186]廖碧海.拱桥评估与加固的理论和实践研究.华中科技大学博士学位论文.2009
    [187]赵薇.大跨径钢筋混凝土箱拱的非线性有限元分析.云南交通科技.2003(2)
    [188]胡大琳,杨大慰,陈祥宝.钢筋混凝土拱桥极限承载力分析.西安公路学院学报.1991(3)
    [189]胡大琳.钢筋混凝土拱的非线性分析.华东公路.1992(3)
    [190]MackenzieD, Shi J,Boyle JT. Finite elementmodeling for limitanalysis by elastic compensation method[J].Computers&Structures,1994,51(4):403-410
    [191]杨璞,刘应华,袁鸿雁,等.计算结构极限载荷的修正弹性补偿法.工程力学.2006,23(3)
    [192]杨绿峰,乔永平,余波.基于弹性补偿有限元法的拱桥极限分析.长沙交通学院学报.2008,24(1)
    [193]G L Jones,A K Dhalla.Classification of clamp induced stresses in thin-walled pipe.Proceedings of the ASME Pressure Vessel and Piping Conference, Denver, Colorado,1981,PVP 81:17-23
    [194]唐雪松,张建仁,李传习,等.基于损伤理论的钢筋混凝土拱结构破坏过程的数值模拟.工程力 学.2006,23(2)
    [195]方志,祝彦知,周宏宇.一种梁柱非线性分析新方法.应用力学学报.2005(1)
    [196]赵博,简斌,王正霖.分段降刚度法——混凝土杆系结构的一种简化试验分析方法.重庆建筑大学学报.2004(6)
    [197]刘效尧.无风撑下承式系杆拱桥弹塑性稳定分析的折减弹性模量法.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会论文集,北京:人民交通出版社,2001
    [198]Pi Y L, Trahair N S. In-plane buckling and design of steel arches. Journal of Structural Engineering,1999,125(11):1291-1298
    [199]沈蒲生,罗国强.混凝土结构疑难释疑附解题指导(第三版).北京:中国建筑工业出版社,2003
    [200]王娴明.建筑结构试验.北京:清华大学出版社.1988
    [201]姚谦峰,陈平.土木工程结构试验.北京:中国建筑工业出版社.2001
    [202]小西一郎.钢桥(第四分册).北京:中国铁道出版社,1982
    [203]美国各州公路和运输工作者协会(AASHTO),辛济平等译.美国公路桥梁设计规范—荷载与抗力系数设计法(1994).北京:人民交通出版社,1998
    [204]袁伦一,鲍卫刚,李扬海.公路圬工桥涵设计规范应用(JTG D61-2005)应用算例.北京:人民交通出版社,2005
    [205]王国鼎.,钟圣斌,拱桥(第二版).北京:人民交通出版社,2000
    [206]范立础主编.桥梁工程(下册)(第二版).北京:人民交通出版社,1996
    [207]范立础主编.桥梁工程(上册).北京:人民交通出版社,2001
    [208]顾安邦主编.桥梁工程(下册).北京:人民交通出版社,2000
    [209]钱冬生.钱冬生桥梁与教育文选.北京:中国铁道出版社,1998
    [210]钱冬生.科学地对待桥渡和桥梁.北京:中国铁道出版社,2003
    [211]钱冬生.谈桥梁.成都:西南交通大学出版社,2008
    [212]李亚东主编.桥梁工程概论(第二版).成都:西南交通大学出版社,2006
    [213]强士中,周璞主编.桥梁工程.成都:西南交通大学出版社,2000
    [214]强士中主编.桥梁工程(上册).北京:高等教育出版社,2004
    [215]强士中主编.桥梁工程(下册).北京:高等教育出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700