低温条件下叶绿体NAD(P)H脱氢酶复合体的生理功能及其对光质的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以冷敏感植物黄瓜津研 4 号(Cucumis sativus L.)为材料,研究了低温弱光胁
    迫对 PSI 和 PSII 光抑制及其相互关系的影响。以烟草(Nicotiana tabacum c.v. Xanthi)
    ndh 基因缺失突变体为试材,探讨了低温弱光胁迫下叶绿体 NAD(P)H 脱氢酶复合体
    (NDH)介导的 PSI 循环电子传递的功能以及 NDH 复合体对不同光质的响应。此外,
    初步探讨了硫灯和氙灯下黄瓜幼苗生长差异与植物内源激素的关系。主要结果如下:
    1. 低温弱光胁迫下黄瓜叶片的光合作用、光抑制及其保护机制
     低温降低了黄瓜叶圆片的光合速率,在光合速率和气孔导度降低的同时,胞间 CO2
    浓度升高,羧化效率降低,说明低温弱光胁迫下光合速率的降低主要是由非气孔因素引
    起的。与暗处低温胁迫相比,在低温弱光胁迫下黄瓜叶片光合放氧速率下降更明显。
     黄瓜类囊体膜电子传递速率显示,PSII、PSI 以及整个电子传递活性在低温弱光处
    理过程中呈下降趋势。在低温弱光和低温暗处理下 PSII 的活性均降低,比处理前分别下
    降了 30.8%和 27.7%。在低温弱光下处理 6h 后黄瓜叶片 PSI 的电子传递活性降低 44.2
    %,而在低温暗处理下其活性仅降低 14.9%。总电子传递活性在低温弱光和低温暗处理
    下分别降低 30.1%和 17.4%。这表明低温弱光胁迫导致黄瓜 PSI 更严重的光抑制。
     低温胁迫对叶绿素荧光参数的影响。低温弱光处理降低黄瓜叶片的最大光化学效率
     1
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
    (Fv/Fm),但变化不明显。低温弱光胁迫导致 PSII 实际光化学效率(ΦPSII)和光化学
    猝灭参数(qP)明显降低, 而在低温暗处理下基本不变。低温弱光胁迫下非光化学促灭
    (NPQ)增加。说明即使在弱光下,由于低温抑制了黄瓜叶片的碳同化过程也会导致光
    能过剩,依赖叶黄素循环的非辐射能量耗散(NPQ)在低温弱光胁迫下具有光破坏防御
    功能。
     低温弱光下黄瓜叶片抗坏血酸(AsA)含量下降,超氧化物歧化酶(SOD)和叶绿
    体抗坏血酸过氧化物酶(APX)活性降低,导致过氧化氢(H2O2)积累,从而引起黄瓜
    叶片的膜脂过氧化作用,表现为丙二醛(MDA)以及电解质外渗率的增加。
    2. 烟草 NDH 在低温弱光下的生理功能
     在低温(4℃)弱光(100μmol m-2 s-1)胁迫 6h 后,野生型(WT)烟草和 ?ndhCJK
    突变体 P700 的氧化还原水平都有不同程度的降低,但 ?ndhCJK 的 P700 的氧化还原水
    平降低更明显,引入电子受体甲基紫精(MV)后,P700 的氧化还原恢复到处理前的水
    平,表明低温弱光胁迫引起烟草叶绿体间质成分的过度还原。PSII 最大光化学效率
    (Fv/Fm)及光合电子传递活性的变化表明低温弱光胁迫导致 ?ndhCJK 较为严重的 PSII
    光抑制,而 WT 和 ?ndhCJK 的 PSI 光抑制则较轻。非光化学猝灭(NPQ)的动力显示
    低温弱光主要抑制了?ndhCJK 突变体?pH的建立。此外,低温弱光胁迫下烟草?ndhCJK
    比 WT 产生更多的 H2O2。因此,推测低温弱光胁迫主要导致烟草叶绿体间质氧化还原
    成分的过度还原,从而限制了电子传递,导致活性氧产生。而 NDH 介导的 PSI 循环电
    子传递或叶绿体呼吸在低温弱光胁迫下减少活性氧的产生,从而具有光氧化破坏防御功
    能。
     低温促进了 NDH 介导的 PSI 循环电子传递,这可能与低温增加了由 PSI 驱动的光
    依赖性的 NADPH 氧化活性有关。NDH 介导的 PSI 循环电子传递或叶绿体呼吸通过生
    成 ATP 为碳同化过程提供额外的能量,在低温下起光保护作用。
    3. 烟草ΔndhB 突变体对不同光质的响应及其适应
     近红外辐射使 WT 的株高明显高于ΔndhB 突变体。在产生强近红外辐射的氙灯下
    生长的 WT 与生长在硫灯的 WT 相比,前者的作用光关闭后荧光上升相对速率(RFp)加
    快,峰值(Fp)增高。远红光关闭后的 P700+的暗还原初始速率也明显加快。Western 免疫
    印迹分析表明,氙灯下 WT 所含 NdhK 亚基的量明显比硫灯下的高。这说明近红外辐射
     2
    
    
    山东农业大学博士论文
    促进 NDH 介导的 PSI 循环电子传递。此外,在近红外辐射下 WT 和ΔndhB 突变体叶片
    的光合特性无显著差异。
    4. 硫灯和氙灯下黄瓜幼苗生长的差异与植物内源激素的关系
     为探索硫灯在农业生产中的应用前景,对硫灯和氙灯两种光源引起黄瓜幼苗生长差
    异的原因进行了初步探讨。与氙灯相比,硫灯照射下生长的黄瓜叶片单位面积叶绿素 a
    和 b 含量显著增加。但是,叶片的光合参数几乎没有差异。与氙灯相比,硫灯明显抑制
    了茎的伸长和干物质的积累,但是相对地促进了叶和根的生长。组织细胞观察显示,硫
    灯下生长的黄瓜幼苗的中胚轴表皮和皮层细胞纵向单位毫米长度的细胞数目比氙灯下
    的多。内源激素分析结果表明,与氙灯相比,硫灯下的黄瓜幼苗内源激素吲哚乙酸(IAA)、
    赤霉素(GA3)含量下降,而脱落酸(ABA)含量却明显增加。推测硫灯和氙灯下黄瓜
    幼苗生长的差异可能与内源激素的调控有关。
Chilling-sensitive plant cucumber (Cucumis sativus L.), Jinyan No.4, was used as materials
    to investigate the effects of chilling temperature (4℃) in the low light (100 μmol m-2 s-1) on
    photoinhibition of photosystem I (PSI) and photosystem II (PSII) and their relationship in
    chilling-sensitive plants. Wild-type tobacco (Nicotiana tabacum c.v. Xanthi) (WT) and its a
    mutant in which ndh genes were defected were used to study physiological function of cyclic
    electron transport around PSI mediated by chloroplastic NAD(P)H dehydrogenase complex
    (NDH) upon exposure to chilling stress in the low light. Furthermore, primary investigation
    for the relationship between growth difference and plant endogenous hormones of cucumber
    seedlings cultured under sulfur lamp or xenon lamp. The main results are as follows:
    1. Photosynthesis、photoinhibition and its protective mechanism of cucumber leaves
    during chilling stress in the low light
    Photosynthetic rate decreased in cucumber leaf discs during chilling stress and decrease in
    net photosynthetic rate (Pn) and stomatal conductance (Gs) were accompanied by increase in
    intercellular CO2 concentration (Ci) and decrease in the carboxylation efficency (CE). It
    suggested that decrease of Pn caused by chilling temperature in the low light is mainly
     4
    
    
    山东农业大学博士论文
    attributed to non-stomata factor. Net photosynthetic rate significantly decreased when leaves
    were treated in the light compared to those in the dark.
     The results of elecreon transport rates in the cucumber thylakoikd indicated that electron
    transport activities of PSII 、PSI and the whole electron chain had a descend trend. The
    electron transport activities of PSII were inhibited in the cucumber upon expouse to chilling
    stress in low light or in the dark, decreased by 30.8% and 27.7%, respectively. The electron
    transport activities of PSI decreased by 44.2% after 6h chilling stress in the low light, and it
    only decreased by 14.9% in the dark. The electron transport activities of the whole electron
    transport chain decreased by 30.1% and 17.4% after chilling stress in the low light and in the
    dark, respectively. It suggested that chilling stress in the low light results in more severe
    photoinhibition of PSI compared to PSII and the whole electron transport chain.
     We analyzed effects of chilling stress on parameters of chlorophyll fluorescence in
    cucumber leaves. After 6h chilling stress in the low light, Fv/Fm had little changes. ΦPSII and
    qP had a significant descend trend upon exposure to chilling stress in the low light, however,
    they changed little under chilling stress in the dark. NPQ increased markedly,implying that it
    resulted in excess excitation energy because chilling temperature inhibited CO2 assimilation
    in the cucumber leaves even in the low light. Dependent-xanthophyll cycle NPQ could protect
    plants from further photodamage under the chilling stress in the low light.
     In addition, chilling stress in the low light could cause the decrease of the contents of AsA ,
    activities of SOD in the cucumber leaves and activities of APX in the cucumber thylakoid,
    which in turn led to the accumulation of H2O2, and finally caused lipids peroxidation of
    cucumber leaves, accompanied by the increase of MDA and electrolytic leakage.
    2. Physiological function of chloroplast NAD(P)H dehydrogenase of tobacco under
    chilling stress in the low light
     After expoused to chilling temperature(4℃) and weak light(100μmol m-2 s-1) for 6 h,
    far-red light (FR)-oxidizable P700 had a different degree of decrease in the WT and the
    transformant plants of tobacco in which ndhCJK genes were insertionally inactivated
    (?ndhCJK). However, a lower far-red light (FR)-oxidizable P700 was found in ?ndhCJK
     5
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
    mutant than in WT. Since the lower FR-oxidizable P700 was almost recovered by addition of
    electron acceptor -methyl vio
引文
车生泉 (1997)。 光质对小苍兰茎尖试管培养的影响。园艺学报, 24(3): 269-273
    陈贵,胡文玉 (1991)。提取植物体内 MDA 的溶剂及 MDA 作为衰老指标的探讨。植物
    生理学通讯, 27(1): 44-46
    邓勇,叶济宇,米华玲,沈允钢 (2003)。集胞蓝藻 PCC6803 含疏水亚基的 NAD(P)H 脱
    氢酶亚复合体的分离。生物化学与生物物理学报, 35(8): 723-727
    杜建芳, 廖祥儒, 叶步青,李萌 (2002)。光质对油菜幼苗生长及抗氧化酶活性的影响。
    植物学通报,19(6): 743-745
    段伟,李新国,孟庆伟,赵世杰 (2003)。低温下的植物光抑制机理。西北植物学报, 23(6):
    1017-1023
    冯秀荣,陶炳炎 (1990)。农业气象学原理。北京:气象出版社,57-60
    高金鹏,於新建,陈启林等 (2004)。氙灯和硫灯照射对棉花生长发育的不同影响。植物
    生理与分子生物学学报, 30: 221-224
    郭延平,张良诚,沈允钢 (1998)。低温胁迫对温州蜜柑光合作用的影响。园艺学报, 25:
    111-116
    何洁,刘鸿先,王以柔等 (1986)。低温与植物的光合作用。植物生理学通讯,2:1-6
    何钟佩 (1993)。农作物化学控制实验指导。北京:北京农业大学出版社.
    黄卓辉,王国强,魏家绵,沈允钢 (1980)。光合磷酸化偶联机制研究 II 金霉素对光合
    磷酸化促进作用的研究。植物生理学报, 6: 173-181
    李德耀,叶济宇 (1980)。薄膜氧电极的制作与呼吸或光合控制的测定。植物生理学通讯,
    1:35-40
    李美茹,刘鸿先,王以柔 (2000)。植物抗冷性分子生物学研究进展(综述)。 热带亚热
    带植物学报, 8:70-80
    李平,李晓萍,陈贻竹等 (2000)。低温光抑制胁迫对不同抗冷性的籼稻抽穗期剑叶叶绿
    素荧光的影响。中国水稻科学,14:88-92
    李韶山,潘瑞炽 (1994)。蓝光对水稻幼苗生长效应的研究。中国水稻科学,8:115-118
    刘鸿先, 曾韶西,王以柔等 (1985)。低温对不同耐冷力的黄瓜幼苗子叶各细胞器中超氧
    化物歧化酶的影响。植物生理学报,11: 48-57
     86
    
    
    山东农业大学博士论文
    刘鹏,孟庆伟,赵世杰 (2001)。冷敏感植物的低温光抑制及其生化保护机制。植物生理
    学通讯, 37(1): 76-82
    沈漫, 黄敏仁,王明庥,胡兹苓, 包宏 (1998)。磷脂酰甘油分子种与杨树抗寒性关系的
    研究。植物学报, 40(4): 349-355
    沈允钢,许大全,施教耐 (1998)。动态光合作用。北京:科学出版社
    宋平,高红胜,曹显祖等 (1998)。不同籼稻品种的矮生性与内源 ABA 水平及其结合蛋
    白的关系。西北植物学报,18(3): 380-385
    宋述尧,刘晓明,任锡仑 (1992)。黄瓜不同品种耐冷力的初步探讨。吉林农业大学学报,
    14(1): 27-32
    王国荣 (1991)。光质对黄瓜种子萌发过程中的过氧化物酶活性及蛋白含量的影响。上海
    农业学报,7(4): 17-20
    王维光,顾俭本 (1986)。从叶中提取 ATP 方法的比较。植物生理学通讯, 5: 54-55
    王以柔,刘鸿先,李平等 (1986)。在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过
    氧化作用的影响。植物生理学报, 12: 244-251
    王以柔,曾韶西,刘鸿先 (1995)。冷锻炼对水稻和黄瓜幼苗 SOD、GR 活性及 GSH、
    AsA 含量的影响。植物学报, 37: 776-780
    魏捷, 贲桂英, 余辉, 唐崇钦, 匡廷云 (1998)。青海高原不同海拔地带生长的珠芽蓼光合
    特性的比较。生物物理学报, 14(3): 530-536
    吴长艾,孟庆伟,邹琦 (2001)。叶黄素循环及其调控。植物生理学通讯, 37(1): 1-5
    许长成,邹琦 (1993)。干旱条件下大豆叶片 H2O2 代谢变化及其同抗旱性的关系。植物
    生理学报, 19(3): 216-220
    姚正菊,叶济宇,米华玲 (2003)。高温胁迫对烟草叶绿体 NADPH 脱氢酶复合体活性的
    促进。植物生理与分子生物学报, 29(5): 395-400
    余让才,潘瑞炽 (1997)。 蓝光对水稻幼苗生长及内源激素水平的影响. 植物生理学报,
    23: 175-180
    於新建,刘跃群,陈启林等 (2002)。 氙灯和微波硫灯影响小麦拔节和分蘖的比较研究。
    科学通报, 47: 922-926
    曾纪晴,刘鸿先,王以柔等 (1997)。黄瓜幼苗子叶在低温下的光抑制及其恢复。植物生
    理学报, 23: 15-20
    曾韶西,王以柔 (1989)。 低温对黄瓜幼苗子叶光合强度和叶绿素荧光的影响。植物生
     87
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     理学通讯, 4: 12-15
    赵世杰,刘华山,董新纯 (1998)。植物生理学实验指导。中国农业科技出版社, 68-72
    Allen DJ, Ort DR (2001). Impacts of chilling temperatures on photosynthesis in warm-climate
     plants. Trends in Plant Science, 6: 36-41
    Anderson JM, Boardman NK (1973). Localization of low potential cytochrome b-559 in
     photosystem I. FEBS lett, 32: 157-160
    Anderson SL, McIntosh L (1991). Partial conservation of the 5' ndhE-psaC-ndhD 3' gene
     arrangement of chloroplasts in the cyanobacterium Synechocystis sp. PCC 6803:
     implications for NDH-D function in cyanobacteria and chloroplasts. Plant Mol Biol, 16:
     487-499
    Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta
     vulgaris. Plant Physiology, 24: 1-15
    Aro EM, Virgin I, Andersson B (1993). Photoinhibition of Photosystem II. Inactivation,
     protein damage and turnover. Biochim Biophys Acta, 1143: 113-134
    Asada K (1994). Production and action of active oxygen species in photosynthetic tissues. In:
     Foyer CH, Mullineaux PM(ed). Cause of photooxidative stress and amelioration of
     defense systems in plants. Boca Raton: CRC Press, 77-104
    Asada K (1999). The water-water cycle in chloroplast: scavenging of active oxygens and
     dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 50: 601-639
    Asada K, Heber U, Schreiber U (1993). Electron flow to the intersystem chain from stromal
     components and cyclic electron flow in maize chloroplasts, as detected in intact leaves
     by monitoring redox change of P700 and chlorophyll fluorescence. Plant Cell Physiol, 34:
     39-50
    Barber J (1995). Molecular basis of the vulnerability of photosystem II to damage by light.
     Aust J Plant Physiol, 22: 201-208
    Barber J, Andersson B (1992). Too much of a good thing can be bad for photosynthesis.
     Trends Biochem Sci, 17: 61-66
    Barth C, Krause GH (1999). Inhibition of photosystem I and II in chilling-sensitive and
     chilling-tolerant plants under light and low-temperature stress. Z Naturforsch 54c:
     645-657
     88
    
    
    山东农业大学博士论文
    Barth C, Krause GH (2002). Study of tobacco transformants to assess the role of chloroplastic
     NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta, 216:
     273-279
    Beall FD, Yeung EC, Pharis RP (1996). Far-red light stimulates internode elongation, cell
     division, cell elongation and gibberellin levels in bean. Can J Botany, 74: 743-752
    Bendall DS (1982). Photosynthetic cytochromes of oxygenic organisms. Biochim Biophys
     Acta, 683: 119-151
    Bennoun P (1982). Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci
     USA , 79, 4352-4356
    Berger S, Ellersiek U, and Steinmuller K (1991). Cyanobacteria contain a mitochondrial
     complex I-Homologoues NADH-dehydrogenase. FEBS Lett, 286: 129-132
    Berger S, Ellersiek U, Kinzelt D, Steinmuller K (1993a). Immunopurification of a
     subcomplex of the NAD(P)H-plastoquinone-oxidoreductase from the cyanobacterium
     Synechocystis sp. PCC6803. FEBS Lett, 326: 246-250
    Berger S, Ellersiek U, Westhoff P, Steinmuller K (1993b). Studies on the expression of
     NDH-H, a subunit of the NAD(P)H-plastoquinone-oxidoreductase of higher-plant
     chloroplasts. Planta, 190: 25-31
    Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram
     quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:
     248-259
    Buchanan BB (1980). Role of light in the regulation of chloroplast enzymes. Ann Rev Plant
     Physiol, 31: 341-374
    Bukhov NG, Wiese C, Neimanis S and Heber U (1999). Heat sensitivity of chloroplasts and
     leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron
     flow. Photosynth Res, 59: 81-93
    Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998). Identification of a functional
     respiratory complex in chloroplasts through analysis of tobacco mutants containing
     disrupted plastid ndh genes. EMBO J, 17: 868-876
    Canaani O (1990). The role of cyclic electron flow around photosystem I and exacitation
     energy distribution between the photosystems upon acclimation to high ionic strength in
     89
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     Dunaliela salina. Photochem Photobiol, 52: 591-599
    Carol P, Kuntz M (2001). A plastid terminal oxidase comes to light: implications for
     carotenoid biosynthesis and chlororespiration. Trends In Plant Sci, 6: 31-36
    Casano LM, Martín M, Zapata JM, Sabater B (1999). Leaf age- and paraquat
     concentration-dependent effects on the levels of enzymes protecting against
     photooxidative stress. Plant Science, 149: 13-22
    Casano LM, Zapata JM, Martin M, Sabater B (2000). Chlororespiration and poising of cyclic
     electron transport. Plastoquinone as electron transporter between thylakoid NADH
     dehydrogenase and peroxidase. J Biol Chem, 275: 942-948
    Catala R, Sabater B, Guera A (1997). Expression of the plastid ndhF gene product in
     photosynthetic and non-photosynthetic tissues of developing barley seedlings. Plant Cell
     Physiol, 38(12): 1382-1388
    Choi SM, Jeong SW, Jeong WJ, Kwon SY, Chow WS, Park Y II (2002). Chloroplast
     Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the
     light. Planta, 216: 315-324
    Chow WS, Hope AB (1999). Redox reactions in photoinhibited tobacco leaf segments. In:
     “Photosynthetic Mechanisms and Effects” (ed. C. Garab) Vol. III, 2123-2126. Kluwer
     Acad Publ, Dordrecht
    Coilatz GD (1977). Influence of certain environmental factors on photosynthesis and
     photorespiration in Simmondsia chinensis. Planta, 134: 127-132
    Corneille S, Cournac L, Guedeney G, Havaux M, Peltier G (1998). Reduction of the
     plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts.
     Characterization of a NAD(P)H-plastoquinone oxidoreductase activity. Biochim Biophys
     Acta, 363:59-69
    Cosgrove DJ (1981). Rapid suppression of growth by blue light: occurrence, time course and
     general characteristics. Plant Physiol, 67: 584-590
    Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000).
     Flexibility in photosynthetic electron transport: a newly identified chloroplast oxidase
     involved in chlororespiration. J Biol Chem, 275: 17256-17262
    Cuello J, Quiles MJ, Albacete ME, Sabarer B (1995). Properties of a large complex with
     90
    
    
    山东农业大学博士论文
     NADH dehydrogenase activity from barley thylakoids. Plant Cell Physiol, 36: 265-271
    Demming-Adams B, Adams WW III (2000). Harvesting light safely. Nature, 403(27):
     371-374
    Deng Y, Ye J, Mi H (2003). Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of
     cyclic electron transport around photosystem I in the cyanobacterium synechocystis
     PCC6803. Plant Cell Physiol, 44(5): 534-540
    Deng Y, Ye JY, Mi HL (2003). Low CO2 stimulates the expression of NAD(P)H
     degydrogenase which mediates cyclic electron transport around PSI to the intersystem in
     the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol, 44: 534-540
    Elortza F, Asturias JA, Arizmendi JM (1999). Chloroplast NADH dehydrogenase from Pisum
     sativum: characterization of its activity and cloning of ndhK gene. Plant Cell Physiol, 40:
     149-154
    Endo T, Mi H, Shikanai T, Asada K (1997). Donation of electrons to plastoquinone by
     NAD(P)H dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts.
     Plant Cell Physiol, 38: 1272-1277
    Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999). The role of chloroplastic
     NAD(P)H dehydrogenase in photoprotection. FEBS Lett, 457: 5-8
    F?rber A, Young AJ,Ruban AV et al (1997). Dynamics of xanthophyll-cycle activity in
     different antenna subcomplexes in the photosynthetic membranes of higher plants. Plant
     Physiol, 115: 1609-1618
    Fearnley IM, Runswich MJ, Walker JE (1989). A homologue of the nuclear coded 49kd
     subunit of bovine mitochondrial NADH-ubiquinone reductase is coded in chloroplast
     DNA. EMBO J, 8: 665-672
    Feild TS, Nedbal L, Ort DR (1998). Nonphotochemical reduction of the plastoquinone pool in
     sunflower leaves originates from chlororespiration. Plant Physiol, 116(4): 1209-18
    Friedrich F, Steinmuller K, Weiss H (1995). The proton-pumping respiratory complex I of
     bacteria and mitochondrial and its homologue in chloroplast. FEBS Lett, 367: 107-111
    Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998). Relationship between
     CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves
     of maize in the field during periods of low temperature. Plant Physiol, 116: 571-580
     91
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
    Gans P, Rebeillé F (1990). Control in the dark of the plastoquinone redox state by
     mitochondrial activity in Chlamydomonas reinhardtii. Biochim Biophys Acta, 1015:
     150- 155
    Govindjee (1998). Ecology and Organismic Biology: Plants, Ecology and Plant Physiology.
     Illinois: Stipes Publishing, 45-46
    Greer GH, Berry JA, Bj?rkman O (1986). Photoinhibition of photosynthesis in intact bean
     leaves: role of light and temperature and requirement for chloroplast-protein synthesis
     during recovery. Planta, 168: 253-257
    Guedeney G, Corneille S, Cuine S, Peltier G (1996). Evidence for an association of ndh B,
     ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic
     NAD(P)H dehydrogenase complex. FEBS Lett, 378(3): 277-280
    Guéra A, Sabater B (2002). Changes in the protein and activity levels of the plastid
     NADH-plastoquinone-oxidoreductase complex during fruit development. Plant Physiol,
     Biochem, 40: 423-429
    Halliwell B (1991). Oxygen radicals: their formation in plant tissues and their role in
     herbicide damage. In: Herbicides (Baker N.R. and Percival M.P., eds.), Elsevier Science
     Publishers BV, pp. 87-129
    Hatch MD (1987). C4 photosynthesis: A unique blend of modified biochemistry, anatomy and
     ultrastructure. Biochim Biophys Acta, 895: 81-106
    Havaux M (1996). Short-term responses of photosystem I to heat stress. Induction of a PS
     II-independent electron transport through PSI fed by stromal components. Photosynth
     Res, 47: 85-97
    Havaux M, Davaud A (1994). Photoinhibition of photosynthesis in chilled potato leaves is not
     correlated with a loss of Photosystem II activity: preferential inactivation of photosystem
     I. Photosynth Res, 40: 75-92
    Havaux M, Strasser RJ, Grippin H (1991). A theoretical and exiperimental analysis of the qP
     and qN coefficients of Chl fluorescence quenching and their relation to photochemical
     and nonphotochemical events. Photosynth Res, 27: 41-45
    Heber U, Walker D (1992). Concerning the dual function of coupled cyclic electron transport
     in leaves. Plant Physiol, 100: 1621-1626
     92
    
    
    山东农业大学博士论文
    Heins (1995). Low temperature influence flower reserves. Journal of agricultural and food
     chemistry, 45(2): 287-290
    Helmanu S, Schreiber U (1999). Cyt b-559 (Fd) Participating in cyclic electron transport in
     spinach chloroplasts: evidence for kinetic connection with the Cyt b6/f complex. Plant
     Cell Physiol, 40(8): 818-824
    Herbert SK, Sacksteder C, Kramer DM (1997). Accelerated cyclic electron transport is an
     early effect of chilling in chilling-sensitive plants. Plant Physiol, 114: 219
    Herbert SK, Samson G, Fork DC, Laudenbach DE (1992). Characterization of damage to
     photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase
     activity. Proc Natl Acad Sci USA, 89: 8716-8720
    Hetherington SE, He J, Smillie RM (1989). Photoinhibition at low-temperature in
     chilling-sensitive and chilling-resistant plants. Plant Physiol, 90: 1609-1615
    Hibino T, Lee BH, Rai AK, Ishikawa H, Kojima H, Tawada M, Shimoyama H, Takabe T
     (1996). Salt enhances photosystem I content and cyclic electron flow via NAD(P)H
     dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica. Aust J
     Plant Physiol, 23: 321-330
    Hodgson RAL, Orr GR, Raison JK (1987). Inhibition of photosynthesis by chilling in light.
     Plant Sci Lett, 49: 75-81
    Hoefnagel MHN, Atkin OK, Wiskich JT (1998). Interdependence between chloroplasts and
     mitochondria in the light and the dark. Biochim Biophys Acta, 1366: 235-255
    Hoffmann-Benning S,Kende H (1992). On the role of abscisic acid and gibberellin in the
     regulation of growth in rice. Plant Physiol,99: 1156-1161
    Horton P, Ruban A, Walter RG (1994). Regulation of light harvesting in green plants:
     indication by nonphotochemical quenching of chlorophyll fluorescence. Physiol Plant,
     106: 415-421
    Horvath EM, Peter SO, Jo?t T, Rumeau D, Cournac L, Horvath GV, Kavanagh TA, Schafer C,
     Peltier G, Medgyesy P (2000). Targeted inactivation of the plastid ndhB gene in tobacco
     results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant
     Physiol, 123: 1337-1349
    Hutchison RS (2000). Differential effects of chilling induced photooxidation on the redox
     93
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     regulation of potosynthetic enzymes. Biochemistry, 39: 6679-6688
    Hutchison RS, Groom Q, Ort DR (2000). Differential effects of chilling induced
     photooxidation on the redox regulation of photosynthetic enzymes. Biochemistry, 39:
     6679-6688
    Inoue K, Fujii Y, Yokoyama E, Matsuura K, Hiyama K, Sakurai H (1989). The
     photoinhibition site of photosystem I in isolated chloroplasts under extremely reducing
     conditions. Plant Cell Physiol, 30: 65-71
    Ivanov AG, Morgan RM, Gray GR, Velitchkova MY, Huner NPA (1998). Temperature/light
     dependent development of selective resistance to photoinhibition of photosystem I.
     FEBS Lett, 430: 288-292
    Ivanov B, Edwards G (2000). Influence of ascorbate and the Mehler peroxidase reaction on
     non-photochemical quenching of chlorophyll fluorescence in maize mesophyll
     chloroplasts. Planta, 210: 765-774
    J?et T, Cournac L, Horvath EM, Medgyesy P, Peltier G (2001). Increased sensitivity of
     photosynthesis to antimycin A induced by inactivation of the NADH-dehydrogenase
     complex to cyclic electron flow around photosystem I. Plant physiol, 125: 1919-1929
    J?et T, Cournac L, Peltier G, Havaux M (2002). Cyclic electron flow around photosystem I in
     C3 plants. In vivo control by the redox state of chloroplasts and involvement of the
     NADH-dehydrogenase complex. Plant Physiol, 128: 760-769
    Josse EM, Simkin AJ, Gaffe J, Laboure AM, Kuntz M, Carol P (2000). A plastid terminal
     oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant
     Physiol, 123: 1427-1436
    Jun SS, Km JM, Lee CB (2001). A comparative study on the effect of chilling treatment in the
     light and in the dark on subsequent photosynthesis in cucumber. Aust J Plant Physiol, 28:
     489-496
    Katona E, Neimanis S, Sch?nknecht G, Heber U (1992). Photosystem I-dependent cyclic
     electron transport is important in controlling Photosystem II activity in leaves under
     conditions of water stress. Photosynth Res, 34: 449-464
    Kingston-Smith AH, Harbinson J, Foyer CH (1999). Acclimation of photosynthesis, H2O2
     content and antioxidants in maize grown at sub-optimal temperature. Plant Cell Environ,
     94
    
    
    山东农业大学博士论文
     22: 1071-1083
    Klughammer C, Kolbowski J, Schreiber U (1990). LED array spectrophotometer for
     measurement of time resolved difference spectra in the 530-600 nm wavelength region.
     Photosynth Res, 25: 317-327
    Klughammer C,Schreiber U (1998). Measuring P700 absorbance changes in the near infrared
     spectral region with a dual wavelength pulse modulation system. In: photosynthesis:
     Mechanism and Effects (G. Grab ed.), Vol V, pp4657-4660. Kluwer Academic Publishers,
     Dordrecht.
    Kofer W, Koop HU, Wanner G, Steinmüller K (1998). Mutagenesis of the genes encoding
     subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone- oxidoreductase in
     tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet, 258:
     168-173
    Krause GH (1988). Photoinhibition of photosynthesis. An evolution of damaging and
     protective mechanisms. Physiol Plant, 74: 566-573
    Kubicki A, Funk E, Westhoff P, Steinmüller K (1996). Differential expression of
     plastome-encoded ndh genes in mesophyll and bundle-sheath chloroplasts of the C4
     plant Sorghum bicolor in- dicates that the complex I-homologous NAD(P)H-plasto-
     quinone oxidoreductase is involved in cyclic electron transport. Planta, 199: 276-281
    Laemmli UK (1970). Cleavage of structural proteins during the assembly of the head of
     bacteriphage T4. Nature, 227: 680-685
    Lasley SE, Garber MP, Hodges CF (1979). After effects of light and chilling temperatures on
     photosynthesis in excised cucumber cotyledons. J Amer Sco Hortic Sci, 104: 477-480
    Latouche G, Cerovic ZG, Montagnini F, Moya I (2000). Light-induced changes of NADPH
     fluorescence in isolated chloroplasts: a spectral and fluorescence study. Biochim Biophys
     Acta, 1460: 311-329.
    Law DM, Davis PT (1990). Comparative indole-3-acetic acid levels in the slender pea and
     other pea phenotype. Plant Physiol, 93:1539-1543
    Lee HY, Chow WS, Hong YN (1999). Photoinactivation of photosystem II in leaves of
     Capsicum annuum. Physiol Plant, 105: 377-384
    Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T (1995). Isolation and characterization of the
     95
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur J
     Biochem, 230: 538-548
    Li XG, Duan W, Meng QW, Zhou Q, Zhao SJ (2004). The function of chloroplastic NAD(P)H
     dehydrogenase in tobacco during chilling stress in the low light. Plant Cell Physiol, 45(1):
     103-108
    Li XG, Meng QW, Jiang GQ, Zhou Q (2003). The susceptibility of cucumber and sweet
     pepper to chilling under low irradiance is related to energy dissipation and water-water
     cycle. Photosnthetica, 41(2): 259-265
    Malkin S, Canaani O (1994). The use and characteristics of the photoacoustic method in the
     study of photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 45: 493-526
    Mano J, Miyake C, Schreiber U, Asada K (1995). Photoactivation of the electron flow from
     NADPH to plastoquinone in spinach chloroplasts. Plant Cell Physiol, 36: 1589-1598
    Martin B, Ort DR (1985). The recovery of photosynthesis in tomato subsequent to chilling
     exposure. Photosynth Res, 6: 121-132
    Martin B, Ort DR, Boyer JS (1981). Impairment of photosynthesis by chilling-temperatures in
     tomato. Plant Physiol, 68: 329-334
    Martín M, Casano LM, Sabater B (1996). Identification of the product of ndhA gene as a
     thylakoid protein synthesized in response to photooxidative treatment. Plant Cell Physiol,
     37: 293-298
    Masui R, Wakabayashi S, Matsubara H and Hatefi Y (1991). The amino acid sequence of the
     9 kDa polypeptide and partial amino acid sequence of the 20 kDa polypeptide of
     mitochondrial NADH: ubiquinone oxidoreductase. J Biochem, 110: 575-582
    Matsubayashi T, Wakasugi T, Shinozake K, Yamaguchi-Shinozaki K, Zaita N, Hidaka T,
     Meng BY, Ohto C, Tanaka M, Kata A, Maruyama T, Sugiura M (1987). Six chloroplast
     genes (ndhA-F) homologous to human mitochondrial genes encoding components of the
     respiratory chain NADH dehydrogenase are actively expressed: Determination of the
     splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet, 210: 385-393.
    Matsuo M, Endo T, Asada K (1998a). Properties of the respiratory NAD(P)H dehydrogenase
     isolated from the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol, 39:
     263-267.
     96
    
    
    山东农业大学博士论文
    Matsuo M, Endo T, Asada K (1998b). Isolation of a novel NAD(P)H-quinone oxidoreductase
     from the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol, 39: 751-755.
    McNamara VP, gounaris K (1995). Granal photosystem II complexs contain only the high
     redox potential form of cytochrome b-559which is stabilised by the ligation of calcium.
     Biochim Biophys Acta, 1231: 289-296
    Mi H, Deng Y, Tanaka Y, Hibino T, Takabe T (2001). Photo-induction of an NADPH
     dehydrogenase which functions as a mediator of electron transport to the intersystem
     chain in the cyanobacterium Synechocystis PCC6803. Photosynth Res, 70: 167-172
    Mi H, Endo T, Ogawa T, Asada K (1995). Thylakoid membrane-bound, NADPH-specific
     pyridine nucleotide dehydrogenase comples mediates cyclic electron transport in the
     cyanobacterium Synechocystis PCC6803. Plant Cell Physiol, 36: 661-668
    Mi H, Endo T, Schreiber U, Asada K (1992a). Donation of electrons to the intersystem chain
     in the cyanobacterium Synechocystis sp. PCC7002. Plant Cell Physiol, 33: 1099-1105
    Mi H, Endo T, Schreiber U, Ogawa T, Asada K (1992b). Electron donation from cyclic and
     respiratory flows to the photosynthetic intersystem chain is mediated by pyridine
     nucleotide dehydrogenase in the cyanobaterium Synechocystis PCC6803. Plant Cell
     Physiol, 33: 1233-1237
    Mi H, EndoT, Schreiber U, Ogawa T, Asada K (1994). NAD(P)H-dehydrogenase- dependent
     cyclic electron flow around photosystem I in the cyanobaterium Synechocystis PCC6803:
     a study of dark-starved cells and spheroplasts. Plant Cell Physiol, 35: 163-173
    Mi H, Klughammer C, Schreiber U (2000). Light-induced dynamic changes of NADPH
     fluorescence in Synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell
     Physiol, 41: 1129-1135
    Miyake C, Schreiber U, Asada K (1995). Ferredoxin-dependent and antimycin A-sensitive
     reduction of cytochrome b-559 by far-red light in maize thylakoids; participation of a
     menadiol-reducible cytochrome b-559 in cyclic electron flow. Plant Cell Physiol, 36:
     743-748
    Moskalenko AA, Barbato R, Giacometti GM (1992). Investigation of the neighbour
     relationships between PSII polypeptides in the two types of isolated reaction centers
     (D1PD2PCyt b559 and CP47PD1PD2PCyt b559 complexes). FEBS Lett, 314(2):
     97
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     271-274
    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002). PGR5 is involved in
     cyclic electron flow around photosystem I and is essential for photoprotection in
     Arabidopsis. Cell, 110: 361-71
    Nanba M, Katoh S (1986). The site and mechanism of duroquinol oxidation by the
     cytochrome b6-f complex in Synechococcus sp. Biochim Biophys Acta, 851: 484-490
    Nanba O, Satoh K (1987). Isolation of a photosystem reaction center consisting of D1 and D2
     polypetides and cytochrome b-559. Proc Natl Acad Sci USA, 84: 109-116
    Nikolaeva MK (2001). Activation of Ferredoxin-NADP+Oxidoreductase in Vicia fabaLeaves
     Induced by a Short-Term Increase in Irradiance. Russian Journal of Plant Physiology, 48
     (5): 601-607
    Nixon PJ, Gounaris K, Coomber SA, Hunter CN, Dyer TA, Barber J (1989). psbG is not a
     photosystem two gene but may be an ndh gene. J Biol Chem, 264: 14129-14135
    Ogawa T (1991a). Cloning and inactivation of a gene essential to inorganic carbon transport
     of Synechocystis PCC6803. Plant Physiol, 96: 280-284.
    Ogawa T (1991b). A gene homologous to the subunit-2 gene of NADH dehydrogenase is
     essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci
     USA, 88: 4275-4279.
    Ogawa T (1992). Identification and characterization of the ictA/ndhL gene product essensial
     to inorganic carbon transport of Synechocystis PCC6803. Plant Physiol, 99: 1604-1608
    Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Inokuchi H,
     Ozeki H (1986). Chloroplast gene organization deduced from complete sequence of
     liverwort Marchantia polymorpha chloroplast DNA. Nature, 322: 572-574
    Park YI, Chow WS, Anderson JM (1995). Light inactivation of functional photosystem II in
     leaves of peas grown in moderate light depends on photon exposure. Planta, 196:
     401-411
    Patterson BD, MacRae EA, Ferguson IB (1984). Estimation of hydrogen peroxide in plant
     extracts using titanium (IV). Anal Biochem, 139: 487-492
    Peeler TC, Naylor AW (1988). A comparison of the effects of chilling on thylakoid electron
     transfer in pea (Pisum sativum L.) and cucumber (Cucumis sativus L.). Plant Physiol, 86:
     98
    
    
    山东农业大学博士论文
     147-151
    Peters FALJ, Van Wielink HE, Wong Fong Sang HW, De Vries S, Kwaayenhoff R (1983).
     Studies on well coupled photosystem I-enriched subchloroplast vesicles; content and
     redox properties of electron-transfer components. Biochim Biophys Acta, 722: 460-470
    Pfündel E, Bilger W (1994). Regulation and possible function of the violaxanthin cycle.
     Photosynth Res, 42: 237-282
    Pilkington SJ, Skehel JM and Walker JE (1991). The 30-kilodalton subunit of bovine
     mitochondrial complex I is homologous protein coded in chloroplast DNA. Biochemistry,
     30: 1901-1908
    Powles SB (1984). Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant
     Physiol, 35: 15-44
    Purcell M, Carpentier R (1994). Homogeneous photobleaching of chlorophyll holochromes in
     a photosystem I reaction center complex. Photochem Photobiol, 59: 215-218
    Quick WP, Stitt M (1989). An examination of factors contribution to non-photochemical
     quenching of chlorophyll fluorescence in barley leaves. Biochim Biophys Acta, 977:
     287-296
    Quiles MJ, Cuello J (1998). Association of ferredoxin-NADP oxidoreductase with the
     chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves. Plant Physiol,
     117: 235-244
    Quiles MJ, Garc?a A, Cuello J (2000). Separation by blue-native PAGE and identification of
     the whole NAD(P)H dehydrogenase complex from barley stroma thylakoids. Plant
     Physiol Biochem, 38: 225-232
    Rasmusson AG, Heiser V, Zabaleta E, Brennicke A, Grohmann L (1998). Physiological,
     biochemical and molecular aspects of mitochondrial complex I in plants. Biochim
     Biophys Acta, 1364: 101-111
    Sakaki T, Kondo N, Sugahara K (1983). Breakdown of photosynthetic pigments and lipids in
     spinach leaves with ozone fumudation: Role of active oxygens. Physiol Plant, 59: 1-3
    Satoh K (1970a). Mechanism of photoinactivation in photosynthetic systems. I. The dark
     reaction in photoinactivation. Plant Cell Physiol, 11: 15-27
    Satoh K (1970b). Mechanism of photoinactivation in photosynthetic systems. II. The
     99
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     occurrence and properties of two different types of photoinactivation. Plant Cell Physiol,
     11: 29-38
    Satoh K (1970c). Mechanism of photoinactivation in photosynthetic systems. III. Site and
     mode of photoinactivation in photosystem I. Plant Cell Physiol, 11:187-197
    Satoh K, and Fork DC (1982). Photoinhibition of reaction centers of photosystems I and II in
     intact Bryopsis chloroplasts under anaerobic conditions. Plant Physiol, 70: 1004-1008
    Satoh K, Fork DC (1982). Photoinhibition of reaction center of photosystems I and II in intact
     Bryopsis chloroplasts under anaerobic conditions. Plant Physiol, 70: 1004-1008
    Sazanov LA, Burrows P, Nixon PJ (1996). Detection and characterization of a complex I-like
     NADH-specific dehydrogenase from pea thylakoids. Biochem Soc Trans, 24: 739-743
    Sazanov LA, Burrows PA, Nixon PJ (1998). The plastid ndh genes code for an
     NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid
     membranes. Proc Natl Acad Sci USA, 95: 1319-1324
    Schreiber U, Endo T, Mi H, Asada K (1995). Quenching analysis of chlorophyll fluorescence
     by the saturation pulse method: particular aspects relating to the study of eukaryotic
     algae and cyanobacteria. Plant Cell Physiol, 36: 873-882.
    Schreiber U, Schliwa U, Bilger W (1986). Continuous recording of photochemical and
     non-photochemical chlorophyll fluorescence quenching with a new type o f modulation
     fluorometer. Photosynth Res, 10: 51-62
    Shen J, Wang G (1998). State transition in blue-green alga Synechocystis PCC6803. Chinese
     Sci Bull, 43: 2087-2090
    Shen JR, Terashima I, Katok S (1990). Cause for dark, chilling-induced inactivation of
     photosynthetic oxygen-evolving system in cucumber leaves. Plant Physiol, 93: 354-1357
    Shikanai T, Endo T, Yamada Y, Hashimoto T, Asada K, Yokota A (1998) Directed disruption
     of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl
     Acad Sci USA, 95: 9705-9709
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N,
     Chunwongse J, Obotaka J, Yamaguchi-Shinozaki K, Ohto C, Torozawa K, Meng BY,
     Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato F, Tohdo N,
     Shimada H, Sugiura M (1986). The complete nucleotide sequence of the tobacco
     100
    
    
    山东农业大学博士论文
     chloroplast genome: its gene organization and expression. EMBO J, 5: 2043-2049
    Sonoike K (1998). Various aspects of inhibition of photosynthesis under light/chilling stress:
     "photoinhibition at chiling damage in the light". J Plant Res, 111: 121-129
    Sonoike K (1995). Selective photoinhibition of photosystem I in isolated thylakoid
     membrances from cucumber and spinach. Plant Cell Physiol, 36: 825-830
    Sonoike K (1996b). Photoinhibition of PSI: Its physiological significance in the chilling
     sensitivity of plants. Plant Cell Physiol, 37: 239-247
    Sonoike K (1999). The different roles of chilling temperatures in the photoinhibition of
     photosystem I and photosystem II. J Photochem Photobiol Biol, 48: 136-141.
    Sonoike K, Lamo M, Hihara Y et al (1997). The mechanism of the degradation of psaB gene
     product, one of the photosynthetic reaction center subunits of Photosystem I upon
     photoinhibition. Photosynth Res, 53: 55-63
    Sonoike K, Terashima I (1994). Mechanism of photosystem I photoinhibition in leaves of
     cucumis sativus L. Planta, 194: 287-293
    Sonoike K, Terashima I, Iwaki M et al (1995). Destruction of photosystem I iron-sulfur
     centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures.
     FEBS Letters, 365: 235-238
    Sugiura M (1992). The chloroplast genome. Plant Mol Biol, 19: 149-168
    Tagawa K, Tsujimoto HY, Arnon DI (1963). Role of chloroplast ferredoxin in the energy
     conversion process of photosynthesis. Proc Natl Acad Sci USA, 49: 567-572
    Takabayashi A, Endo T, Shikanai T, Sato F (2001). In: PS2001 Proceedings, 12th
     International Congress on Photosynthesis (Online and CD-ISBN 0643 067116), S14-017,
     pp1-5, CSIRO Publishers, Australia
    Takahama U, Shimuzu-Takahama M, Heber U (1981). The redox state of the NADP system in
     illuminated chloroplasts. Biochim Biophys Acta, 637: 530-539
    Tanka K, Suda Y, Kondo N et al (1985). O3 tolerance and the ascorbate-dependent H2O2
     decomposing system in chloroplast. Plant Cell Physiol, 26: 1425-1431
    Teicher HB, Scheller HV (1998). The NAD(P)H dehydrogenase in barley thylakoids is
     photoactivatable and uses NADPH as well as NADH. Plant Physiol, 117: 525-532
    Terashima I, Funzyama S, Sonoike K (1994). The site of photoinhibition in leaves of cucumis
     101
    
    
    段伟:低温条件下叶绿体 NAD(P)H 脱氢酶复合体的生理功能及其对光质的响应
     sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193: 300-306
    Terashima I, Huang LR, Osmond CB (1989a). Effects of leaf chilling on thylakoid functions
     measured at room temperature in Cucumis sativus L. and Oryza sativa L. Plant Cell
     Physiol, 30: 841-850
    Terashima I, Kashino Y, Katoh S (1991a). Exposure of leaves of Cucumis sativus L. to low
     temperatures in the light causes uncoupling of thylakoids I. Studies with isolated
     thylakoids. Plant Cell Physiol, 32: 1267-1274
    Terashima I, Shen JR, Katoh S (1989b). Chilling damage in cucumber (Cucumis sativus L.)
     thylakoids. In M. Tazawa, M.Katsumi, Y. Masuda and H. Okamoto, eds., Plant Water
     Relations and Growth under Stress,Yamada Science Foundation, Osaka and My K.K.,
     Tokyo, 470-472
    Terashima I, Sonoike K, Kawazu T et al (1991b). Exposure of leaves of Cucumis sativus L. to
     low temperatures in the light caused uncoupling of thylakoids. 1. Non-destructive
     measurements with intact leaves. Plant Cell Physiol, 32: 1275-1283
    Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997). Subcellular localization of
     H2O2 in plants. H2O2 accumulationin papillae and hypersensitive response during the
     barley–powdery mildew interaction. Plant J, 11: 1187-1194
    Tjus SE, M?ller BL, Scheller HV (1998a). Photosystem I is an early target of photoinhibition
     in barley illuminated at chilling temperatures. Plant Physiol, 116: 755-764
    Tjus SE, M?ller BL, Scheller HV (1999). Photoinhibition of photosystem I damages both
     reaction center proteins PSI-A and PSI-B and acceptor-side located small photosystem I
     polypeptides. Photosynth Res, 60: 75-86
    Vallon O, hoyer-Hansen G, Simpson DJ (1987). Photosystem II and cytochrome b-559 in the
     stroma lamellae of barley chloroplasts. Carlsberg Res Commun, 52: 405-421
    Van Hasselt P, van Berlo H (1980). Photooxidative damage to the photosynthetic apparatus
     during chilling. Physiol Plant, 50: 52-56
    Van Kooten O, Snel JFH (1990). The use of chlorophyll fluorescence nomenclature in plant
     stress physiology. Photosynth Res, 25: 147-150
    Walk MA, Mckersie BD (1993). Role of the ascorbate-glutathione antioxidant system in
     chilling resistance of tomato. Plant Physiol, 141: 234-239
     102
    
    
    山东农业大学博士论文
    Walker JE, Skehel JM, Buchanan SK (1995). Structural analysis of NADH: ubiquinone
     oxidoreductase from bovine heart mitochondria. Methods Enzymol. 260:14-34
    Weis E (1981). Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the
     temperature regulation of photosynthesis. Planta, 151: 33-39.
    Weller JL, Ross JJ, Reid JB (1994). Gibberellins and phytochrome regulation of stem
     elongation in pea. Planta, 192: 489- 496
    Wise RR, Naylor AW (1987). Chilling-enhanced photooxidation: Evidence for the role of
     singlet oxygen and superoxide in the breakdown of pigments and endogenous
     antioxidants. Plant Physiology, 83: 278-282
    Wise RR, Ort DR (1989). Photophosphorylation after chilling in the light. Plant Physiol, 90:
     657-664
    Wu DY, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999). The IMMUTANS variegation
     locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions
     during early chloroplast biogenesis. Plant Cell, 11: 43-55.
    Xu DQ, Shen YG (1997). Diurnal variations in the photosynthetic efficiency in plants. Acta
     Phytophysiolgica Sinica, 23(4): 410-416
    Yamane Y, shikanai T, Kashino Y, Koike H, Satoh K (2000). Reduction of QA in the dark:
     Another cause of fluorescence Fo increases by high temperatures in higher plants.
     Photosynth Res, 63: 23-34
    Yao ZJ, Ye JY, Mi H (2001). In: PS2001 Proceedings, 12th International congress on
     Photosynthesis (Online and CD-ISBN 0643 067116), pp1-6, CSIRO Publishers,
     Australia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700