用户名: 密码: 验证码:
拟南芥叶绿素降解相关基因NYE1、NYE2、CRN1的鉴定及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:
     叶绿素降解是植物叶片衰老和果实成熟的最鲜明特征,近年来关于叶绿素降解的生物化学途径已经逐渐明晰,然而对于衰老进程中叶绿素快速降解的遗传调控机理却知之甚少。本研究以模式植物拟南芥为材料,对快中子诱变的M2代Col-0进行遗传筛选,获得了一个滞绿(stay-green)突变体nyel-1(NON-YELLOWING1-1)。nye1-1在叶片衰老时叶绿素降解受阻,同时,叶绿素结合蛋白的降解也显著受到抑制,但是光合速率下降以及衰老基因的表达同野生型无异,表明nye1-1是C类非功能型的滞绿突变体。酶活分析表明nye1-1中叶绿素酶的活性不受影响,而脱镁叶绿酸a氧化酶(PaO)的活性有所下降,但是HPLC分析表明nye1-1中叶绿素酸酯以及PaO的底物脱镁叶绿酸并没有显著积累。遗传分析表明nye1-1是一个半显性突变体,利用图位克隆的手段,我们发现nye1-1是At4g22920基因的一个无义突变(L10>stop),互补实验进一步证实了这一结果。过量表达NYE1可导致不同程度的叶片黄化,甚至产生白化苗,定量PCR结果显示其叶片黄化程度与NYE1表达量成正相关。这些结果表明NYE1是叶绿素降解的正调节因子。NYE1受各种衰老信号诱导,编码一个全新的叶绿体蛋白,在植物中高度保守。其中NYE2是拟南芥中NYE1的一个潜在同源基因,其相似性在75%左右,因此我们猜测它们可能具有类似的功能,然而其T-DNA插入突变体nye2-1并不显著影响衰老过程中叶绿素的降解,但是利用地塞米松诱导表达系统在野生型和nye1-1中过量表达NYE2则发现诱导两天后即可观察到不同程度的叶片黄化。这一结果为NYE2参与叶绿素降解提供了线索,进一步分析nye1-1/nye2-1中叶绿素降解将有助于阐明NYE2在叶绿素降解过程中的作用和地位。尽管NYE蛋白在植物界中高度保守,但是其蛋白序列没有已知的结构域,这给它的功能预测带来了困难。获得更多的滞绿相关基因资源将有助于从另一个角度去探索叶绿素降解的调控机制,也为研究NYE1/2的功能提供更多的线索。对叶绿体定位的衰老相关基因进行表达谱分析获得了若干与NYE1表达模式极为相似的基因,进一步对这些基因的T-DNA突变体进行鉴定和表型分析,我们获得了一个新的滞绿突变体crn1-1(Co-rogulated withNYE1),CRN1同NYE1一样,都具有N末端的叶绿体定位信号,生物信息学分析表明CRN1编码一个脂肪酶(EC3.1.1),因而猜测其可能具有类似叶绿素酶的活性。与nye1-1一样,crn1-1在多种叶片衰老条件下均表现出滞绿的特征,通过对离体叶片在黑暗处理下的叶绿素降解分析,发现crn1-1中叶绿素降解受阻程度和acd1-20中的相仿,而较nye1-1中的严重。对黑暗处理的离体叶片进行光系统Ⅱ光化学效率(Fv/Fm)的检测则发现从第二天开始crn1-1中光化学效率较野生型和nye1-1中相比下降更为迅速,这不仅表明crn1-1是非功能型的滞绿突变体,而且提示CRN1还可能对叶片衰老过程中光合能力的维持起到保护作用。SDS-PAGE和Western Blot结果表明,在黑暗诱导衰老4天后,crn1-1中Rubisco大亚基正常降解,而叶绿素结合蛋白的降解却受到不同程度的受抑。蓝绿温和胶电泳结果显示这其中最主要是LHCPⅡ三聚体的解聚出现了问题。比较分析叶绿素降解相关突变体中蛋白降解情况表明叶绿素降解和叶绿体-蛋白复合物的降解通常是耦联的,不同叶绿素降解相关基因在其中共同发挥作用,但作用方式有所差异。利用酵母双杂交技术,我们对叶绿素降解相关蛋白的互作关系进行了初步探索,结果表明这些蛋白之间均没有互作关系。
     总结,本文结合正向遗传学和反向遗传学在拟南芥中鉴定了三个叶绿素降解相关的基因NYE1、NYE2以及CRN1,并对它们在叶绿素和叶绿素结合蛋白的降解中的作用进行了初步的探索和讨论。
Chlorophyll(Ch1) loss during leaf senescence and fruit ripening represents the most splendid autumn scenery that attracts millions of people every year.A biochemical pathway of Ch1 degradation has been established in last decades.However,the genetic regulation of Ch1 catabolism is barely understood.This thesis will describe some new discoveries and discuss their significance in this process by using Arabidopsis as a model plant.A non-yellowing mutant,nye1-1,was identified from the M2 population of fast-neutron mutagenized Arabidopsis thaliana(Co1-0).The degradation of both Ch1 and Ch1 binding proteins were greatly restrained in nye1-1.Nevertheless,neither photosynthesis- nor senescence-associated process was significantly affected,suggesting that nye1-1 was a type-C cosmetic stay-green mutant.Enzymatic analysis revealed that the total Chlorophyllase activity was not obviously influenced while a significant reduction in PaO activity was detected in nye1-1.However,no detectable accumulation of either chlorophyllide a or pheophorbide a was observed based on HPLC analysis.Reciprocal crossings revealed that the mutant phenotype was caused by a monogenic semi-dominant nuclear mutation.We identified NYE1 by positional cloning and confirmed by genomic complementation test.nye1-1 was a null mutant with the L10>stop mutation.Constitutive over-expression of NYE1 could result in either pale-yellow true leaves or even albino seedlings.Further analysis revealed the severity of the degreening in the NYE1 over-expressors was correlated with the expression level of NYE1.These results collectively indicated that NYE1 plays an important regulatory role in Ch1 degradation during leaf senescence.NYE1 was drastically induced by senescence signals and encodes a novel chloroplast protein,which was highly conserved among plant species.NYE2 is a putative paralog of NYE1 with an approximately 75%similarity in Arabidopsis.Whether NYE2 acts in the Ch1 degradation pathway remains unknown.A T-DNA insertion line of NYE2 wasn't stay-green during leaf senescence.However,by employing dexamethasone (DEX)-inducible over-expression system,we found over-expression of NYE2 could efficiently cause leaf yellowing phenotype,even in nye1-1 background.This result indicated that NYE2 may be also involved in Ch1 degradation,possibly through mimicking the function of NYE1.Further characterization of nye1-1/nye2-1 double mutant will facilitate elucidating of the role of NYE2 in Ch1 breakdown.Although highly conserved,domain sequences of NYE1/2 hardly provide any cues about its possible biochemical roles. Identification of additional stay-green genes will be exclusively important for the further understanding the regulatory mechanisms of Ch1 catabolic pathway and may also give inspiration to the function of NYE1/2.Cluster analysis of senescence associated genes with putative chloroplast targeting sequences revealed several genes share similar expression pattern with NYE1.Subsequently characterization of available T-DNA insertion lines led to the discovery of a novel stay-green gene CRN1(Co-regulated with NYE1).CRN1 encodes a putative chloroplast protein with a typical esterase/lipase domain(EC3.1.1),supposing it may have chlorophyllase/pheophytinase activity.The Ch1 breakdown was drastically restrained in crn1-1 under various leaf senescence conditions,which was comparable with that in acd1-20(a knockout mutant of PaO),but much severer than that in nye1-1. Surprisingly but interestingly,the photochemical efficiency of PSII(by evaluating the ratio of Fv/Fm) began to decrease more rapidly after two days dark-incubation of detached leaves in crn1-1,as compared with Co1-0 and nye1-1,supposing that CRN1 may also contribute to the maintaining of the residual capability of photosynthesis during leaf senescence.At the protein level,we found the large subunit of Rubisco degraded normally in crn1-1 during leaf senescence,while all the Ch1 binding proteins detected were more or less retained, suggesting the removal of Ch1 from pigment-protein complex appears to be a perquisite step for both Ch1 and Ch1 binding protein degradation,however,the mechanism seems to be distinct in different stay-green mutants.To explore the function of NYE1 and CRN1,we also employed yeast two hybrid system to study their possible interaction status with other Ch1 degradation proteins.Our preliminary result showed NYE1,CRN1,PaO and RCCR didn't interact with each other.Conclusively,the thesis mainly contributed to the molecular identification and functional characterization of three Ch1 degradation related genes:NYE1, NYE2 and CRN1 by using both forward and reverse genetic approaches in Arabidosis.
引文
Alos E, Roca M, Iglesias DJ, Minguez-Mosquera MI, Damasceno CMB, Thannhauser TW, et al. (2008). An evaluation of the basis and consequences of a stay-green mutation in the navel negra citrus mutant using transcriptomic and proteomic profiling and metabolite analysis. Plant Physiol 147: 1300-1315
    Amirshapira D, Goldschmidt EE, Altman A (1987). Chlorophyll Catabolism in Senescing Plant-Tissues - Invivo Breakdown Intermediates Suggest Different Degradative Pathways for Citrus-Fruit and Parsley Leaves. Proc Natl Acad Sci USA 84: 1901-1905
    Aoyama T, Chua NH (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11: 605-612
    Arkus KAJ, Cahoon EB, Jez JM (2005). Mechanistic analysis of wheat chlorophyllase. Arch Biochem Biophys 438: 146-155
    Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, et al. (2007). Cross-species identification of Mendel's I locus. Science 315: 73-73
    Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S, James C, et al. (2006). From crop to model to crop: identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172: 592-597
    Aubry S, Mani J, Hortensteiner S (2008). Stay-green protein, defective in Mendel's green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67: 243-256
    Bachmann A, Fernandezlopez J, Ginsburg S, Thomas H, Bouwkamp JC, Solomos T, et al. (1994). Stay-Green Genotypes of Phaseolus-Vulgaris L - Chloroplast Proteins and Chlorophyll Catabolites during Foliar Senescence. New Phytol 126: 593-600
    Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ (2008). Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol 147: 179-187
    Barth C, Moeder W, Klessig DF, Conklin PL (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134: 1784-1792
    Beaudoin N, Serizet C, Gosti F, Giraudat J (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12: 1103-1115
    Bleecker AB, Patterson SE (1997). Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9: 1169-1179
    Borovsky Y, Paran I (2008). Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theor Appl Genet 117: 235-240
    Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, et al. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42: 567-585
    Canfield MR, Guiam(?)t JJ, Nood(?)n LD (1995). Alteration of Soybean Seedling Development in Darkness and Light by the Stay-Green Mutation Cytg and Gd(1)D(2). Annals of Botany 75: 143-150
    Conklin PL, Williams EH, Last RL (1996). Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93,: 9970-9974
    Costa ML, Civello PM, Chaves AR, Martinez GA (2002). Characterization of Mgdechelatase activity obtained from Fragaria x ananassa fruit. Plant Physiol. Biochem. 40: 111-118
    Curty C, Engel N, Gossauer A (1995). Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll. FEBS Lett 364: 41-44
    Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, et al. (1999). Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11: 1253-1266
    Dormann P (2007). Functional diversity of tocochromanols in plants. Planta 225: 269-276
    Emanuelsson O, Nielsen H, Von Heijne G (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8: 978-984
    Engel N, Curty C, Gossauer A (1996). Chlorophyll catabolism in Chlorella protothecoides .8. Facts and artefacts. Plant Physiol Bioch 34: 77-83
    Engel N, Curty C, Gossauer A (1996). Chlorophyll catabolism in Chlorella protothecoides.8. Facts and artefacts. Plant Physiol. Biochem. 34: 77-83
    Engel N, Jenny TA, Mooser V, Gossauer A (1991). Chlorophyll Catabolism in Chlorella-Protothecoides - Isolation and Structure Elucidation of a Red Bilin Derivative. FEBS Lett 293: 131-133
    Folly P, Engel N (1999). Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L. J Biol Chem 274: 21811-21816
    Forsberg J, Strom J, Kieselbach T, Larsson H, Alexciev K, Engstrom A, et al. (2005). Protease activities in the chloroplast capable of cleaving an LHCII N-terminal peptide. Physiol Plant 123: 21-29
    Fujiki Y, Ito M, Nishida I, Watanabe A (2000). Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis. Plant Physiol 124: 1139-1147
    Fujiki Y, Nakagawa Y, Furumoto T, Yoshida S, Bisvval B, Ito M, et al. (2005). Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulin-antagonist-sensitive signalling in Arabidopsis thaliana. Plant Cell Physiol 46: 1741-1746
    Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, et al. (2001). Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111: 345-352
    Gan S (2003). Mitotic and Postmitotic Senescence in Plants Sci SAGE KE 38: RE7
    Gan S, Amasino RM (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986-1988
    Garcia-Lorenzo M, Zelisko A, Jackowski G, Funk C (2005). Degradation of the main Photosystem Ⅱ light-harvesting complex. Photoch Photobio Sci 4: 1065-1071
    Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, Yariv I, et al. (2003). Large-scale identification of leaf senescence-associated genes. Plant J 36: 629-642
    Ginsburg S, Matile P (1993). Identification of Catabolites of Chlorophyll-Porphyrin in Senescent Rape Cotyledons. Plant Physiol 102: 521-527
    Ginsburg S, Schellenberg M, Matile P (1994). Cleavage of Chlorophyll-Porphyrin - Requirement for Reduced Ferredoxin and Oxygen. Plant Physiol 105: 545-554
    Gray J, Close PS, Briggs SP, Johal GS (1997). A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. G?//89: 25-31
    Grbic V, Bleecker AB (1995). Ethylene Regulates the Timing of Leaf Senescence in Arabidopsis. Plant J 8: 595-602
    Greenberg JT, Ausubel FM (1993). Arabidopsis Mutants Compromised for the Control of Cellular-Damage during Pathogenesis and Aging. Plant J 4: 327-341
    Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, et al. (2007). Chlorophyllase Is a Rate-Limiting Enzyme in Chlorophyll Catabolism and Is Posttranslationally Regulated. Plant Cell Epub
    Harrison MA, Allen JF (1993). Differential Phosphorylation of Individual Lhc-Ii Polypeptides during Short-Term and Long-Term Acclimation to Light Regime in the Green-Alga Dunaliella-Salina. Biochim Biophys Acta 1141: 37-44
    Hendry GAF, Houghton JD, Brown SB (1987). The degradation of chlorophyll. A biological enigma. New Phytol 107: 255-302
    Hensel LL, Grbic V, Baumgarten DA, Bleecker AB (1993). Developmental and Age-Related Processes That Influence the Longevity and Senescence of Photosynthetic Tissues in Arabidoposis. Plant Cell 5: 553-564
    Horn R, Paulsen H (2004). Early steps in the assembly of light-harvesting chlorophyll a/b complex - Time-resolved fluorescence measurements. J Biol Chem 279: 44400-44406
    Hortensteiner S (1999). Chlorophyll breakdown in higher plants and algae. Cellular and Molecular Life Sciences 56: 330-347
    Hortensteiner S (2006). Chlorophyll Degradation During Senescence. Annu. Rev. Plant Biol. 57: 55-57
    Hortensteiner S (2009). Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14: 155-162
    Hortensteiner S, Rodoni S, Schellenberg M, Vicentini F, Nandi OI, Qui YL, et al. (2000). Evolution of chlorophyll degradation: The significance of RCC reductase. Plant Biology 2: 63-67
    Hortensteiner S, Vicentini F, Matile P (1995). Chlorophyll Breakdown in Senescent Cotyledons of Rape, Brassica-Napus L - Enzymatic Cleavage of Phaeophorbide-a in-Vitro. New Phytol 129: 237-246
    Hoth S, Ikeda Y, Morgante M, Wang XJ, Zuo JR, Hanafey MK, et al. (2003). Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana. FEBS Lett 554: 373-380
    Iturraspe J, Engel N, Gossauer A (1994). Isolation and structure elucidation of chlorophyll b catabolites in Chlorella protothecoides. Phytochemistry 35: 1387-1390
    Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (1999). Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlasel gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20: 653-661
    Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (1999). Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlasel gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20: 653-661
    Jansson S (1999). A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236-240
    Jiang HW, Li MR, Liang NB, Yan HB, Wei YL, Xu X, et al. (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J 52: 197-209
    Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993). Ctrl, a Negative Regulator of the Ethylene Response Pathway in Arabidopsis, Encodes a Member of the Raf Family of Protein-Kinases. Cell 72: 427-441
    Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, et al. (2006). Cytokinin-mediated control of leaf Jongevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103: 814-819
    Krautler B, Jaun B, Bortlik K, Schellenberg M, Matile P (1991). On the Enigma of Chlorophyll Degradation - the Constitution of a Secoporphinoid Catabolite. Angew Chem Int Edit30: 1315-1318
    Krutler B (2003). Chlorophyll breakdown and chlorophyll catabolites. 13: 183-209
    Kuhlbrandt W, Wang DN, Fujiyoshi Y (1994). Atomic Model of Plant Light-Harvesting Complex by Electron Crystallography. Nature 367: 614-621
    Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, et al. (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19: 1362-1375
    Lara MEB, Garcia MCG, Fatima T, Ehness R, Lee TK, Proels R, et al. (2004). Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16: 1276-1287
    Liao Y, An K, Zhou X, Chen WJ, Kuai BK (2007). AtCLH2, a typical but possibly distinctive chlorophyllase gene in Arabidopsis. J Integr Plant Biol 49: 531-539
    Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, et al. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428: 287-292
    Matile P, H(?)rtensteiner S, Thomas H (1999). Chlorophyll Degradation. Annu Rev Plant Physiol Plant Mol Biol 50: 67-95
    Matile P, Hortensteiner S, Thomas H (1999). Chlorophyll degradation. Annu Rev Plant Physiol Plant Mol Biol 50: 67-95
    Matile P, Hortensteiner S, Thomas H, Krautler B (1996). Chlorophyll breakdown in senescent leaves. Plant Physiol 112: 1403-1409
    Mendel G (1866). Versuche (?)ber Pflanzenhybriden. Verh.Naturforsch. Ver. Br(?)nn 4: 3-47
    Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, et al. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332-336
    Moser S, Ulrich M, Muller T, Krautler B (2008). A yellow chlorophyll catabolite is a pigment of the fall colours. Photoch Photobio Sci 7: 1577-1581
    Muller T, Moser S, Ongania KH, Pruzinska A, Hortensteiner S, Krautler B (2006). A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana. Chembiochem 7: 40-42
    Nicholas KB, Nicholas J, H.B., Deerfield Ⅱ DW (1997). GeneDoc: Analysis and Visualization of Genetic Variation. (fuip://www.psc.edu/biomed/genedoc ).
    Oberhuber M, Berghold J, Muhlecker W, Hortensteiner S, Krautler B (2001). Chlorophyll breakdown - On a nonfluorescent chlorophyll catabolite from spinach. Helv Chim Acta 84: 2615-2627
    Oh MH, Moon YH, Lee CH (2003). Increased stability of LHCII by aggregate formation during dark-induced leaf senescence in the Arabidopsis mutant, ore 10. Plant Cell Physiol 44: 1368-1377
    Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996). A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30: 739-754
    Oh SA, Park JH, Lee GI, Paek KH, Park SK, Nam HG (1997). Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12: 527-535
    Oshio Y, Hase E (1969). Studies on red pigments excreted by cells of Chlorella protothecoides during the process of bleaching induced by glucose or acetate. I. Chemical properties of the red pigments. Plant Cell Physiol 10: 41-49
    Park JH, Oh SA, Kim YH, Woo HR, Nam HG (1998). Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis. Plant Mol Biol 37: 445-454
    Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, et al. (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19: 1649-1664
    Peisker C, Thomas H, Keller F, Matile P (1990). Radiolabeling of Chlorophyll for Studies on Catabolism. J Plant Physiol 136: 544-549
    Pruzinska A, Anders I, Aubry S, Schenk N, Tapernoux-Luthi E, Muller T, et al. (2007). In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19: 369-387
    Pruzinska A, Tanner G, Anders I, Roca M, Hortensteiner S (2003). Chlorophyll breakdown: Pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc Natl Acad Sci U S A 100: 15259-15264
    Pruzinska A, Tanner G, Aubry S, Anders I, Moser S, Muller T, et al. (2005). Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 139: 52-63
    Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, et al. (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144: 1429-1441
    Richmond AE, Lang A (1957). Effect of Kinetin on Protein Content and Survival of Detached Xanthium Leaves. Science 125: 650-651
    Roca M, Hornero-Mendez D, Gandul-Rojas B, Minguez-Mosquera MI (2006). Stay-green phenotype slows the carotenogenic process in Capsicum annuum (L.) fruits. J Agric Food Chem 54: 8782-8787
    Roca M, James C, Pru(?)insk(?) A, H(?)rtensteiner S, Thomas H, Ougham H (2004). Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Phytochemistry 65: 1231-1238
    Rodoni S, Muhlecker W, Anderl M, Krautler B, Moser D, Thomas H, et al. (1997). Chlorophyll breakdown in senescent chloroplasts - Cleavage of pheophorbide a in two enzymic steps. Plant Physiol 115: 669-676
    Rolland F, Moore B, Sheen J (2002). Sugar sensing and signaling in plants. Plant Cell 14: S185-S205
    Rudiger W, Benz J, Guthoff C (1980). Detection and Partial Characterization of Activity of Chlorophyll Synthetase in Etioplast Membranes. Eur J Biochem 109: 193-200
    Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M (2009). Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J 57: 120-131
    Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M (2007). Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci U S A 104: 14169-14174
    Schagger H, Cramer WA, Vonjagow G (1994). Analysis of Molecular Masses and Oligomeric States of Protein Complexes by Blue Native Electrophoresis and Isolation of Membrane-Protein Complexes by 2-Dimensional Native Electrophoresis. Anal Biochem 217: 220-230
    Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, et al. (2009). Pheophytin Pheophorbide Hydrolase (Pheophytinase) Is Involved in Chlorophyll Breakdown during Leaf Senescence in Arabidopsis. Plant Cell HOI: 10.1105/tpc.1108.064089
    Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dormann P, Hortensteiner S (2007).The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581: 5517-5525
    Shioi Y, Tomita N, Tsuchiya T, Takamiya K (1996). Conversion of pheophyorbide a to a precursor of pyropheophorbide a in leaves of Cbenopodim album.Plant Physiol.Biochem.34:41-47
    Standfuss R,van Scheltinga ACT,Lamborghini M,Kuhlbrandt W(2005).Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution.Embo J 24:919-928
    Suzuki T,Kunieda T,Murai F,Morioka S,Shioi Y(2005).Mg-dechelation activity in radish cotyledons with artificial and native substrates,Mg-chlorophyllin a and chlorophyllide a.Plant Physiol.Biochem.43:459-464
    Suzuki Y,Shioi Y(1999).Detection of chlorophyll breakdown products in the senescent leaves of higher plants.Plant Cell Physiol 40:909-915
    Tao YZ,Henzell RG,Jordan DR,Butler DG,Kelly AM,McIntyre CL(2000).Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments.Theor Appl Genet 100:1225-1232
    Thomas H,Howarth CJ(2000).Five ways to stay green.J Exp Bot 51:329-337
    Thomas H,Ougham H,H(o|¨)rtensteiner S(2001).Recent advances in the cell biology of chlorophyll catabolism.Advances in Botanical Research,Vol 35 35:1-52
    Thomas H,Smart CM(1993).Crops That Stay Green.Ann Appl Biol 123:193-219
    Toufighi K,Brady SM,Austin R,Ly E,Provart NJ(2005).The Botany Array Resource:e-Northerns,Expression Angling,and Promoter analyses.Plant J 43:153-163
    Tsuchiya T,Ohta H,Okawa K,Iwamatsu A,Shimada H,Masuda T,et al.(1999).Cloning of chlorophyllase,the key enzyme in chlorophyll degradation:finding of a lipase motif and the induction by methyl jasmonate.Proc Natl Acad Sci U S A 96:15362-15367
    Tsnchiya T,Ohta H,Okawa K,Iwamatsu A,Shimada H,Masuda T,et al.(1999).Cloning of chlorophyllase,the key enzyme in chlorophyll degradation:Finding of a lipase motif and the induction by methyl jasmonate.Proc Natl Acad Sci U S A 96:15362-15367
    Tziveleka LA,Argyroudi-Akoynnoglou JH(1998).Implications of a developmental-stage-dependent thylakoid-bound protease in the stabilization of the light-harvesting pigment-protein complex serving photosystem Ⅱ during thylakoid biogenesis in red kidney bean.Plant Physiol 117:961-970
    Van Zhong G,Burns JK(2003).Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis.Plant Mol Biol 53:117-131
    Vicentini F,H(o|¨)rtensteiner S,Schellenberg M,Thomas H,Matile P(1995).Chlorophyll Breakdown in Senescent Leaves-Identification of the Biochemical Lesion in a Stay-Green Genotype of Festuca-Pratensis Huds.New Phytol 129:247-252
    Vicentini F,Iten F,Matile P(1995).Development of an assay for Mg-dechelatase of oilseed rape cotyledons,using chlorophyllin as the substrate.Physiol.Plant.94:57-63
    Weaver LM,Amasino RM(2001).Senescence is induced in individually darkened Arabidopsis leaves but inhibited in whole darkened plants.Plant Physiol 127:876-886
    Weaver LM,Gan SS,Quirino B,Amasino RM(1998).A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment.Plant Mol Biol 37:455-469
    Wi SJ,Park KY(2002).Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants.Mol Cells 13:209-220
    Woo HR,Goh CH,Park JH,de la Serve BT,Kim JH,Park YI,et al.(2002).Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid ribosomal protein gone.Plant J 31: 331-340
    Woo HR, Kim JH, Nam HG, Lim PO (2004). The delayed leaf senescence mutants of Arabidopsis, orel, ore3, and ore9 are tolerant to oxidative stress. Plant Cell Physiol 45: 923-932
    Xu L, Xu Y, Dong AW, Sun Y, Pi LM, Xu YQ, et al. (2003). Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130: 4097-4107
    Yao N, Greenberg JT (2006). Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. Plant Cell 18: 397-411
    Yoshida S, Ito M, Nishida I, Watanabe A (2002). Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. Plant J 29: 427-437
    Zelisko A, Garcia-Lorenzo M, Jackowski G, Jansson S, Funk C (2005). AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102: 13699-13704
    Zelisko A, Jackowski G (2004). Senescence-dependent degradation of Lhcb3 is mediated by a thylakoid membrane-bound protease. J Plant Physiol 161: 1157-1170
    Zhou X, Liao Y, Ren GD, Zhang YY, Chen WJ, Kuai BK (2007). Repression of AtCLH1 expression results in a decrease in the ratio of chlorophyll a/b but doesnot affect the rate of chlorophyll degradatio during leaf senescence. J plant physiol mol biol 33: 596-606
    Ziegler R, Blaheta A, Guha N, Schonegge B (1988). Enzymatic Formation of Pheophorbide and Pyropheophorbide during Chlorophyll Degradation in a Mutant of Chlorella-Fusca Shihira Et Kraus. J Plant Physiol 132: 327-332
    Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621-2632
    Zimmermann P, Zentgraf U (2005). The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10: 515-534

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700