离散多层爆炸容器的热冲击研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆炸容器是一种潜在危险的限域装置,它能限制爆炸冲击波和产物的作用范围,对试验人员和设备实现有效的近距离保护,方便对爆炸和爆轰过程进行观察和测试,因此被广泛地应用于国防军事、爆炸加工、危险物质储运和科学研究等领域。随着爆炸容器的大型化,目前广泛使用的单层爆炸容器的固有缺点逐渐显露出来,如制造困难、成本高、厚钢板(锻件)质量不易保证等,难以满足爆炸容器大当量化的要求。因此研究新型结构爆炸容器来满足爆炸容器大当量化的要求具有十分重要的意义。
     本文以国家自然科学基金课题“密闭多层圆柱壳在内爆炸强动载荷下的动力响应和寿命研究”(项目编号:10372091)和“多层圆柱形爆炸容器设计方法研究”(项目编号:50675195)为依托,对离散多层爆炸容器在热冲击下的动态响应进行了研究。本文所作的主要工作和结论如下:
     (1)热冲击理论研究。通过将位移解分离为满足给定边界条件的准静态解和满足初始条件的动态解的方法求解内外层的径向位移,其中准静态解通过线性方法求得,热弹性动态解用Hankel积分变换求得。基于界面处径向位移连续条件,得到层间应力关于时间的第二类Volterra积分方程,再利用Hermit二次三项插值方法求解层间应力,从而得到内外层的位移和应力解。当不考虑热传导时,计算得到了离散多层爆炸容器在阶跃温度载荷作用下的动态响应。结果表明,钢带层缠绕倾角和内外层材料组合对离散多层爆炸容器的热应力有较大影响;为了降低整体的热应力峰值,内筒应选用弹性模量较小的材料。
     (2)不考虑热传导时的热冲击响应数值模拟。建立了缠绕倾角为零度和15度的离散多层圆筒的有限元模型,得到了在阶跃温度载荷作用下的瞬态热动应力。经与理论分析结果对比,发现有限元计算值能较好地预测离散多层圆筒的热应力响应,表明本文建立的有限元模型是合理的。
     (3)考虑热传导时的热冲击响应数值模拟。在内部发生爆炸后,容器壁厚方向上将产生瞬态温度梯度,运用LS-DYNA分析了容器壁厚方向上瞬态温度场的分布,并得到了瞬态热动应力。同与承受阶跃温度载荷作用下的离散多层圆筒的热动应力对比,发现在考虑热传导时,容器内部的瞬态热动应力峰值变低。数值计算结果还表明,瞬态热应力的最大值随着热膨胀系数的增大而增大,但随着比
    热容的增大而减小;而热传导系数的影响比较小。突加阶跃载荷是考虑热传导且热传导系数非常大时的一种特例。
Explosion containment vessel is a device used for confining potential danger. It can restrict shock wave and production of explosion, effectively protect the test personnel and equipment near from the explosion, and facilitate the observation and testing of the explosion and detonation process. Therefore, it is widely used in national defense, fabrication using explosion process, storage and transportation of dangerous substances, scientific research and other fields. Because of the development of Military, fabrication and scientific research, there is a larger capacity trend of explosion containment vessels. With the capacity development of explosion containment vessels, the inherent shortcomings of the currently widely used single shell explosion containment vessels gradually reveal themselves. For instance, the manufacturing difficulties, high costs, and difficult quality assurance of the thick steel plate (Forge). Therefore, it is a very important to develop new type explosion containment vessel.
    Based on the National Natural Science Foundation "Analysis of Dynamic Elastic Response and Lifetime of Confined Multi-Layered Cylindrical Vessel under Strong Dynamic Load"(No.:10372091) and "Investigation on Method for Design of Multilayered Cylindrical Explosion Containment Vessels"(No.: 50675195), the dynamic response of the DMCECV subjected to the thermal impact is studied. The study of dynamic thermal-elastic response of the DMCECV under the thermal shock is divided into three parts:
    (1) Theoretical Analysis on thermal shock. The displacement solution of the dynamic equilibrium equations of both inner shell and outer ribbon layer of discrete multi-layered explosion containers can be decomposed into two parts, i.e., a thermo-elastic solution for inhomogeneous stress boundary conditions and a dynamic solution for homogeneous stress boundary conditions, under given initial conditions. The dynamic thermo-elastic solution is determined by linearity method and stress boundary conditions, and the dynamic solution is worked out by means of finite Hankel transform. By using radial displacement continuity, a second kind Volterra
    integral equation is derived. Interpolation functions are used to approximate the unknown function in each time subinterval. The dynamic thermo-elastic solution caused by thermal shock on DMCECV is then determined. The thermo-elastic solution of a DMCECV is compared with the solution of a monobloc cylindrical shell, in order to verify the accuracy of theoretical solution.
    (2) Numerical simulation of the heat shock response without considering the thermal conductivity. DMCECV models of winding angles of 15 degrees and zero is constructed, and calculate the transient thermal stress under the step temperature load. Compare the results with the theoretical results, we can find that FEM can be used to calculate the transient thermal stress response of MDCEC, which shows that the constructed finite element model is reasonable.
    (3) Numerical simulation of the heat shock response considering the thermal conductivity. When internal explosion occurred in a vessel, there will be a transient temperature gradient along the wall thickness direction. LS-DYNA is used to calculate the transient temperature distribution along the thickness direction, and get the transient thermal stress. Comparing the results with the transient thermal stress of DMCECV under step temperature load, it is found that when the thermal conductivity is considered, the transient thermal stress peak becomes lower. The numerical results also show that the maximum transient thermal stresses increase with the increasing of heat exchange coefficient. But it will decrease with the increase of heat capacity. Thermal conductivity has little influence on maximum transient thermal stresses. Step temperature load is a special case of considering the heat conduction when the thermal conductivity is very large.
引文
[1] Zheng J. Y., Deng G. D., Chen Y. J., et al. Experimental investigation of discrete multilayered vessels under internal explosion. Combustion, Explosion and Shock Waves. 2006, 42(5): 617-622.
    [2] Zheng J. Y., Chen Y. J., Deng G. D., et al. Dynamic elastic response of an infinite discrete multilayered cylindrical shell subjected to uniformly distributed pressure pulse. International Journal of Impact Engineering. 2006, 32(11): 1800-1827.
    [3] 杨秀会.资料J1-80A01.西南流体物理研究所(1980).
    [4] Gerstle FP.Sci.LA-73-1093.
    [5] Tsipkin VE.Et a1.Mech.Composite Mated.(in Russian),S(1987):883.
    [6] 朱文辉等.爆炸容器动力学研究进展评述.力学进展.1996,2(1):68-78.
    [7] 曹胜光等.5Kg TNT当量爆炸容器的研制.制造与安装.2004,4(21):33-37.
    [8] 周刚等.10KgTNT当量爆炸容器设计技术探析.制造与安装.2004,4(21):49-54.
    [9] 龙建华,胡八一.100g(TNT)当量真空密封爆炸容器的设计.设计与研究.2006,2(33):27-30.
    [10] 胡八一等.树脂基玻璃纤维复合材料爆炸容器的研制.试验研究.2005,4:10-14
    [11] Zhdan S A. Dynamic load acting on the wall of an explosion chamber. Phys. Combustion & Explosion. 1981, 17(2): 142-146.
    [12] Belov A I, Belyaev V M, Kornilo V A, et al. Calculation of wall loading dynamics in a spherical combustion chamber. Phy. Combustion & Explosion. 1985, 21(6): 132-136.
    [13] Duffey T A, Greene J M, Baker W E. Containment of Explosions in Spherical Vessels[R]. DE93005445, LA-UR-92-4061, Los ALatnos. New Nexico: LANL, 1992, 8-9.
    [14] Maarchand K A, Cox P A, Poleyn M A. A design guide and specification for small explosive containment structures[R]. DE95007316, SAND94-2255, San Antonio, Texas: Southwest Research Institute. Dec 1994, 12-22.
    [15] 朱文辉.圆柱形爆炸容器动力学强度的理论和实验研究[D].国防科技大学.1994.
    [16] 钟方平.柱形容器内部爆炸流场的数值模拟.计算物理.2000,11(17):698-705
    [17] 张鹏.轴对称爆炸容器中冲击波与壁面耦合作用的数值研究[D].合肥:中国科技大学,2000.
    [18] 张亚军等.爆炸容器内冲击波系演化及壳体响应的数值研究.爆炸与冲击.2003,7(23):331-337.
    [19] Baker WE,, et. al. Proc. 3rd US naff. Cong. Appl. Mech.. New York(1958): 79.
    [20] Demchuk AF. Appl. Mech. &Tech. Phys. (in Russian), S(1968): 47.
    [21] Rose J. L., Chou S. C., Chou P. C.. Vibration analysis of thick-walled spheres and cylinders. Journal Acoust. Soc. Am.. 1973, 53(3): 771-776.
    [22] Chou P. C., Koenig H. A.. A unified approach to cylindrical and spherical elastic waves by method of characteristic. ASME J. Appl. Mech.. 1966, 33 (1): 159-167.
    [23] Wang X, Gong Y. N.. An elastodynamic solution for multilayered cylinders. Int. J. Engng. Sci.. 1992, 30(1): 25-33.
    [24] 胡八一.脉冲载荷下球形爆炸容器的弹性响应.振动与冲击.1998,3(17):18-23.
    [25] 钟方平等.带平板封头的双层爆炸容器动力响应的试验研究.爆炸与冲击.1999,7(19):199-204.
    [26] 钟方平,陈春毅.双层圆柱形爆炸容器弹塑性结构响应的实验研究.兵工学报.2000,8(21):268-272.
    [27] 胡八一,柏劲松等.真实爆炸容器壳体动力响应的强度分析.应用力学学报.2001,9(18):91-97.
    [28] 郑津洋.爆炸容器研究进展和新结构探讨.第二届全国爆炸力学研究技术交流会议文集.2002.
    [29] 朱国辉.新型薄内筒扁平绕带式高压容器.浙江大学学报.1982,16(1):84-90.
    [30] 朱国辉,郑津洋.新型绕道是压力容器.北京:机械工业出版社.1995.
    [31] 骆晓玲,黄载生.新型扁平绕带式压力容器.机械工程师.1999,2:15.
    [32] 朱瑞林,杨金来,胡兆吉等.扁平绕带式压力容器综合评述.科技通报.
    [33] Zheng J Y, Hu Y L, Zhu G H. Analysis and design of explosion containment vessels. Proceedings of the 5th Asia-Pacific conference on shock & impact loads on structures. Changsha, China, 2003, 487-494.
    [34] 蒋家羚,朱国辉.新型薄内筒扁平绕带式高压容器绕带的强度分析.力学与实践.1984,6(6):20-24.
    [35] 黄载生.扁平绕带高压容器强度的研究.化工炼油机械.1984,13(3):34-39.
    [36] 朱国辉,黄载生,王乐勤等.新型薄内筒扁平绕带式高压容器的发展现状、强度与安全特性分析.小氮肥设计技术.1983,6:29-42.
    [37] 朱国辉,王乐勤,王春泉.扁平绕带高压容器的疲劳试验及断裂力学分析.化工炼油机械.1983,12(1):19—26.
    [38] 郑津洋,朱国辉,黄载生.扁平绕带容器预应力的研究.石油化工设备.1992,21(1):6-8.
    [39] 郑津洋.扁平绕带式高压容器的失效方式.化工装备技术.1993,14(5):19-22.
    [40] 郑津洋.扁平绕带容器轴向与环向强度试验研究.机械强度.1994,16(1):72-76,79.
    [41] 郑津洋,陈勇军,邓贵德,孙国有,胡永乐.强动载荷下离散多层绕带圆筒的弹性动力响应分析.浙大学报工学版.2005,39(12):1847-1852.Zheng JY, Chen YJ, Deng GD, et al. Dynamic elastic responses of discrete multilayered cylinder under intensive dynamic loading. Journal of Zhejiang University: Engineering Science, 2005, 39(12): 1847-1852
    [42] Zheng JY, Xu P, Fu Q, et al. Elastic stress waves of cylindrical rods subjected to rapid energy deposition. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218(4): 359-368.
    [43] 郑津洋,邓贵德,陈勇军等.离散多层厚壁爆炸容器抗爆炸性能试验研究.2005,25(6):506-511.Zheng JY, Deng GD, Chen YJ, et al. Experimental investigation on dynamic response and fracture characteristics of discrete multilayered thick-walled explosion containment vessels. Explosion and Shock Waves, 2005, 25(6): 506-511.
    [44] 牛莉莎,叶红光,施惠基.承压热冲击对核压力容器强度的影响.核动力工程.2001,6(3):242-248.
    [45] 贺寅彪.反应堆压力容器承压热冲击分析.试验研究.2004,10(21):7-13.
    [46] Bass B R, Pugh C E, Sivers J, et al. Overview of the Intemational Comparative Assessment Study of Pressurized Thermal Shock in Reactor Pressure Vessel. Intemational Journal of Pressure Vessel and Piping. 2001, 78: 197-211.
    [47] Reyes J N, Groome J T, Lafi A Y, et al. PTS Thermal Hydraulic Testing in the OSU APEX Facility. International Journal of Pressure Vessel and Piping. 2001, 78: 185-196.
    [48] 孙学英.反应堆压力容器承压热冲击分析.核动力工程.2002,5(2):99-103.
    [49] Ding HJ, Wang HM, Chen WQ. A solution of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems. Journal of Sound and Vibration. 2003, 263: 815-829.
    [50] 田锦邦.扁平绕带式压力容器的抗爆性能研究[D].太原理工大学.2007.
    [51] Sneddon. I. N.. Fourier Transforms. Dover. New York, 1995. (Original printed in 1951).
    [52] Steinberg E., Chakravorty J. G.. Thermal shock in an elastic body with a spherical cavity. Quart. Appl. Math. 1959, 17: 205-218.
    [53] Tusi T., Kraus H.. Thermal Stress-wave propagation in hollow elastic spheres. J. Acoust. Soc. Am.. 1965, 37(4): 730-737.
    [54] WangX., Zhang W., Chan J. B.. Dynamic thermal stress in a transversely isotropic hollow sphere, J. Thermal Stresses. 2001, 24(4): 335-346.
    [55] Wang X., Wang C., Lu G., Zhou B. M.. Thermal stress-focusing in a transversely isotropic sphere and an isotropic sphere. J. Thermal Stresses, 2002, 25(1): 31-44.
    [56] 王熙.球面各向同性球体内的动态热应力集中.力学学报.2000,32(2):245-25.
    [57] Hata T.. Stress-focusing effect in a uniformly heated transversely isotropie sphere. Int. J. Solids Struct.. 1993, 30(11): 1419-1428.
    [58] Hata T.. Stress-focusing effect due to an instantaneous concentrated heat source in a sphere. J. Thermal Stresses. 1997, 20(3-4): 269-279.
    [59] Kardomateas G. A. Transient thermal stresses in cylindrically orthotropic composite tubes. ASME Journal of applied mechanics. 1989, 58: 909.
    [60] Kardomateas G. A. The initial phase of transient thermal stresses due to general boundary thermal loads in orthotropic hollow cylinders. ASME Journal of applied mechanics. 1990, 57: 719-724.
    [61] Birman V. Thermal dynamic problems of reinforced composite cylinders. ASME Journal of Applied Mechanics. 1990, 57: 941-947.
    [62] Wang X. Thermal shock in a hollow cylinder caused by rapid arbitrary heating. Journal of Sound and Vibration. 1995, 183(5): 899-906.
    [63] 王熙.具有初始层间压力的层合圆筒的热冲击研究.应用数学和力学.1999,20(10):1065-1071.
    [64] Cho H, Kardomateas GA, Valle CS. Elastodynamic solution for the thermal shock stresses in an orthotropic thick cylindrical shell. ASME Journal of Applied Mechanics. 1998, 65(1): 184-193.
    [65] Abd-alla, A. M., Abd-alla A. N., Zeidan N. A.. Transient thermal stress in a rotation non-homogeneous cylindrically orthotropic composite tubes. Appl. Math. Comput.. 1999, 105(2-3): 253-269.
    [66] Jordan P. M., Puri P.. Thermal stresses in a spherical shell under three thermoelastic models. Joumal Thermal Stresses. 2001, 24(1): 47-70.
    [67] Cho H, Kardomateas GA, Valle CS. Thermal shock stresses due to heat convection at a bounding surface in a thick orthotropic cylindrical shell. International Journal of Solids and Structures. 2001, 38(16): 2769-2788.
    [68] Wang HM, Ding HJ. Transient thermoelastic solution of a multilayered orthotropic hollow cylinder axisymmetric problem. Journal of Thermal Stress. 2004, 27: 1169-1185.
    [69] 树学锋等.短圆柱壳在热冲击作用下动力响应的计算机模拟.太原理工大学学报.2003,11(34):658-661.
    [70] 王慧,赵志岗.梯度功能材料薄壳动态热挠度的Laplace变换有限元分析.河 北科技大学学报.2003,24(2):73-76
    [71] 赵志岗,许杨健.梯度功能材料薄板瞬态热弹性弯曲有限元分析.工程力学.2001.18(1):71-81
    [72] 许杨健,张京军,涂代惠等.换热边界下变物性梯度功能材料板瞬态热应力.机械工程学报.2005,41(7):198-204
    [73] 吴晓.圆柱壳在热载荷作用下的非线性振动.振动与冲击.2000,19(2):67-69.
    [74] LS-DYNA Keyword user's manual. 2003
    [75] 郑津洋,董其伍,桑之富主编.过程设备设计.北京:化学工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700