大型双馈风电机组动态载荷控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风力发电技术和产业的迅速发展,风电机组单机容量不断增大,叶片、传动系统和塔架等主要部件的柔性显著增加,机组运行过程中所受的动态载荷越来越复杂。通过控制策略减小风电机组动态载荷已成为风力发电领域的一个研究热点。本文以国家科技支撑计划重大专项“适应海、陆环境的双馈式变速恒频风电机组的研制”课题为依托,以3MW双馈变速恒频风电机组为对象,对动态载荷控制策略进行了深入的研究。目的是通过叶片桨距角和发电机转矩控制减小机组运行过程中所受的动态载荷,重点解决风电机组无法准确建模、强外部扰动给动态载荷控制带来的问题。主要研究工作归纳如下:
     基于对风电机组运行过程中所受动态载荷及其特性的研究分析,提出了一种双环结构风电机组动态载荷控制策略。为了在确保发电量的前提下,通过控制策略减小风电机组运行过程中的动态载荷,在发电机转矩控制和变桨距控制的基础上分别叠加了动态载荷控制环,以变桨距系统、变流器为作动器通过减小叶片受力不平衡和抑制振动减小风轮、塔架和传动系统的动态载荷。
     研究了以变桨距系统为作动器的风轮不平衡载荷和塔架顶部载荷主动控制方法。针对风速空间分布、风速变化及风轮流固耦合无法准确建模的问题,提出了基于泛模型的风轮动态载荷自适应控制策略。该方法不依赖于风轮的精准数学模型,且能较好的解决三个叶片桨距角和风轮动态载荷的非线性耦合、载荷测量引起的时滞等问题。仿真结果表明,基于泛模型的风轮动态载荷自适应控制能明显减小风轮不平衡载荷、抑制风轮和塔架的耦合振动,减小塔架顶部载荷。
     研究了以变流器为作动器的传动系统扭转载荷主动控制方法。针对齿轮弹性形变、齿轮啮合误差、柔性联轴器弹性形变等不确定因素导致的参数动态变化问题,建立了考虑不确定因素作用的传动系统集中参数模型,并以此为基础提出了传动系统扭转载荷自抗扰控制策略。采用扩张状态观测器将传动系统内部不确定因素作用和外部扰动归结为总扰动进行动态估计,并在状态误差反馈中进行补偿,提高了控制器对系统内部不确定因素和外部干扰的鲁棒性。仿真结果表明,传动系统扭转载荷自抗扰控制策略能够明显抑制传动系统扭矩波动,减小扭转载荷。
     对动态载荷控制策略进行了试验验证。构建了3Mw风电机组控制系统半实物测试平台,通过模拟典型风电场风况对动态载荷控制策略进行了试验研究。试验结果进一步验证了本文所应用的控制算法和提出的动态载荷控制策略在减小风电机组动态载荷方面是可行且有效的。
With the rapid development of wind energy technology and industry, the capacity size of wind turbine become more and more bigger, the rotor, drive train and tower become more and more flexible, which lead to the wind turbine dynamic load go into complexity and inclemency. The 3MW double feed wind turbine is taken as the research object in this thesis based on the project supported by National Key Technology Research and Development program. The goal of the research work is to reduce the dynamic load through special control strategy design, and the key is to solve the problem from the difficulty in building the rotor aero model and disturbance effect. Following is the main contents of this thesis:
     A kind of double loop control strategy is put forward based on analyses of wind turbine dynamic load and its influencing factor. In order to reduce the dynamic load on the premise of ensuring the output energy, the dynamic load active control loop is leaded into the power and speed controller, in which the pitch system and the inverter is taken as actor.
     The active control method of rotor unbalance aerodynamic load and tower top load is studied. Aimed at the complex noline coupling and the difficulty in building the mathematic aero model of rotor, a kind of rotor dynamic load active control strategy based on general model. It is a model free method. and it is good at handled the noline coupling of three pitch angle and rotor dynamic load and the sensor delay. The GH bladed simulation result shows that the dynamic load active control strategy based on general model can reduce the rotor unbalance load, restrain the coupling vibration between rotor and tower, and reduce the tower top load.
     The active control method of drive train rotation dynamic load is studied. Aimed at the parameter perturbation problem from the uncertainty factor, such as gear elastic deformation, gear engaging error, dynamic stiffness and damp of flexible coupling, the drive train dynamic model including uncertainty factor effect is built. An active disturbance rejection rotation dynamic load active control strategy is put forward. The strategy reduces the load through torque vibration surprising based on extended status observer and nonlinear state error feedback. The uncertainty factor effect and external disturbance are summarized as general disturbance. The general disturbance is estimated by extended status observer and compensated in nonlinear state error feedback. The GH bladed simulation result shows that the active disturbance rejection load active control strategy can surprises the drive train torque vibration and reduce the rotation dynamic load.
     The dynamic load active control strategy is verified through measurement on a wind turbine control system test bench. A 3MW wind turbine control system test bench is built. The strategy is tested through simulate the wind of classic wind farm. The test data shows that the new presented control strategy is feasible and effective.
引文
[1]World Wind Energy Association. World wind energy report 2009.9th World Wind Energy Conference& Exhibition Large-scale Integration of Wind Power. Istanbul Turkey, March 2010.
    [2]施跃文,高辉,陈钟.国外特大型风电机技术综述.电网技术,2008,32(1 8):87-91.
    [3]关伟,卢岩.国内外风力发电概况及发展方向.吉林电力,2008,36(1):7-10.
    [4]刘忠明,段守敏,干长路.风力发电齿轮箱设计制造技术的发展与展望.机械传动,2006,30(6): 1-6.
    [5]中国可再生能源学会风能专业委员会.2009年中国风电整机制造业市场格局及发展态势.http://www.cnwpem.com/news/63890.html.2010-6.
    [6]姚兴仕,宋俊等.风力发电机组原理与应用.北京:机械工业出版社,2009.
    [7]姚兴仕,刘国喜,朱家玲等.可再生能源及其发电技术.北京:科学处版社,2010.
    [8]熊礼俭.风力发电新技术与发电工程设计、运行、维护及标准规范实用手册.北京:中国科学文化出版社,2005.
    [9]叶杭冶.风电机组的控制技术.北京:机械工业出版社,2002.
    [10]Burton Tony, Sharpe David, Jenkins Niek. Wind Energy Handbook. New York:John Wiley& Sons, Ltd,2001.
    [11]M. Rossetti, E.A. Bossanyi. Damping of tower motions via pitch control-theory and practice. Proceedings of European Wind Energy Conference,2004.
    [12]Kausihan Selvam. Individual Pitch Control for Large scale wind turbines. Energy Research Center of the Netherlands,2007.
    [13]叶航冶,潘东浩.风电机组变速与变距控制过程中的动力学问题研究.太阳能学报,2007,28(12):1321-1328.
    [14]Dengying, Yu Shiming, Wang Xiangming. Researches of a controller for reducing load of driving chain in wind turbine based on H control. The IEEE International Conference on Automation and Logistics. Jinan,2007.
    [15]邓英,梁晶晶,王湘明等.减缓风力发电机组驱动链载荷的控制器.太阳能学报,2009,30(10):1420-1423.
    [16]刘颖明.永磁直驱风电机组控制技术研究:(博士学位论文). 沈阳,沈阳工业大学,2010.
    [17]E Bossanyi. Developments in Individual Blade Pitch Control. The Science of making Torque from Wind. Delft University of Technology, The Netherlands, April 19-212004.
    [18]E. A. Bossanyi. Individual Blade Pitch Control for Load Reduction. Wind Energy,2003, 6:119-128.
    [19]Eric van der Hooft, P.Schaak. Wind turbine control algorithms. Energy Research Center of the Netherlands,2003.
    [20]林勇刚,李伟,陈晓波等.大型风电机组独立桨叶控制系统.太阳能学报,2005,26(6):780-786.
    [21]Bo Junl Pedersen. Method and control system for reduction of a wind turbine subjected to asymmetrical loading of the rotor plane. USA, US2009/0021015Al.2009.
    [22]通用电气公司.基于轴径向位移的进行风力涡轮机转子载荷控制的方法和没备.中国,CN1823223A.2006.
    [23]通用电气公司.风轮机泄放负载系统及方法.中国,CN 101009475A.2007.
    [24]王哲.大型风电机组变桨距控制策略研究:(博士学位论文). 沈阳,沈阳工业大学,2010.
    [25]Stol K., Fingersh L. Wind Turbine Field Testing of State-Space Control Designs. http://www.osti.gov/bridge.
    [26]Wright A., Stol K., Fingersh L. Progress in Implementing and Testing State-Space Controls for the Controls Advanced Research Turbine. The 24th ASME Wind Energy Conference, Reno,2005.
    [27]武钢.主动失速型风力发电机功率优化和载荷控制策略研究:(硕士学位论文).大连,大连理工大学,2003.
    [28]接勐.风电机纠载荷控制的研究:(硕十学位论文).新疆,新疆农业大学,2006.
    [29]邢作霞,刘颖明,姚兴佳等.基于阻尼滤波的大型风电机组柔性振动控制技术.太阳能学报,2008,29(11):1425-1431.
    [30]邢作霞.大型变速变距风电机组的柔性协调控制技术研究:(博十学位论文)。北京,北京交通大学,2008.
    [31]纪志成,朱芸,孟涛.风能转换系统的MPPT变增益极值搜索控制.电机与控制学报,2009,13(3):414-418.
    [32]杨俊华,吴捷,杨金明等.风力发电系统中的最优控制策略综述.微特电机,2004,3:30-42.
    [33]闫耀民,范瑜,汀至中.永磁同步电机风力发电系统的自寻优控制.电工技术学报,2002.12,17(6): 82-86.
    [34]Connor B. LQG Control of a Constant Speed Horizontal Axis Wind Turbine. The 3rd IEEE Conf.on Control Appl,1994:251-252.
    [35]Ekelund T. Yaw Control for Reduction of Structural Dynamic Loads in Wind Turbines. Wind Eng. Ind. Aerodyn.,2000,:241-262.
    [36]Liebst B S. A Pitch Control Systemfor the KaMeWa Wind Turbine. Dynamic Systems, Measurement and Control,1985:47-52.
    [37]Murdoch A. Control Design and Performance Analysis of a 6 MW Wind Turbine-Generator. IEEE Trans. PAS,1983:1340-1347.
    [38]Ekelund T. Dynamics and Control of Structural Loads of Wind Turbines. Proc of the American Control Conf., Pennsylvania,1998.6:1720-1724.
    [39]E.A.Bossanyi. Adaptive pitch control for a 250kW Wind Turbine, Proc. British Wind Energy Conference.1986:85-92.
    [40]YD. Song, B.Dhinakaran.Control of Wind Turbines Using Nonlinear Algorithms. American Control Conferences,2000:1551-1555.
    [41]Anca D Hansen, Henrik Bindner and Anders Rebsdorf. Improving transition between power optimization and power limitation of variable speed variable pitch wind turbines. European Wind Energy Conference, Nice France,1-5 March 1999:889-892.
    [42]P Ruben, systems D S Daniel. variable structure controllers for small wind energy. IEE Canadian conference on Electrical,1999:1067-1072.
    [43]Kelouwani S., Agbossou K. Nonlinear model identification of wind turbine with a neural network. IEEE Transactionsion on Energy Conversion, Sept.2004:607-612.
    [44]Shuhui Li, Wunsch D.C, OHair E.A. Using neural networks to estimate wind turbine power generation. IEEE Transactionsion on Energy Conversion,2001.
    [45]IEC61400-1:2005, Wind turbines-Part 1:Design requirements. Geneva, Switzerland:IEC Central Office,2005.
    [46]中国船级社标准,风力发电机组规范.北京:人民交通出版社,2003.
    [47]Hand, M.M., SimmsD.A. Unsteady Aerodynamics Experiment Phase VI:Wind Tunnel Test Configurationsand Available Data Campaigns. Golden, CO:National Renewable EnergyLaboratory December,2001.
    [48]Goldstein, S.On the Vortex Theory of Screw Propeller. Proc. Roy. Soc. (A),1929.
    [49]Du, Z.Selig. A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction.Proc. ASME Wind Energy Symposium. Sci.Mtg., AIAA 1998.
    [50]Glauert, H. Aerodynamic Theory (W. F. Durand, ed.).Div. L,Chapter XI. Berlin:Springer Verlag,1935.
    [51]贺德馨.风工程与工业空气动力学.北京:国防工业出版社,2006.
    [52]Hansen A.C. Yaw Dynamics of Horizontal Axis Wind Turbines. Golden, National Renewable EnergyLaboratory,1992.
    [53]Hansen A.C. Butterfield. Aerodynamics of Horizontal-Axis Wind Turbines. Annual Rev. of Fluid Mech.,1992.
    [54]Hansen A.C. Development and Application of a Generalized Dynamic Wake Theory forLifting Rotors. Atlanta:Georgia Institute of Technology,1989.
    [55]Laino,D.J. Hansen. User's Guide to the Wind Turbine Aerodynamics ComputerSoftware AeroDyn. Windward Engineering, Salt Lake City, UT,2004.
    [56]Laino,D.J. Hansen. Current Efforts Towards Improved Aerodynamic ModelingUsing the AeroDyn Subroutines. ASME Wind Energy Symposium, Sci. Mtg.,2004.
    [57]Leishman, J.G. Beddoes. A Generalized Model for Airfoil Unsteady Behavior and Dynamic Stall Using the Indicial Method. Proceedings from the 42nd Annual Forum of the American Helicopter Society. Washington,1986:243-266.
    [58]Luong Van Binh, Pham Van Phuc, Takeshi Ishihara. Analysis of response of wind turbine under wind load. The Fourth International Symposium on Computational Wind Engineering, Yokohama, 2006.
    [59]J. Peeters, D. Vandepitte. Structural analysis of a wind turbine and its drive train using the flexible multibody simulation technique.The International Conference on Noise and Vibration Engineering,Leuven, Belgium,2006.
    [60]王立刚,曹登庆,胡超等.叶片振动对转子—轴承系统动力学行为的影响.哈尔滨工程大学学报,2007,28(3):320-325.
    [61]李东东,陈陈.风力发电机组动态模型研究.中国电机工程学报,2005,25(3):115-119.
    [62]Joris Peeters. Simulation of Dynamic Drive Train Loads in a Wind Turbine. Katholieke University Leuven,2006.
    [63]马朝锋,刘凯,崔亚辉等.风电增速箱行星轮系的扭转振动模型.机械科学与技术,2010,29(6):788-791.
    [64]朱才朝,黄泽好,唐倩等.风力发电齿轮箱系统耦合作线性动态特性的研究.机械工程学报,2005,41(8):203-207.
    [65]马建敏,韩平畴.柔性联轴器刚度非线性对扭转振动的影响.振动与冲击,2005.24(4):6-8.
    [66]马建敏,杨万东.柔性联轴器非线性阻尼对扭转减振的影响.振动与冲击,2006,25(3):11-13.
    [67]Cheng, Daizhan, Li Zhiqiang.A survey on linearization of nonlinear systems, Journal of Shandong University,2009,39(2):26-36.
    [68]郭朝晖,郑加成,吴铁军.近似线性化方法综述.控制与决策,1999,14(5)::385-391.
    [69]余焱,吴波.一般非线性系统的精确线性化.上海交通大学学报,1999,33(12):1599-1601.
    [70]宋建华,周以琳.一类非线性系统的线性化方法研究.青岛科技大学学报,2004,25(5):461-464.
    [71]张铁柱,宋仁学,韩志刚.离散时间非线性系统线性化的泛模型方法.控制与决策,2002,17(2):249-251.
    [72]韩志刚.关于建模与自适应控制的一体化途经.自动化学报,2004,30(3):380-389.
    [73]张嗣赢.复杂控制系统的对称性及相似性结构.控制理论与应用,1994,11(2):231-236.
    [74]侯忠生,韩志刚.非线性系统的参数估计及与之对偶的自适应控制.自动化学报,1995,21(1): 122-125.
    [75]侯忠生.非参数模型及其自适应控制理论. 北京;科学出版社,1999:155-164.
    [76]庞建丽,高丽娜.基于Matlab的IIR数字滤波器设计方法比较及应用.现代电子技术,2010,11:103-105.
    [77]马平,张晨晖.无模型控制器参数学习步长和惩罚因子的整定研究.仪器仪表学报,,2008,29(4): 671-673.
    [78]于志刚,赵杰.无模型控制律的基本形式收敛性分析.控制工程,2009,16(2):130-132.
    [79]蒋爱平,李秀英,,巫红.无模型控制方法控制功能的分析研究.控制工程,2007,14(1):14-17.
    [80]韩志刚,杨艳梅.多输入多输出非线性系统的无模型控制律.黑龙江大学自然科学学报,1995,12(2): 1-7.
    [81]薛荆岩,涂磊,韩志刚.无模型控制方法性能分析.控制工程,2009,16(5):531-534.
    [82]易军.针对非线性不确定对象的网络学习控制系统研究:(博十学位论文).上海,上海大学,2007.
    [83]罗小元,朱志浩,关新平.不确定非线性时滞系统的自适应滑模控制.智能系统学报,2010,5(4):332-335.
    [84]佟绍成.基于观测器非线性不确定系统的自适应模糊控制.控制与决策,2002,17(4):391-396.
    [85]韩京清. 一类不确定对象的扩张状态观测器.控制与决策,1995,10(1):85-88.
    [86]韩京清.从PID技术到“自抗扰控制”技术.控制工程,2002,9(3):13-18.
    [87]T.G. van Engelen, P. Schaak, C. Lindenburg. Control for damping the fatigue relevantdeformation modes of offshore wind turbines. ECN Petten,2003.
    [88]刘峻华.大型汽轮发电机组轴系扭振研究:(博士学位论文).武汉:华中科技大学,2006.
    [89]吕金,朱传磊,周本用.陷波滤波抑制轧机扭振.电气传动,2008,38(6):8-11.
    [90]徐志强,范轶,郭钰锋.考虑量化效应的扭振观测器设计.中国电机工程学报,2009,,9(8):70-74.
    [91]于达仁,鲍文,杨昆.基于状态观测器的汽轮发电机组扭应力测量.中国电机工程学报,2000,20(2):70-72,77.
    [92]龚庆寿,王敏之.传动系统的扭振模态及其数学模型.湖南工程学院学报,2002,12(1):42-43.
    [93]陈羽中.同态滤波在扭矩载荷识别中的应用.电子科技大学学报,1999,28(3):269-272.
    [94]韩京清.自抗扰控制技术—估计补偿不确定因素的控制技术.北京:国防工业出版社,2008.
    [95]石晨曦.自杭扰控制及控制器参数整定方法的研究:(硕十学位论文).无锡,江南大学,2008.
    [96]Paul S. Veers. Three-Dimensional wind Simulation. Sandia National Laboratories,1988.
    [97]Caselitz, Kleinkauf, Kruger Etc. Reduction of fatigue loads on wind energy converters by advanced control methods. European Wind Energy Conference, Dublin,1997.
    [98]Bossanyi EA. The design of closed loop controllers for wind turbines. Wind Energy,2000,3: 149-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700