秸秆型育苗基质对茄果类蔬菜秧苗素质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对茄果类蔬菜幼苗在秸秆型育苗基质上的适应性以及秸秆型育苗基质的实用性进行了研究。试验以沈茄1号、吉利10号、吉利大粉115为试材,对秸秆型育苗基质的理化特性,茄果类蔬菜幼苗在各种基质上的生长发育状态、理化指标、解剖结构,以及栽培后的产量、品质等进行了研究。试验共设6个处理:处理1-秸秆:园田土=2:8:处理2-秸秆:园田土=3:7:处理3-秸秆:园田土=4:6:处理4-秸秆:园田土=5:5;处理5-草炭:园田土=3:7;处理6-马粪:园田土=3:7。各处理均施入无机肥硫酸钾、磷酸二铵、尿素各0.5kg/m~3、0.5kg/m~3、1.0kg/m~3。
     就基质的理化特性而言,它影响着幼苗的长势变化。本试验秸秆型育苗基质容重变化范围在0.5-0.85g/cm~3,总孔隙度变化范围在0.45-0.65之间,pH值的变化范围在6.0-7.5之间。基质中各种营养元素到后期均低于分苗前,其中茄子处理2对氮、钾元素的吸收量均最高分别为28.6%、45.5%;甜椒均以处理3的吸收量最高对氮、磷、钾元素的吸收分别为18.9%、33.3%、41.9%。N、P、K元素含量下降,植株根系吸收能力增强,植株长势较好;如果各种元素含量高,造成养分积累,植株长势就弱,抗性也低。有机质由于其来源较复杂,所以其变化规律性不强。
     试验结果表明:三种蔬菜在各种比例的秸秆型育苗基质中适应性不同。从幼苗的生长发育来看,其中番茄与茄子在处理2(秸秆:园田土=3:7)上生长发育最好,其次为处理1(秸秆:园田土=2:8),而在处理3(秸秆:园田土=4:6)上表现较差;甜椒却在处理3上生长发育较好,其次为处理1和2,处理1和2之间差异不显著。茄果类幼苗在处理4(秸秆:园田土=5:5)上生长发育均较差,与草炭或马粪的育苗基质差异显著。
     从解剖结构来看,在1mm~2的视野内,茄子根中导管直径处理2为42.5μm,高于其它各处理,数量为439个,仅低于处理4;在160倍镜下测得处理2的皮层厚度为2.6cm,高于其它各处理。茄子茎的解剖结构从导管直径和导管数量综合指标上看,以处理2的茎发育较好。甜椒叶的解剖结构处理3的导管直径最高,为18.5μm,数量为46个,低于处理5和处理1;在160倍镜下测得处理3叶片厚度为2.0cm,栅栏组织/海绵组织比值为2.3:1,均为最高,栅栏组织/海绵组织比值高,光合能力强,同化作用也增强,产量高。
     从壮苗指数上看,茄子和番茄以处理2最高,分别为0.225和0.115;甜椒以处理3最高其壮苗指数为0.460。
     从光合特性上看,茄子处理2的光合速率为9.53μmolCO_2m~(-2)s~(-1),仅低于处理5(10.61μmolCO_2m~(-2)s~(-1)),但处理5的蒸腾速率较高为2.26mmolm~(-2)s~(-1),而处理2仅为1.71mmolm~(-2)s~(-1),综合看处理2较好;番茄同样适合于处理2的基质上生长;而甜椒则以处理3的育苗基质较好,处理3的光合速率(5.31μmolCO_2m~(-2)s~(-1))仅次于处理5(6.31μmolCO_2m~(-2)s~(-1)),胞间CO_2浓度也仅次于处理5、6,但蒸腾速率(0.433 mmolm~(-2)s~(-1))却远远低于处理5(0.985 mmolm~(-2)s~(-1)),水分利用率是处理5的
    
    吉林农业大学硕士学位论文
    秸秆型育苗基质对茄果类蔬菜秧苗素质的影响
    1倍以上,高于其它各处理。
     从抗性指标上看,茄子处理2的可溶性糖上升迅速,到后期达到5 986“g/g,
    仅低于处理1。处理2的电导率为20%,低于其它各处理,处理2的抗性最高。
     从产量上来看,茄子的总产量和单果重均以处理2最高分别为
    7844.20kg/667m,和0.113kg,且处理2的总产量高于处理5、6的12.3%、9.2
    %,单果重高于处理5、6的4.4%、12%。
     从上述试验结果可以看出,未经腐熟的玉米秸秆可以作为育苗基质。其中茄
    子、番茄以配比比例为玉米桔秆:园田土=3:7的最合理;甜椒以配比比例为玉
    米桔秆:园田土:4:6的最合理。所以合理比例的玉米桔秆与园田土作为育苗基
    质可以替代传统的育苗基质马粪或草炭。它可以就地取材、降低成本。这种本土
    化、低成本、可再生、环保型的育苗基质有广泛的发展前景.
The adaptability of the seedling of vegetations to stover substrates and the practicality of stover substrates were studied in this paper. Shenqie No.1, Jili No. 10, Jilindafen 115 as experimental materials, the physical & chemical characters of the substrate and the development, physical & chemical indexes and anatomic structures of the vegetations growing in stover substrate , as well as the yield and quality of their fruits, were studied. This experiment was divided into 6 treatments: No.l is 'stover : soil = 2:8'; No.2 'stover : soil = 3 : 7'; No.3 'stover : soil = 4:6'; No.4 'stover : soil = 5:5'; No.5 'turf: soil = 3:7'; No.6 'horse dung : soil = 3:7'. K2SO4 (0.5 kg/m3), NH4H2PO4 (0.5 kg/m3) and urea (1.0 kg/m3) were delivered in each treatment.
    The physical & chemical characters of the substrate affected the growth of seedlings. In this experiment, the fluctuation of Bulk density was between 0.50g/m3 and 0.85g/m3, that of porosity between 0.45 and 0.65, and that of pH between 6.0 and 7.5. In each treatment, the content of nutrient elements in the later period was less than that in the early period. In the No.2 treatment of eggplants, the assimilations of N and K reached to the highest points as 28.6% and 45.5%. In the No.3 treatment of sweets pepper, the assimilations of N, P and K reached to the highest points as 18.9%, 33.3% and 41.9%. When the contents of N, P and K went down, the assimilating ability would rise and their growth would be better; if that contents were too high and the nutrient elements were over-accumulated, the growth of them would be worse and their resistances were low too. Because of the source complexity of substrates, the law was not obvious.
    The results showed that the adaptabilities of the three kinds of vegetations were changing according to the differences of substrates. In the period of seedlings, tomatoes and eggplants grew best in the No.2 treatment; sweet peppers grew best in the No.3 treatment. But in the No.4 treatment, all the above ones grew badly; and compared with the substrates with turf or horse dung, the differences were obvious.
    In the aspect of anatomic structures, in 1mm2 field of vision, eggplants' vessel diameters of stems and their vessel number were 439 that was just less than that in treatment 4; magnified by 160 times, the cortex thickness reached to the highest value as 2.6cm in treatment 2. Comprehensively, eggplant stems developed best in treatment 2. In treatmet 3, the vessel diameters of sweet peppers leaves reached to the highest
    
    
    
    value as 18.5 u m and their number was 46 that was just less than that in treatment 5 and 1;
    In the aspect of the strength indexes of seedlings, eggplants and tomatoes reached to the highest value as 0.225 and 0.115 in treatment 2; sweet peppers reached to the highest value as 0.460 in treatment 3.
    In aspect of photosynthetic characters, the photosynthetic rate of eggplant in treatment 2 was 9.53 u mol CO2.m-2.s-1, which was only lower than treatment 5 (10.61 u mol CO2.m-2.s-1); the transpiration rate of treatment 5 was comparatively high as 2.26mmol-m-2.s-1, but that of treatment 2 was just 1.71mmol.m-2.s-1. Comprehensively, treatment 2 was better than the others, and tomatoes were fit for growing in treatment 2 as the same; but sweet peppers were growing better in treatment 3 than in the others. The photosynthetic rate of treatment 3 (5.31u mol CO2.m-2.s-1) was just lower than that of treatment 5 (63.1 u mol CO2.m-2.s-1); the intercellular CO2 concentration of treatment 3 was just lower than that of treatment 5 and 6; but the transpiration rate of treatment 3 (0.433 mmol.m-2.s-1) was much lower than that of treatment 5 (0.985 mmol.m-2.s-1); water utilization ratio of treatment 3 was more than one time as high as that of treatment 5.
    In the aspect of resistance, eggplants reached to the highest point in the No.2 treatment.
    In the aspect of yield, the total yield and the mean weight of berries of eggplants reached to the highest points as 7844.20 kg/667 m2 and 0.113 kg.
    From the above results, it is practical to use i
引文
[1] 江永红,宇振荣,马永良.土壤通报,2001,32(5):209-213.
    [2] 沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998,111-151.
    [3] 钱宏兵.稻麦秸秆直接还田技术的研究[J].土壤肥料,1998,(2):26-28.
    [5] 高祥照,马文奇.中国作物秸秆资源利用现状分析[J].华中农业大学学报,2002,21(3):242-247.
    [4] 佟屏亚.中国玉米技术史[M].中国农业科技出版社.
    [6] 毛知耕.肥料学[M].北京:中国农业出版社,1997,307-313.
    [7] 充分利用当地资源积极推广秸秆育苗[J].榆林高等专科学校学报,1990,04.
    [8] 殷永贤.增势秸秆对蔬菜保护地土壤微生物的影响[J].土壤通报,1996,(5).
    [9] 毛国军,邓光明.绿肥聚垄秸秆还土对玉米及土壤的影响[J].耕作与栽培,2002(2):49-50.
    [10] 李焕珍.玉米秸秆直接还田培肥效果研究[J].土壤通报,1996(5).
    [11] 宋述尧.玉米秸秆还田对塑料大棚连作土壤改良效果研究[J].农业工程学报,1997(01):135-139.
    [12] 周鸣铮.土壤肥力概论[M].杭州:浙江科学技术出版社,1985,118-154.
    [13] 陈景长.蔬菜育苗手册[M].中国农业大学出版社,2000.
    [14] 宋元林.现代蔬菜育苗[M].中国农业科技出版社,1988.
    [15] Sonneled, C. Rockwool was substrate for greenhouse crops. Biotechnology in Ag-riculture and Forestry [M],1991,(17):285-312.
    [16] 连兆煌.无土栽培原理与技术[M].中国农业出版社,1992,56-60.
    [17] 汪李平,向长萍.我国蔬菜硝酸盐污染状况及防治途径研究进展[J].长江蔬菜,2000(4):1-4.
    [18] 田卫,俞穆清,张虎成,等.长春市区无公害蔬菜战略转移基地环境质量检测与评价[J].吉林农业大学学报,2003,25(6):652-656.
    [19] 刑禹贤.世界无土栽培及发展趋势.农业新技术新方法[J],1997,(3):17-22.
    [20] E.J.休伊特.植物营养研究的砂培与水培法[M].北京:科学出版社,1965,38-47.
    [22] 李萍萍,张欣,卞新民,等.麦玉米稻种植体系中玉米秸秆环田效应分析[J].土壤,1997,(2):105-106.
    
    
    [21] 蒋卫杰,郑光华.有机生态型无土栽培技术及其营养生理基础[J].园艺学报,1996,23(3):139-144.
    [23] 张淑春,吕庭宏,杨健林,等.旱塬农区秸秆环田对土壤理化性质的影响[J].土壤废料,1999(4):15-17.
    [24] 黄娅琳.稻草还田对水稻的增产效应及对土壤肥力的影响[J].土壤肥料,1997,(2):18-20.
    [25] 张翠珍,邵长泉,孙工宗,等.稻草还田改良滨海盐土的作用及增产效应[J].土壤肥料,1997,(1):25-27.
    [26] 沈佳音,张悟民.稻秆深施与面施对养分释放的影响及其增产效果[J].土壤肥料,1999,(3):42-43.
    [27] 杨玉爱.我国有机肥料研究及展望[J].土壤学报,1996,33(4).
    [28] 孙羲,郭鹏程,何念祖,等.植物营养原理[M].中国农业出版社,杭州,1995.
    [29] 鲍士旦,江荣风,杨超光,等.土壤农化分析[M].中国农业出版社,1999.
    [30] 王虹.土壤肥力分析方法[M].辽宁大学出版社,1990.
    [31] 中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1983.
    [32] 荆建德,张志国.栽培基质常用理化性质“一条龙”测定法[J].北方园艺,2002(3):18-19.
    [33] GB9834-88农业标准汇编:土壤肥料卷[J].北京:中国标准出版社,1998.
    [34] 劳家柽.土壤农化分析手册[J].北京:农业出版社,1992,10.
    [35] GB12297-90农业标准汇编:土壤肥料卷[J].北京:中国标准出版社,1998.
    [36] 白宝璋主编.植物生理学实验教程(下)[M].北京:中国农业出版社,1996,12.
    [37] 林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H_2O_2的累积与膜脂过氧化酶的关系.[J]植物生理学报,1988,14(1):16-22.
    [38] 洪楠,林爱华.SPSS for windows统计分析教程[J].电子工业出版社,北京,1999.
    [39] 马育华,卢宗海,莫惠栋,等.田间试验和统计方法[M].农业出版社,1985.
    [40] 宇传华,颜杰.Excel与数据分析[M].电子工业出版社,北京,2002.
    [41] 李志洪,陈丹,张福锁.玉米根际有机磷的亏缺与积累[J].吉林农业大学学报,2003,25(6)639-642.
    [42] Marschner H. Mineral nutrition of higher plants (2nd edn)[M].London UK: Academic Press, 1995:889.
    [43] Barber SA. Soil nutrient bioavailability: a mechanistie approach(2nd Ed)[M]. New York: John wiley, 1995.
    
    
    [44] Liljeroth E Van Veen J A and Miller H J. Assimilate translocation to the rhizosphere microorganisms at two wheat lines and subsequent utilization soil by rhizosphere microorganisms at two soil nitrogen concentrations [J]. Soil Biol Biochem,1990,22:1015-1021.
    [45] 陈文新.土壤与环境微生物学[M].北京农业大学出版社,1990.
    [46] 田吉林,奚振邦.无土栽培基质的质量参数(孔隙性)研究[J].上海农业学报,2003,19(1):46-49.
    [47] 王彩绒,杨学云,张付申.施肥对土壤有机质的影响研究[J].陕西农业科学,2000,7:13-15.
    [48] 李焕珍,张忠源,杨伟奇,等.玉米秸秆直接还田培肥效果的研究[J].土壤通报,1996,27(5):213-215.
    [49] 张璐,沈善敏,廉鸿志,等.有机物料中有机碳、氮矿化进程及土壤供氮力研究[J].土壤通报,1997,28(2):71-73.
    [50] 来航线,程丽娟,王中科.几种微生物对土壤腐殖质形成的作用[J].西北农业大学学报,1997,25(6):79:82.
    [51] 吴景贵,陈丽荣,王明辉[J].吉林农业大学学报.2000,22(3):61-66,77.
    [52] 王志明,朱培立,黄东迈.~(14)C、~(15)N双标记秸秆对土壤微生物量C、N动态变化的影响[J].江苏农业学报,1999,15(3):173-176.
    [53] Anderson TH, Domsch KH. Rations of microbial biomass carbon to total organic carbon in arable sails[J]. Soil Biol Biochem, 1989,21:471-479.
    [54] Brookes pc, Landman A, pruden G, et al, chloroform fumigation measuring microbial biomass nitrogen in soil[J].Soil Biol Biochem, 1985,17:837-842.
    [55] Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C[J].Soil Biochem, 1987,19:703-707.
    [56] Witter E, martnsson Am, Garica FV, Size of the soil microbial biomass in a long-term experiments as affected by didderent N-fertilizers and organic manures, Soil Biol Biochem[J].1993,25:659-669.
    [57] 方正,徐海光,张立峰.秸秆直接还田的生物学效应[J].河北农业大学学报,1991,14(1):19-22.
    [58] 殷永娴,张春兰,姚惠琳.增施秸秆对蔬菜保护地土壤微生物的影响[J].土壤通报,1996 27(5):239-封3.
    [59] 王忠,禹煜珠,张健,等.小麦光合强度的日变化及其产生的原因[J].江苏农学院学报,
    
    1991,12(3):17-23.
    [60] 余叔文,汤章城.植物生理与分子生物学(第2版)[M].北京:科学出版社,1999:274.
    [61] 许大全,沈允钢.甘薯叶光合作用“午睡”现象初探[J].植物生理学报,1985,11(4):423-426.
    [62] 余彦波,刘桐华.植物光效生态学研究Ⅰ.小麦光合作用午休的原因[J].生态学报,1985,5(4):336-342.
    [63] 廖健雄,王根轩.谷子叶片光合速率日变化及水分利用效率[J].植物生理学报,1999,25(4):362-368.
    [64] 江苏农学院,华南农学院主编.植物学[M].上海科学技术出版社,1978.
    [65] 李正理,张新英.植物解剖学[M].高等教育出版社,1984.
    [66] 陆时万,徐祥生.植物学[M].北京:高等教育出版社,1987.
    [67] 赵明,李祥云,高峻岭,等.育苗基质不同施肥量对茄果类蔬菜幼苗生长的影响[J].土壤肥料,2002(5).
    [68] 孙红梅,李天来,须晖,等.不同氮水平下钾营养对大棚番茄产量及品质的影响[J].沈阳农业大学学报,2000-02,31(1):68-71.
    [69] 陈振德,黄俊杰,蔡葵,等.混合基质条件下茄子苗期施肥量研究[J].中国蔬菜,1996(4):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700