桉叶素对大鼠脊髓胶状质神经元自发兴奋性传递的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:TRP(transient receptor potential)通道是一类广泛存在神经系统的跨膜蛋白质,是一种非选择性阳离子通道。 TRP通道家族包含七种亚族,其中多种TRP通道参与疼痛信号的传递。脊髓背角胶状质(SG)含有丰富且经典的递质及其受体,是伤害性信息传入的第一站,是脊髓中神经结构和化学组成最复杂的区域,是疼痛调制的关键部位。尽管TRP通道在脊髓SG神经元痛觉传递的过程中发挥着重要的作用;但其作用尚不明确。TRP通道可被多种植物源性化学物质激活,如辣椒素和异硫氰酸盐等。桉叶素存在于多种植物精油中,最近研究报道它具有镇痛的作用,但其作用机制尚不清楚。本研究采用全细胞膜片钳技术,观察1,4-桉叶素和1,8-桉叶素对脊髓胶状质神经元谷氨酸能自发兴奋性传递的影响,探讨其作用机制是否与DRG神经元上的TRP通道有关。
     方法:雄性SD大鼠(6-8周),腹腔注射乌拉坦(1.2g/kg)麻醉后,行腰骶部椎板切除术。20min后,取出腰骶部脊髓(L1-S3),利用振动切片机切取650-700μm厚的脊髓切片,放入记录槽内的尼龙网上。人工脑脊液(Krebs)灌流1h后,盲法全细胞膜片钳技术记录SG神经元的sEPSC。将1,4-桉叶素、1,8-桉叶素、(-)薄荷醇、辣椒素、TRPV1通道抑制剂抗辣椒素和TRPA1通道抑制剂HC-030031分别灌注记录槽。
     结果:固定电位保持在-70mV,0.05-7mM1,8-桉叶素灌注3min,sEPSC的频率增加呈剂量依赖性,EC50为2.5mM (Hill系数为2.0),波幅无明显改变。0.1-0.7mM1,4-桉叶素灌注3min,sEPSC的频率增加呈剂量依赖性,EC50为0.18mM (Hill系数为7.9),伴随波幅轻度增加。0.5mM1,4-桉叶素(含有1,8-桉叶素植物中的一种微量提取物)灌注3min,sEPSC的频率增加程度较1,8-桉叶素高,伴随波幅轻微增加。桉叶素引起sEPSC频率增加的效果是可重复的,20min后再次用药有同化作用。桉叶素对自发兴奋性传递的促进作用不能被TRPV1通道抑制剂抗辣椒素阻断,也不影响辣椒素的作用。但是,桉叶素的作用可被TRPA1通道抑制剂HC-030031抑制。和(-)薄荷醇相比,1,8-桉叶素对sEPSC频率的增加率远大于预期的其通过激活TRPM8而产生的影响。在部分细胞中,桉叶素可引起内向电流。
     结论:桉叶素通过激活神经元的TRPA1通道而不是TRPV1通道,引起脊髓SG神经元自发性左旋谷氨酸释放增加。1,4-桉叶素的作用强于1,8-桉叶素,该结论有助于了解作为疼痛和其他疾病治疗靶点的中枢TRPA1通道的特性。
Objective: The transient receptor potential (TRP) channel is a kind of transme-mbrane protein that exist in the nervous system widely, and a kind of nonselectivecation channel. There are seven subfamilies in TRP channels, and many of themregulate the sensation of pain. There are abundant of classical neurotransmitter and itsreceptors in substantia gelatinosa which is the important region to regulate thesensation of pain. Although TRP channels play a role in regulating nociceptivetransmission in spinal substantia gelatinosa (SG) neurons, the properties of the TRPchannels have not yet been examined fully. The central TRP channels are activated byvarious plant-derived chemicals such as capsaicin and isothiocyanate. In many kinds ofessential oil there is cineole which has analgesic effect, but the mechanism is not clearyet. The present study examined the effects of1,4-cineole and1,8-cineole onglutamatergic spontaneous excitatory postsynaptic currents (sEPSC) in the SG neuronsof spinal cord slices by using the whole-cell patch-clamp technique, and investigatewhether they can activate TRP channels.
     Methods: Male adult Sprague-Dawley rats (6-8weeks old) were anesthetizedwith urethane (1.2g/kg, intraperitoneal), and then lumbosacral laminectomy wasperformed. The lumbosacral spinal cord (L1-S3) was removed and mounted on avibrating microslicer and then a650-700μm thick transverse slice was cut. The slicewas placed on nylon mesh in the recording chamber, superfused Krebs, one hour laterthe blind whole-cell patch-clamp technique was applied to the SG neurons of the slicesto record the sEPSC.1,4-cineole,1,8-cineole, menthol, capsaicin, capsazepine andHC-030031were applied by superfusion with a change in solutions in the recordingchamber.
     Results: Bath-applied1,8-cineole for3min in a range of0.2-7mM increased thefrequency of sEPSC in a dose-dependent manner with a half-maximal effectiveconcentration value of2.5mM (Hill coefficient=2.0) with no significant increase in itsamplitude and unchanged holding currents at a holding potential of-70mV.1,4-Cineole, a minor component of plant extracts containing1,8-cineole, superfused for3min in a range of0.1-0.7mM increased sEPSC frequency (EC50=0.18mM, Hillcoefficient=7.9) effectively more than1,8-cineole with a small increase in itsamplitude. The sEPSC frequency increase produced by cineole was reversible, theeffect of twice was similar with a20min interval. The excitatory transmissionenhancement produced by cineole was unaffected by a TRPV1antagonist capsazepine;the cineole effect was not occluded by capsaicin. On the other hand, the facilitatoryeffect of cineole was inhibited by a TRPA1antagonist HC-030031. The sEPSCfrequency increase produced by1,8-cineole was much greater than that expected fromTRPM8activation by1,8-cineole compared to (-) menthol. Cineole produced aninward current in some of the neurons examined.
     Conclusion: It is concluded that cineole enhances the spontaneous release ofL-glutamate onto SG neurons by activating TRPA1but not TRPV1channel; this actionof1,4-cineole is much larger than that of1,8-cineole. This result could serve to knowthe properties of the central TRPA1channels that are therapeutic targets for pain andother disorders.
引文
[1] Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putativeintegral membrane protein required for phototransduction. Neuron,1989,2:1313-1323.
    [2] Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524.
    [3] Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family.Cell,2002,108:595-598.
    [4] Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily ofTRP cation channels. Mol Cell,2002,9:229-231.
    [5] Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969,224:285-287.
    [6] Montell C. The TRP superfamily of cation channels. Sci STKE,2005,272, re3.
    [7] Venkatachalam K, Montell C. TRP Channels. Annu Rev Biochem,2007,76:387-417.
    [8] Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim BiophysActa,2007,1772:989-1003.
    [9] Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr OpinNeurobiol,2004,14:362–369.
    [10] Kwan KY, Allchornea J, Vollrath MA, et al. TRPA1contributes to cold, mechanical, andchemical nociception but is not essential for hair-cell transduction. Neuron,2006,50(2):277-289.
    [11] Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains isspecifically lost after oncogenic transformation of human fibroblasts. Biol Chem,1999,274(11):7325-7333.
    [12] Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transducer properties of TRPA1,a channel for pain and hearing. Neuronscience,2005,25(16):4052-4061.
    [13] Bo D, Tianle X. Transient receptor potential channels and signal transduction. ACTABIOPHYSICA SINICA,2005,4(21):245-260.
    [14] Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in micelacking the capsaicin receptor. Science,2000,288:306-313.
    [15] Adams JJD, Garcia C. Women’s health among the Chumash. eCAM,2006,3:125–131.
    [16] Menezes IAC, Marques MS, Santos TC, et al. Antinociceptive effect and acute toxicity of theessential oil of Hyptis fruticosa Salmzex Benth in mice. Fitoterapia,2007,78(3):192–195.
    [17] Silva WJ, Dória GAA, Maia RT, et al. Effects of essential oils on Aedes aegypti larvae:Alternatives to environmentally safe insecticides. Biores Tech,2008,99:3251–3255.
    [18] Botelho MA, Rao VS, Montenegro D, et al. Effects of a herbal gel containing carvacrol andchalcones on alveolar bone resorption in rats on experimental periodontitis. Phytother Res,2008,22:442–449.
    [19] Santos FA, Rao VSN. Antiinflammatory and antinociceptive effects of1,8‐cineole aterpenoid oxide present in many plant essential oils. Phytother Res,2000,14:240–244.
    [20] Santos MRV, Carvalho AA, Medeiros IA, et al. Cardiovascular effects of Hyptis fruticosaessential oil in rats. Fitoterapia,2007,78:186–191.
    [21] Juergens UR, St ber M, Schmidt-Schilling L, et al. Antiinflammatory effects of euclyptol(1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human bloodmonocytes ex vivo. Eur J Med Res,1998,3:407-412.
    [22] Lahlou S, Figueiredo AF, Magalh es PJC, et al. Cardiovascular effects of1,8-cineole, aterpenoid oxide present in many plant essential oils, in normotensive rats. Can J PhysiolPharmacol,2002,80:1125-1131.
    [23] Liapi C, Anifantis G, Chinou I, et al. Antinociceptive properties of1,8-cineole and b-pinene,from the essential oil of Eucalyptus camaldulensis leaves, in rodents. Planta Med,2007,73:1247-1254.
    [24] Franco CRP, Antoniolli R, Guimar es AG, et al. Bioassay-guided evaluation ofantinociceptive properties and chemical variability of the essential oil of Hyptis fruticosa.Phytother Res,2011,25:1693-1699.
    [25] Romagni JG, Allen SN, Dayan FE. Allelopathic effects of volatile cineoles on two weedyplant species. J Chem Ecol,2000,26:303-313.
    [26] Gomes PB, Feitosa ML, Gomes Silva MI, et al. Anxiolytic-like effect of the monoterpene1,4-cineole in mice. Pharmacol Biochem Behav,2010,96:287-293.
    [27] Willis WDJ, Coggeshall RE. Sensory Mechanisms of the Spinal Cord.2nd edition. New York:Plenum,1991,94-115.
    [28] Patapoutian A, Tate S, Woolf CJ. Transient receptor potential channels: targeting pain at thesource. Nat Rev Drug Discov,2009,8:55-68.
    [29] Lappin SC, Randall AD, Gunthorpe MJ, et al. TRPV1antagonist, SB-366791, inhibitsglutamatergic synaptic transmission in rat spinal dorsal horn following peripheralinflammation. Eur J Pharmacol,2006,540:73-81.
    [30] da CDS, Meotti FC, Andrade EL, et al. The involvement of the transient receptor potential A1(TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation.Pain,2010,148:431-437.
    [31] Su L, Wang C, Yu YH, et al. Role of TRPM8in dorsal root ganglion in nerve injury-inducedchronic pain. BMC Neurosci,2011,12:120.
    [32] Watabiki T, Kiso T, Tsukamoto M, et al. Intrathecal administration of AS1928370, a transientreceptor potential vanilloid1antagonist, attenuates mechanical allodynia in a mouse model ofneuropathic pain. Biol Pharm Bull,2011,34:1105-1108.
    [33] Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activatedion channel in the pain pathway. Nature,1997,389:816-824.
    [34] Yang K, Kumamoto E, Furue H, et al. Capsaicin facilitates excitatory but not inhibitorysynaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett,1998,255:135-138.
    [35] Morisset V, Urban L. Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs insubstantia gelatinosa neurons of the rat spinal cord. J Neurophysiol,2001,86:40-48.
    [36] Jiang CY, Fujita T, Yue HY, et al. Effect of resiniferatoxin on glutamatergic spontaneousexcitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord.Neuroscience,2009,164:1833-1844.
    [37] Yang L, Fujita T, Jiang CY, et al. TRPV1agonist piperine but not olvanil enhancesglutamatergic spontaneous excitatory transmission in rat spinal substantia gelatinosa neurons.Biochem Biophys Res Commun,2011,410:841-845.
    [38] Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabinoids excite sensory nervefibres through the TRP channel ANKTM1. Nature,2004,427:260-265.
    [39] Kosugi M, Nakatsuka T, Fujita T, et al. Activation of TRPA1channel facilitates excitatorysynaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci,2007,27:4443-4451.
    [40] Wrigley PJ, Jeong HJ, Vaughan CW. Primary afferents with TRPM8and TRPA1profilestarget distinct subpopulations of rat superficial dorsal horn neurones. Br J Pharmacol,2009,157:371-380.
    [41] Uta D, Furue H, Pickering AE, et al. TRPA1-expressing primary afferents synapse with amorphologically identified subclass of substantia gelatinosa neurons in the adult rat spinalcord. Eur J Neurosci,2010,31:1960-1973.
    [42] Inoue M, Fujita T, Goto M, et al. Presynaptic enhancement by eugenol of spontaneousexcitatory transmission in rat spinal substantia gelatinosa neurons is mediated by TRPA1channels. Neuroscience, in press.
    [43] Peier AM, Moqrich A, Hergarden AC, et al. A TRP channel that senses cold stimuli andmenthol. Cell,2002,108:705-715.
    [44] Suzuki SC, Furue H, Koga K, et al. Cadherin-8is required for the first relay synapses toreceive functional inputs from primary sensory afferents for cold sensation. J Neurosci,2007,27:3466-3476.
    [45] Behrendt HJ, Germann T, Gillen C, et al. Characterization of the mouse cold-menthol receptorTRPM8and vanilloid receptor type-1VR1using a fluorometric imaging plate reader (FLIPR)assay. Br J Pharmacol,2004,141:737-745.
    [46] Liu T, Fujita T, Kawasaki Y, et al. Regulation by equilibrative nucleoside transporter ofadenosine outward currents in adult rat spinal dorsal horn neurons. Brain Res Bull,2004,64:75-83.
    [47] Yue HY, Fujita T, Kumamoto E. Phospholipase A2activation by melittin enhances spontan-eous glutamatergic excitatory transmission in rat substantia gelatinosa neurons. Neuroscience,2005,135:485-495.
    [48] Yue HY, Fujita T, Kumamoto E. Biphasic modulation by galanin of excitatory synaptictransmission in substantia gelatinosa neurons of adult rat spinal cord slices. J Neurophysiol,2011,105:2337-2349,
    [49] Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP like channel expressed in nociceptiveneuron, is activated by cold temperature. Cell,2003,112:819-829.
    [50] Howard J, Bechstedt S. Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ionchannel is the gating spring of mechanoreceptors. Curr Biol,2004,14(6):R224-226.
    [51] Lee G, Abdi K, Jiang Y, et al. Nanospring behaviour of ankyrin repeats. Nature,2006,440:246-249.
    [52] Jordt SE, McKemy DD, Julius D. Lessons from peppers and peppermint: the molecular logicof thermosensation. Curr Opin Neurobiol,2003,13:487-492.
    [53] Patapoutian A, Peier AM, Story GM, et al. Thermo TRP channels and beyond: mechanisms oftemperaturesensation. Nat Rev Neurosci,2003,4:529-539.
    [54] Campero M, Serra J, Ochoa JL. C-polymodal nociceptors activated by noxious lowtemperature in human skin. Physiol,1996,497(2):565–572.
    [55] Bandell M, Story GM, Hwang SW, et al. Noxious cold ion channel TRPA1is activated bypungent compounds and bradykinin. Neuron,2004,41:849–857.
    [56] Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabinoids excite sensory nervefibres through the TRP channel ANKTM1. Nature,2004,427:260-265.
    [57] Macpherson LJ, Geierstanger BH, Viswanath V, et al. The pungency of garlic: activation ofTRPA1and TRPV1in response to allicin. Curr Biol,2005,15:929–934.
    [58] Bautista DM, Jordt SE, Nikai T, et al. TRPA1mediates the inflammatory actions ofenvironmental irritants and proalgesic agents. Cell,2006,124:1269–1282.
    [59] McNamara CR, Mandel-Brehm J, et al. TRPA1mediates formalin-induced pain. Proc NatlAcad Sci USA,2007,104:13525–13530.
    [60] Taylor-Clark TE, Ghatta S, Bettner W, et al. Nitrooleic acid, an endogenous product ofnitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. MolPharmacol,2009,75:820-829.
    [61] Andersson DA, Gentry C, Moss S, et al.Transient receptor potential A1is a sensory receptorfor multiple products of oxidative stress. Neuroscience,2008,28:2485-2494.
    [62] Macpherson LJ, Dubin AE, Evans MJ, et al. Noxious compounds activate TRPA1ionchannels through covalent modification of cysteines. Nature,2007,445(7127):541-545.
    [63] Hinman A, Chuang HH, Bautista DM, et al. TRP channel activation by reversible covalentmodification. Proc Natl Acad Sci USA,2006,103(51):19564-19568.
    [64] Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transducer properties of TRPA1,a channel for pain and hearing. J Neurosci,2005,25(16):4052-4061.
    [65] Akopian AN, Ruparel NB, Jeske NA, et al. Transient receptor potential TRPA1channeldesensitization in sensory neurons is agonist dependent and regulated by TRPA1-directedinternalization. J Physiol,2007,583(Pt1):175-193.
    [66] del CD, et al. TRPA1contributes to cold hypersensitivity. Neurosci,2010,30:15165–15174.
    [67] Kerstein PC, del Camino D, Moran MM, et al. Pharmacological blockade of TRPA1inhibitsmechanical firing in nociceptors. Pain,2009,5:19.
    [68] Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ionchannel in the pain pathway. Nature,1997,389:816-824.
    [69] Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. AnnuRev Neurosci,2001,24:487-517.
    [70] Cheng W, Yang F, Takanishi CL, et al. Thermosensitive TRPV channel subunits coassembleinto heteromeric channels with intermediate conductance and gating properties. J Gen Physiol,2007,129:191-207.
    [71] Voets T, Nilius B. TRPs make sense. J Membr Biol,2003,192:1-8.
    [72] Huang SM, Bisogno T, Trevisani M, et al. An endogenous capsaicin-like substance with highpotency at recombinant and native vanilloid VR1receptors. Proc Natl Acad Sci USA,2002,99(12):8400–8405.
    [73] Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptor and mecha-nisms. Pharmacol Rev,1999,51:159-212.
    [74] Mason L, Morre RA, Derry S, et al. Systematic review of topical capsaicin for the treatment ofchronic pain[J]. BMJ,2004,328:991.
    [75] Cui M, Honore P, Zhong C, et al. TRPV1receptors in the CNS play a key role inbroad-spectrum analgesia of TRPV1antagonists. Neuroscience,2006,26(37):9385–9393.
    [76] Gavva NR, Bannon AW, Surapaneni S, et al. The vanilloid receptor TRPV1is tonicallyactivated in vivo and involved in body temperature regulation. Neuroscience,2007,27(13):3366–3374.
    [77] Tsavaler L, Shapero MH, Morkowski S, et al. Trp-p8, a novel prostate specific gene, is upregulated in prostate cancer and other malignancies and shares high homology with transientreceptor potential calcium channel proteins. Cancer Res,2001,61:3760-3769.
    [78] McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a generalrole for TRP channels in thermosensation. Nature,2002,416:52-58.
    [79] Kozak M. Complilation and analysis sequences upstream from the translational start site ineukaryotic mRNAs. Nucleic Acid Res,1984,12:8572872
    [80] Montell C. New light on TRP and TRPL. Mol Pharmacol,1997,52:7552763.
    [81] Zhang L, Barritt GJ. Evidence that TRPM8is an androgen dependent Ca2+channel requiredfor the survival of prostate cancer cells. Cancer Res,2004,64:8365-8373.
    [82] Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci,2001,2:387-396.
    [83] Proudfoot CJ, Garry EM, Cottrell DF, et al. An-algesia mediated by the TRPM8cold receptorin chronic neuropathic pain. Curr Biol,2006,16:1591-1605.
    [84] Grudt TJ, Perl ER. Correlations between neuronal morphology and electrophysiologicalfeatures in the rodent superficial dorsal horn. J Physiol,2002,540:189-207.
    [85] Piao LH, Fujita T, Jiang CY, et al. TRPA1activation by lidocaine in nerve terminals results inglutamate release increase. Biochem Biophys Res Commun,2009,379:980-984.
    [86] Kobayashi K, Fukuoka T, Obata K, et al. Distinct expression of TRPM8, TRPA1, and TRPV1mRNAs in rat primary afferent neurons with Ad/C-fibers and colocalization with Trkreceptors. J Comp Neurol,2005,493:596-606.
    [87] Kim YS, Son JY, Kim TH, et al. Expression of transient receptor potential ankyrin1(TRPA1)in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol,2010,518:687-698.
    [88] Garrison SR, Stucky CL. The dynamic TRPA1channel: a suitable pharmacological pain target?Curr Pharm Biotechnol,2011,12:1689-1697.
    [89] Pertovaara A, Koivisto A. TRPA1ion channel in the spinal dorsal horn as a therapeutic targetin central pain hypersensitivity and cutaneous neurogenic inflammation. Eur J Pharmacol,2011,666:1-4.
    [90] Moran MM, McAlexander MA, Biro T, et al. Transient receptor potential channels astherapeutic targets. Nat Rev Drug Discov,2011,10:601-620.
    [91] Li J, Perl ER. Adenosine inhibition of synaptic transmission in the substantia gelatinosa. JNeurophysiol,1994,72:1611-1621.
    [92] Liebel JT, Swandulla D, Zeilhofer HU. Modulation of excitatory synaptic transmission bynociceptin in superficial dorsal horn neurones of the neonatal rat spinal cord. Br J Pharmacol,1997,121:425-432.
    [93] Lao LJ, Kumamoto E, Luo C, et al. Adenosine inhibits excitatory transmission to substantiagelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A1adenosine receptor. Pain,2001,94:315-324.
    [94] Luo C, Kumamoto E, Furue H, et al. Nociceptin inhibits excitatory but not inhibitorytransmission to substantia gelatinosa neurones of adult rat spinal cord. Neuroscience,2002,109:349-358.
    [95] Wu SY, Ohtubo Y, Brailoiu GC, et al. Effects of endomorphin on substantia gelatinosaneurons in rat spinal cord slices. Br J Pharmacol,2003,140:1088-1096.
    [96] Fujita T, Kumamoto E. Inhibition by endomorphin-1and endomorphin-2of excitatorytransmission in adult rat substantia gelatinosa neurons. Neuroscience,2006,139:1095-1105.
    [97] Fürst S. Transmitters involved in antinociception in the spinal cord. Brain Res Bull,1999,48:129-141.
    [1]Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integralmembrane protein required for phototransduction. Neuron,1989,2:1313-1323.
    [2] Clapham DE. TRP channels as cellular sensors. Nature,2003,426:517-524.
    [3] Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell,2002,108:595-598.
    [4] Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the superfamily of TRPcation channels. Mol Cell,2002,9:229-231.
    [5] Montell C. The TRP superfamily of cation channels. Sci STKE,2005,272: re3.
    [6] Venkatachalam K, Montell C. TRP Channels. Annu Rev Biochem,2007,76:387-417.
    [7]Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim BiophysActa,2007,1772:989-1003.
    [8] Kwan KY, Allchornea J, Vollrath MA, et al. TRPA1contributes to cold, mechanical, andchemical nociception but is not essential for hair-cell transduction. Neuron,2006,50:277-89.
    [9]Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains isspecifically lost after oncogenic transformation of human fibroblasts. J Biol Chem,1999,274:7325-33.
    [10] Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transducer properties of TRPA1,a channel for pain and hearing. Neuronscience,2005,25:4052-61.
    [11] Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ionchannel in the pain pathway. Nature,1997,389:816-824.
    [12] Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. AnnuRev Neurosci,2001,24:487-517.
    [13] Susan MH, et al. An endogenous capsaicin-like substance with high potency at recombinantand native vanilloid VR1receptors. Proc Natl Acad Sci USA,2002,99:8400.
    [14] Cheng W,Yang F,Takanishi CL,et al.Thermosensitive TRPV channel subunits coassembleinto heteromeric channels with intermediate conductance and gating properties. J Gen Physiol,2007,129:191-207.
    [15] Christoph T, Gillen C, Mika J, et al. Antinociceptive effect of antisense oligonucleotidesagainst the vanilloid receptor VR1/TRPV1. Neurochem,2007,50:281-290.
    [16]Bolcskei K, Helyes Z, Szabo A, et al. Investigation of the role of TRPV1recep tors in acute andchronic nociceptive processes using gene-deficient mice. Pain,2005,117:368-376.
    [17] Davis JB, Gray J, Gunthorpe MJ, et al. Vanilloid reciptor lisessential for inflammatory thermalhyperalgesia. Nature,2004,405:183-187.
    [18] Story GM,Peier AM,Reeve AJ,et al. ANKTM1, a TRP like channel expressed in nociceptiveneuron,is activated by cold temperature. Cell,2003,112:819-829.
    [19] Jordt SE, McKemy DD, Julius D. Lessons from peppers and peppermint: the molecular logicof thermosensation. Curr Opin Neurobiol,2003,13:487-492.
    [20] Patapoutian A, Peier AM, Story GM, et al. Thermo TRP channels and beyond: mechanisms oftemperaturesensation. Nat Rev Neurosci,2003,4:529-539.
    [21] Campero M, Serra J, Ochoa JL. C-polymodal nociceptors activated by noxious lowtemperature in human skin. Physiol,1996,497:565-572.
    [22] Bandell M, Story GM, Hwang SW, et al. Noxious cold ion channel TRPA1is activated bypungent compounds and bradykinin. Neuron,2004,41:849-857.
    [23] Jordt SE, Bautista DM, Chuang HH, et al. Mustard oils and cannabinoids excite sensory nervefibres through the TRP channel ANKTM1. Nature,2004,427:260-265.
    [24] Macpherson LJ, Geierstanger BH, Viswanath V, et al. The pungency of garlic: activation ofTRPA1and TRPV1in response to allicin. Curr Biol,2005,15:929-934.
    [25] Bautista DM, Jordt SE, Nikai T, et al. TRPA1mediates the inflammatory actions ofenvironmental irritants and proalgesic agents. Cell,2006,124:1269-1282.
    [26] McNamara CR, Mandel-Brehm J, et al. TRPA1mediates formalin-induced pain. Proc NatlAcad Sci USA,2007,104:13525-13530.
    [27] Taylor-Clark TE, Ghatta S, Bettner W, et al. Nitrooleic acid, an endogenous product ofnitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. MolPharmacol,2009,75:820-829.
    [28] Andersson DA, Gentry C, Moss S, et al. Transient receptor potential A1is a sensory receptorfor multiple products of oxidative stress. Neuroscience,2008,28:2485-2494.
    [29] Taylor-Clark TE, Undem BJ, Macglashan DWJ, et al. Prostaglandin-induced activation ofnociceptive neurons via direct interaction with transient receptor potential A1(TRPA1). MolPharmacol,2008,73:274-281.
    [30] Macpherson LJ, Xiao B, Kwan KY, et al. An ion channel essential for sensing chemicaldamage. Neurosci,2007b,27:11412-11415.
    [31] Trevisani M, Siemens J, et al.4-Hydroxynonenal, an endogenous aldehyde, causes pain andneurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad SciUSA,2007,104:13519-13524.
    [32] Dai Y, Wang S, et al. Sensitization of TRPA1by PAR2contributes to the sensation ofinflammatory pain. Clin Invest,2007,117:1979-1987.
    [33]Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications fororofacial pain. Dent Res,2007,86:550-555.
    [34] Cruz-Orengo L, Dhaka A, Heuermann RJ, et al. Cutaneous nociception evoked by15-deltaPGJ2via activation of ion channel TRPA1. Mol Pain,2008,4:30-38.
    [35] Wang S, Dai Y, Fukuoka T, et al. Phospholipase C and protein kinase A mediate bradykininsensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain,2008,131:1241-1251.
    [36] White FA, Wilson NM. Chemokines as pain mediators and modulators. Curr OpinAnaesthesiol,2008,21:580-585.
    [37] Miyamoto T, Dubin AE, Petrus MJ, et al. TRPV1and TRPA1mediate peripheral nitricoxide-induced nociception in mice. PLoS One,2009,4:e7596.
    [38] Gentry C, Stoakley N, Andersson DA, et al. The roles of iPLA2, TRPM8and TRPA1inchemically induced cold hypersensitivity. Mol Pain,2010,6:4-14.
    [39] Garrity PA. Weakly acidic, but strongly irritating: TRPA1and the activation of nociceptors bycytoplasmic acidification. J Gen Physiol,2011,137:489-491.
    [40] Da CDS, Meotti FC, Andrade EL, et al. The involvement of the transient receptor potential A1(TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain,2010,148:431-7.
    [41] Petrus M, Peiera M, Bandell M, et al. A role of TRPA1in mechenical hyperalgesia is revealedby pharmacological inhibition. Mol Pain,2007,3:40-47.
    [42] Obata K, Katsura H, Mizushima T, et al. TRPA1induced in sensory neurons contributes tocold hyperalgesia after inflammation and nerve injury. J Clin Invest,2005,115:2393-401.
    [43] Dunham JP, Kelly S, Donaldson LF. Inflammation reduces mechanical thresholds in apopulation of transient receptor potential channel A1-expressing nociceptors in the rat. Eur JNeurosci,2008,27:3151-3160.
    [44] Eid SR, Crown ED, Moore EL, et al. HC-030031, a TRPA1selective antagonist, attenuatesinflammatory-and neuropathy-induced mechanical hypersensitivity. Mol Pain,2008,4:48-57.
    [45]Katsura H, Obata K, Mizushima T, et al. Antisense knock down of TRPA1, but notTRPM8,alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol,2006,200:112-123.
    [46] Frederick J, Buck ME, Matson DJ, et al. Increased TRPA1,TRPM8, and TRPV2expression indorsal root ganglia by nerve injury. BiochemBiophys Res Commun,2007,358:1058-1064.
    [47] Ji G, Zhou S, Carlton SM. Intact Adelta-fibers up-regulate transient receptor potential A1andcontribute to cold hypersensitivity in neuropathic rats. Neuroscience,2008,154:1054-1066.
    [48] Caspani O, Zurborg S, Labuz D, et al. The contribution of TRPM8and TRPA1channels tocold allodynia and neuropathic pain. PLoS One,2009,4: e7383.
    [49] Staaf S, Oerther S, Lucas G, et al. Differential regulation of TRP channels in a rat model ofneuropathic pain. Pain,2009,144:187-199.
    [50] Wei H, Chapman H, Saarnilehto M, et al. Roles of cutaneous versus spinal TRPA1channels inmechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat.Neuropharmacology,2010,58:578-584.
    [51] Wei H, Koivisto A, Pertovaara A. Spinal TRPA1ion channels contribute to cutaneousneurogenic inflammation in the rat. Neurosci Lett,2010,479:253-256.
    [52] Ta LE, Bieber AJ, Carlton SM, et al. Transient Receptor Potential Vanilloid1is essential forcisplatin-induced heat hyperalgesia in mice. Mol Pain,2010,6:15-29.
    [53] Bautista DM, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensoryion channel TRPA1. Proc Natl Acad Sci USA,2005,102:12248–12252.
    [54] Kobayashi K, Fukuoka T, Obata K, et al. Distinct expression of TRPM8, TRPA1, and TRPV1mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. JComp Neurol,2005,493:596-606.
    [55] Doerner JF, Gisselmann G, Hatt H, et al. Transient receptor potential channel A1is directlygated by calcium ions. J Biol Chem,2007,282:13180-13189.
    [56] Zurborg S, Yurgionas B, Jira J A, et al. Direct activation of the ion channel TRPA1by Ca2+.Nat Neurosci,2007,10:277-279.
    [57] Jeske NA, Patwardhan AM, Gamper N, et al.Cannabinoid WIN55,212-2regulates TRPV1phosphorylation in sensory neurons. J Biol Chem,2006,281:32879-32890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700