粳稻直立穗型基因多效性及不同穗型品种品质粒位间差异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直立穗型是水稻理想株型的重要内容,它与水稻的群体结构、产量潜力和品质关系密切,是继矮秆和理想株型后粳稻适应高产要求的重要形态改良。但是直立穗型基因遗传近年来研究进展较慢。直立穗型基因除使穗型直立外,其它功能尚不完全清楚。直立穗型增加产量潜力同时,也引起了穗内不同粒位间籽粒的粒重和品质的变化。穗型和粒位对穗内品质整齐度影响有多大,目前相关研究较少。本文利用辽粳5号与丰锦杂交高世代(F_(13))构建的近等基因系为材料,用分子标记方法对所构建的直立穗型近等基因系遗传背景进行检测,结果表明直立穗型近等基因系的遗传背景相似率达到了99.69%,在分子水平上是一对较理想的近等基因系。用直立穗型近等基因系研究了粳稻直立穗型基因对农艺性状的影响。并选用典型的直立穗型和弯曲穗型粳稻品种,研究了穗上不同粒位籽粒的品质性状差异及其分布特点。结果如下:
     1直立穗型基因除了使穗型直立外,还具有使植株矮化、穗长变短、叶型直立、叶片变短变宽等作用。带有直立穗型显性基因的品种,在抽穗期和成熟期拥有较大的叶面积指数和较高的叶绿素含量及生物量。直立穗型基因能增加穗颈大、小维管束数和倒2节间大、小维管束数,并能使直立穗型品种具有较大的库源比和较高的茎鞘物质输出率和转换率。
     2不同基因型品种的抗倒伏能力是不同的。直立穗型品种的第3、4节间倒伏指数明显小于弯曲穗型品种。直立穗型品种的株高较低,各节间的粗度、横切面积和茎壁厚度都较大,各节间茎秆干重、叶鞘干重、单位节间干重和单位茎壁干重也均较大。
     3直立穗型基因能使一次枝梗上的二次枝梗数增加,从而增加了二次枝梗上的颖花数和受精颖花数,使整穗的总颖花量、受精颖花量、着粒密度和库容量增加,从而达到增加产量的目的。但是直立穗型基因也使整穗的成粒率、受精颖花率、千粒重和谷粒充实率降低。尤其直立穗型基因在杂合遗传背景下,与产量有关的各项指标表现都较高,表明直立穗型基因能使粳稻F_1代杂种显著提高产量。直立穗型基因增加了穗中部和下部的二次枝梗数及其粒数,使直立穗型品种穗型指数变小,穗型变得紧密,下部着粒密度显著增加。
     4不同基因型品种在下部二次枝梗上第2、3粒位籽粒增重过程的差异较大。直立穗型品种下部二次枝梗上第2、3粒位籽粒增重过程缓慢,时间较长,增重过程表现出“慢—快—慢—快—慢”的特点,而弯曲穗型品种下部二次枝梗上第2、3粒位的增重表现比较匀速,直到达到最大粒重。从而导致了直立穗型品种整穗的灌浆速度和进程要比弯曲穗型品种慢,这可能是由于直立穗型基因使直立穗型品种下部产生较多的二次枝梗粒数(劣势粒)所致。
     5直立穗基因可能从幼苗开始生长阶段就有所表达,使得幼苗在株高、叶形态和干物质重上表现出差异。内源赤霉素、脱落酸、生长素和细胞分裂素含量在各生育时期的差异是使近等基因系在形态性状上表现出差异的内在生理原因。近等基因系在园秆拔节期喷施不同浓度外源GA_3和多效唑(PP_(333))后,株高改变较大,但穗型变化幅度较小,ZF_(13)和WF_(13)的矮秆基因和直立穗型基因对这两种激素的反应不同。
     6穗型特征与品种的粒重和结实率没有多大联系,粒重和结实率通常为:一次枝梗上籽粒>二次枝梗上籽粒,上部枝梗籽粒>中部枝梗籽粒>下部枝梗籽粒。一次和二次枝梗与上部、中部和下部枝梗这两类粒位之间的互作对粒重有显著的影响。一次枝梗上6个粒位籽粒的粒重和结实率基本以第6、5、4粒位较高,第2粒位最低,二次枝梗上3个粒位以第1粒位最高,第2粒位最低。直立穗型品种穗内不同粒位间粒重和结实率的变异大于弯曲穗型品种。
     7穗型特征与蛋白质含量、直链淀粉含量和食味值高低无直接必然的联系,但是对穗不同部位间这些指标及其粒位顺序有较大影响。对3个直立穗型品种而言,蛋白质含量、直链淀粉含量表现为穗下部>中部>上部,食味值则相反,而对3个弯曲穗型品种而言,蛋白质含量、直链淀粉含量的表现规律不明显,食味值表现为穗上部>中部>下部。同一稻穗不同枝梗间相比,着生在二次枝梗上的稻米蛋白质含量相对较高、直链淀粉含量、胶稠度和食味值相对较低,而着生在一次枝梗上的籽粒则相反。同一枝梗间的不同着粒部位相比,下部二次枝梗第2、3粒位的蛋白质含量较高、食味值较低,中上部一次枝梗1~6粒位的蛋白质含量较低、食味值较高,而直链淀粉含量在粒位间规律不明显。直立穗型品种单一稻穗不同粒位间的差异大于弯曲穗型品种,其主要原因可能是直立穗型品种着粒密度过大。
     8粳稻的穗型特征与籽粒的碾米品质有直接的联系,弯曲穗型品种的碾米品质好于直立穗型品种。一次枝梗上籽粒的碾米品质好于二次枝梗上籽粒,一次枝梗上籽粒的碾米品质是下部好于上部,而二次枝梗上籽粒的碾米品质是上部好于下部。碾米品质的好坏与其颖花在穗上的开花顺序有密切联系,早开花的籽粒碾米品质较差,而晚开花的籽粒碾米品质相对较好。一次和二次枝梗与上部、中部和下部枝梗这两类粒位之间的互作对出糙率、精米率和整精米率有显著影响。糙米率的粒位变异是弯曲穗型品种大于直立穗型品种,精米率的粒位变异大小因品种而异,而整精米率的粒位变异是直立穗型品种大于弯曲穗型品种。
     9粳稻的穗型特征与品种的粒形有着直接的联系,弯曲穗型品种的粒形要好于直立穗型品种。一次枝梗上籽粒的粒形优于二次枝梗上籽粒,一次枝梗上籽粒的粒形是上部好于下部,而二次枝梗上籽粒的粒形是下部好于上部。稻穗上早开花籽粒的粒形优于晚开花籽粒。一次和二次枝梗与上部、中部和下部枝梗这两类粒位之间的互作对长宽比和长厚比的影响不显著。直立穗型品种穗内籽粒长宽比的粒位变异大于弯曲穗型品种,而长厚比的粒位变异大小因品种而异。
     10粳稻品种的穗型特征与品种间的垩白粒率、垩白度和透明度高低无直接必然的联系。二次枝梗上籽粒的垩白粒率和垩白度高于一次枝梗上籽粒,透明度则相反。同一稻穗不同部位间籽粒相比,垩白粒率、垩白度基本都表现为下部>中部>上部,透明度则基本相反。一次枝梗上6个粒位的垩白粒率和垩白度第1、5、6粒位较低,第2、3粒位较高,二次枝梗上3个粒位的垩白粒率和垩白度第1粒位最低,第2粒位最高,透明度则相反。一次和二次枝梗与上部、中部和下部枝梗这两类粒位之间的互作对垩白粒率、垩白度和透明度有显著影响。6个品种穗内籽粒的垩白粒率、垩白度和透明度的粒位变异大小因品种而异。
     11穗型特征与品种间的脂肪酸含量、清蛋白含量、球蛋白含量、醇溶蛋白含量和谷蛋白含量高低无直接必然的联系。一次枝梗上籽粒的清蛋白含量、醇溶蛋白含量和谷蛋白含量低于二次枝梗上籽粒,脂肪酸含量和球蛋白含量则相反。同一稻穗不同部位间籽粒比较,脂肪酸含量、球蛋白含量、醇溶蛋白含量和谷蛋白含量大致表现为下部>中部>上部,而清蛋白含量则相反。籽粒的可溶性蛋白含量和脂肪酸含量高低与颖花在穗上的开花顺序有密切联系,不同粒位上籽粒的蛋白质含量高低因可溶性蛋白质的种类而异。一次和二次枝梗与上部、中部和下部枝梗这两类粒位之间的互作对脂肪酸含量和可溶性蛋白含量有显著影响。6个品种穗内籽粒的脂肪酸含量和可溶性蛋白含量的粒位变异大小因品种而异。
     12粳稻的穗型特征与品种的淀粉RVA谱特征值无直接必然的联系。一次枝梗上籽粒的淀粉粘滞特性优于二次枝梗上籽粒,穗上部籽粒的淀粉粘滞特性好于穗中部和下部籽粒,淀粉粘滞特性好坏与其颖花在穗上的开花顺序有密切联系,早开花籽粒(第1、6、5粒位)的淀粉粘滞特性强于晚开花籽粒(第2粒位)。一次和二次枝梗与上部、中部和下部枝梗这两类粒位之间的互作对峰值黏度、热浆黏度、崩解值、冷浆黏度、消减值、回复值、起浆温度和峰值时间有显著影响。6个品种穗内籽粒的淀粉RVA谱特征值的粒位变异大小因品种而异。
     13简单相关分析表明穗内不同粒位上籽粒的食味值与粒重、糙米率、精米率、整精米率、粒长、粒宽、长厚比、透明度、球蛋白含量、胶稠度、峰值黏度、热浆黏度、崩解值、冷胶黏度和回复值呈显著正相关,与垩白率、垩白度、清蛋白含量、醇溶蛋白含量、谷蛋白含量、总蛋白含量和脂肪酸含量、消减值、起浆温度和峰值时间呈显著负相关,而与长宽比、直链淀粉含量相关性不大。通过典型相关分析得出穗内不同粒位间籽粒的蒸煮食味品质与淀粉RVA谱特征和碾米品质间的相关性最高,其次与垩白性状的相关度较高,与营养品质和粒形性状的相关性相对较低一些。
Erect panicle type of Japonica rice is an important component of ideal rice plant type, which is closely related to population structure,yield potential and grain quality.Erect panicle type,which followed dwarf type and ideal plant type,is important morphological character development that Japonica rice adapts to high-yield requirement.But advance on genetic effects of erect panicle type rice has progressed slowly in recent years.It is still unclear whether erect panicle gene(EP) has other functions except that EP makes panicle shape erect.Erect panicle type can increase yield potential and meanwhile it can result in the change of grain weight and quality in the grains between different grain positions of panicle. Few studies have determined that how much are the effect of panicle type and grain position on the regularity degree of quality within a panicle.Genetic background of the near isogenic Lines(NILs) derived from Fengjin high generation of cross(F_(13)) and Liaogeng 5 analyzed by molecular marker method.Results showed the similarity of genetic background of NILs containing EP was 99.69%.It was a pair of rather ideal NILs.The effects of EP on agronomic traits of Japonica rice were studied by NILs.With typical japonica cultivars with erect panicle and curved panicle as the materials,the difference of rice grain quality and their position distributions within a panicle between two types panicle of japonica rice were researched.The main results were shown as follows:
     1 The erect panicle gene of rice also made plant height dwarf,panicle length short,leaf posture erect,leaves wide and short except that made panicle type erect.The varieties carrying dominant erect panicle gene had more leaf area index,higher chlorophyll content and rice biomass at 50%-heading and maturity stage.EP increased the number of large or small vascular bundles in panicle neck and the second internode from the top,which made grain-leaf ratio and translocation ratio of matter in stems and sheaths of erect particle varieties increase.
     2 Lodging resistance in different genotype rice cultivars were difference.Index of lodging at the 3~(rd) and 4~(th) internode in erect panicle cultivars carrying EP was significantly decreased,which resulted from its related traits such as lower plant height,larger internode thickness,larger area of cross section and wall thickness,higher dry weight of culm,leaf sheath,the dry weight of culm wall and internode per unit.
     3 EP increased the number of secondary branch on primary branch,consequently EP increased total number of spikelets and fertilized spikelet number on secondary branch.EP could raise yield by increasing total number of spikelets,total amount of fertilized spikelets, grain density and sink size within whole panicle.EP could decrease filled grain rate,spikelet fertilization rate,1000-grain weight and grain filling rate within whole panicle.EP increased especially yield from F_1 hybrids of japonica rice in the heterozygous genetic background.EP increased secondary branch number and grains on the secondary branches at the middle and base parts of a panicle.In erect panicle cultivars,panicle trait index was reduced,ear shape compacted and grain density at the base part of a panicle increased.
     4 Difference of grain weight-increasing process between two different genotype cultivars mainly presented difference of the 2~(nd) and 3~(rd) grain positions of secondary branch at lower part of rice.The grains positions of erect panicle cultivars had longer filling time and slower grain weight-increasing process which presented the characteristic of slow-fast-slow-fast-slow.The grains positions of curve panicle cultivars had relatively stable filling rate and the grain weight of these positions was at its most.Grain filling speed and process of erect panicle cultivars was slower than that of curve panicle cultivars,which resulted from a large amount of grains,especially inferior grains,on the secondary branches at lower part of erect panicle cultivars.
     5 The expression of EP began from seedling's establishment.The difference mainly presented plant height,leaf morphology and plant dry weight.The physiological mechanism which NILs differenced in morphological traits were that the contents of endogenous gibberellic acid(GA_3),abscisic acid(ABA),auxin(IAA)and cytokinins(ZR) differenced in each growth stage.Change of plant height exceeded change of panicle type after NILs in the shooting stage were separately treated with various concentration of exogenous GA_3 and paclobutrazol(PP_(333)).The effects of ZF_(13) carrying dwarf gene and WF_(13) carrying erect panicle gene on the two kinds of hormones were difference.
     6 Panicle type had little correlation with grain weight and seed setting rate of cultivars. The order of grain weight and seed setting rate among different grain positions was as follows: primary rachis>secondary;rachis top >middle>bottom rachis.The significant difference was found in grain weight among grains located on different rachises(primary and secondary rachises) and panicle position,i.e.top,middle,and bottom.The fourth to sixth grain of primary branch showed the highest grain weight and seed setting rate,the second grain the lowest.The first grain of secondary branch showed the least grain weight and seed setting rate,the second grain the greatest.The difference of grain weight and seed setting rate at different grain positions in erect panicle was higher than that in curved panicle.
     7 Panicle type had considerable influence on PC,AC,TQ at the different parts of panicle, for erect panicle cultivars,PC and AC increased with the grain position from the upper to the lower parts,while TQ showed reverse trend;for curved panicle ones,PC and AC showed no regular trend,but TQ was the same as that of erect panicle culfivars.In the same panicle,the PC of secondary branches was higher than that of primary branches,while AC and TQ behaved reversely.In the same rachis branches,the 2~(nd) and 3~(rd) grain of secondary branch at lower part had higher PC and lower TQ,the 1~(st) to 6~(th) grains of primary branch at mid and upper part had lower PC and higher TQ,no rule was found for AC at different grain positions of panicle.The difference of referred quality traits at different grain positions in erect panicle was higher than that in curved panicle,resulting from higher grain density in erect panicle. Results from this study will facilitate erect panicle cultivars in rice breeding for quality in Northeast China.
     8 Panicle type of Japonica rice had direct relation with milling quality of the grain. Milling quality of the grains for curved panicle cultivars was better than those of erect panicle ones.The indexes of milling quality of the grains on a primary branch were better than those on a secondary.The indexes of milling quality of the grains on a primary branch at bottom part were better than those at top part,but the grains on a second branch showed reverse trend. The milling quality of the spikelets that flowered earlier was superior to those flowered late. The change in milling quality was very identical with the following sequence.The significant difference was found in blown rice percentage,milled dee percentage and head rice percentage among grains located on different rachises(primary and secondary rachises) and panicle position,i.e.top,middle,and bottom.Positional variations in blown rice percentage for curved panicle cultivars was greater than that of erect panicle ones.While positional variations head rice percentage showed reverse trend.Positional variations in milled rice percentage varied with cultivars.
     9 Panicle type of Japonica rice had direct relation with brown rice shape.Brown rice shape for curved panicle cultivars was better than that of erect panicle ones.The indexes of brown rice shape on a primary branch were better than those on a secondary.The indexes of brown rice shape on a primary branch at top part were better than those at bottom part,while the grains on a second branch showed reverse trend.The brown rice shape of the spikelets that flowered earlier was superior to those flowered late.The significant difference was not found in length-width ratio and length-thickness ratio among grains located on different rachises(primary and secondary rachises) and panicle position,i.e.top,middle,and bottom. Positional variations in length-width ratio for erect panicle cultivars was greater than that of curved panicle ones,while positional variations in length-thickness ratio varied with cultivars.
     10 Particle types of japonica rice had no direct correlation with chalky grain percentage (CGP),chalkiness degree(CD) and transparence degree(TD) in the grains between the six japonica cultivars tested.All primary branches on a panicle were evenly divided into three parts of the upper,middle and basal.The grains were numbered as 1 to 6 on a primary branch and 1 to 3 on a secondary branch from the top to base.Generally,CGP and CD on the branches at the basal part of a panicle exhibited the greatest,at the middle part the middle, and at the upper part the least.CGP and CD for the grains on a secondary branch were greater than those on a primary branch at the same part of a panicle.TD was just the opposite.CGP and CD for the grain 1,5 and 6 on the primary branch showed the lowest,the grain 2 and 3 the highest.CGP and CD were the least for the grain 1 and the greatest for the grain 2 on a secondary branch within a panicle.Type panicle of japonica rice was not directly related to appearance quality of cultivar.The variation in appearance quality of different grains within a panicle was closely related to the flowering order of rice grains on the rachis branches.
     11 Panicle types of japonica rice had no direct correlation with fatty acid,albumin, globulin,prolamin,and glutelin content in the grains between the six japonica cultivars tested. Generally,fatty acid,globulin,prolamin,and glutelin content on the branches at the basal part of a panicle exhibited the greatest,at the middle part the middle,and at the upper part the least.Albumin content was just the opposite.The contents of albumin content,prolamin and glutelin for the grains on a secondary branch were greater than those on a primary branch at the same part of a panicle,while fatty acid and globulin content showed reverse trend.The variation in soluble protein and fatty acid content of different grains within a panicle'was closely related to the flowering order of rice grains on the rachis branches.The variation of protein content varied with soluble protein profile.The significant difference was found in fatty acid and soluble protein content among grains located on different rachises(primary and secondary rachises) and panicle position,i.e.top,middle,and bottom.Positional variations in fatty acid and soluble protein content of the grains between the six japonica cultivars tested varied with cultivars.
     12 Panicle types of japonica rice had no direct correlation with RVA profile parameters of rice cultivars tested.Starch viscosity characteristics for the grains on a primary branch were better than those on a secondary branch at the same part of a panicle.Starch viscosity characteristics for the grains at top part were better than those at middle and bottom parts. The variation in starch viscosity characteristics of different grains within a panicle was closely related to the flowering order of rice grains on the rachis branches.Starch viscosity characteristics for the grain 1,6 and 5 of the spikelets that flowered earlier were superior to those for the grain 2 of the spikelets that flowered late.The significant difference was found in RVA profile parameters including peak viscosity,hot paste viscosity,breakdown,cool paste viscosity,setback,consistence,gelatinization temperature and peak time among grains located on different rachises(primary and secondary rachises) and particle position,i.e.top, middle,and bottom.Positional variations in RVA profile parameters of rice varied with cultivars.
     13 The results of a single factor correlation analysis showed that TQ at different grain positions within a panicle had significant positive correlation with grain weight,blown rice percentage,milled rice percentage,head rice percentage,grain length,grain width,ratio of grain length to thickness,transparence degree,globulin content,gel consistence,peak viscosity,hot paste viscosity,breakdown,cool paste viscosity and consistence in the grains, and had significant negative correlation with chalky grain percentage,chalkiness degree, albumin,prolamin,glutelin,total protein,and fatty acid content,setback,gelatinization temperature,and peak time in the grains,and had little correlation with length-width ratio and amylose content in the grains.RVA profile parameters and milling quality of the grain showed most significant correlation than other traits with cooking and eating quality of rice at different grain positions within a panicle,while nutritional quality and grain shape showed lower correlation with cooking and eating quality of rice.
引文
1.鲍根良,王俊敏,富田桂,等.2004.密穗型水稻品种籽粒垩白性状改良研究.植物遗传资源学报,5(4):378-381.
    2.鲍根良,张小明,叶胜海,等.2002.优质抗病晚粳新品种浙梗20的选育研究.浙江农业学报,14(5):273-277.
    3.鲍海滢,刘秉华,王山荭,等.2001.矮败小麦近等基因系的分子检测.作物学报,27(4):541-543.
    4.鲍士旦.2000.土壤农化分析.第3版.北京:中国农业出版社,289-290.
    5.常汝镇.1991.大豆等位基因系的研究和利用.大豆科学,10(1):64-68.
    6.陈能,罗玉坤,朱智伟.等.1997.优质食用稻米品质的理化指标与食味的相关性研究.中国水稻科学,11(2):70-76.
    7.陈书强,金峰,王嘉宇,等.2008.两种穗型粳稻穗上不同粒位籽粒垩白性状的比较分析.华北农学报,23(2):1-8.
    8.陈温福,徐正进,张步龙,等.2001.水稻新株型创造与超高产育种.作物学报,27(5):665-672.
    9.陈温福,徐正进,张龙步.2003.水稻超高产育种-从理论到实践.沈阳农业大学学报,34(5):324-327.
    10.陈温福,徐正进,张龙步.1995.水稻超高产育种生理基础.沈阳:辽宁科学技术出版社,120-158.
    11.陈温福,潘文博,徐正进.2006.我国北方粳稻生产现状及发展趋势.沈阳农业大学学报,26(1):1-7.
    12.陈温福,徐正进,张龙步.1991.不同株型粳稻品种的冠层特征和物质生产关系的研究.中国水稻科学,5(2):67-72.
    13.陈温福.徐正进,张龙步,等.1994.不同穗型水稻群体光分布和物质生产差异的比较研究.杨守仁.水稻高产理论与实践.北京:中国农业出版社.59-63.
    14.程旺大,张国平,姚海根,等.2003.密穗型水稻品种的籽粒灌浆特性研究.作物学报,29(6):841-846.
    15.董凤高,熊振民,钱前,等.1994.籼稻标记性状近等基因系的构建.中国水稻科学,8(3):135-139.
    16.董海涛,何祖华,吴玉良,等.1998.水稻抗稻瘟病近等基因系mRNA差别显示分析,农业生物技术学报,6(3):223-228.
    17.董明辉,桑大志,王朋,等.2006a.不同施氮水平下水稻穗上不同部位籽粒的蒸煮与营养品质变化.中国水稻科学,20(4):389-395.
    18.董明辉,桑大志,王朋,等.2006b.水稻穗上不同部位籽粒垩白性状的差异.作物学报,32(1): 103-111.
    19.董明辉,桑大志,王朋,等.2005.水稻穗上不同部位籽粒碾米品质的差异.中国农业科学,38(10):1973-1979
    20.都兴林.2000.直立穗型超高产水稻品种生理特性的氮素调控及其应用研究.沈阳农业大学.博士学位论文.
    21.段红梅.2002.利用大豆SSR标记辅助遗传背景选择的效果分析.中国农业科学院作物品种资源研究所.硕士学位论文.
    22.高如嵩,张嵩午.1994.稻米品质气候生态基础研究.西安:陕西科学技术出版社.
    23.高士杰,张龙步,陈温福.2000.直立穗型水稻群体小气候环境研究.中国农业气象,21(3):23-26.
    24.桂敏,曾亚文,杜娟,等.2006.粳稻孕穗期耐冷性NILs的形态评价和分子验证.遗传,28(8):972-976.
    25.国家质量技术监督局.1999.中华人民共和国国家标准,优质稻谷,GB/T17891-1999.
    26.郝建军,刘延吉.2001.植物生理学实验技术.沈阳:辽宁科学技术出版社,144-145.
    27.何钟佩.1993.农作物化学控制实验指导.北京:北京大学出版社,60-68.
    28.何祖华,李德葆.1994.不同生育期水稻株高基因对GA_3的敏感性及对内源激素含量的调节.植物生理学通讯,30(3):170-174.
    29.黄朝锋.2003.水稻PSM标记的发展及抗虫基因的分子定位.华南农业大学.硕士学位论文.
    30.黄发松,孙宗修,胡培松,等.1998.食用稻米品质形成研究的现状与展望,中国水稻科学,12:122-126.
    31.季兰,杨仁崔.2002.水稻茎伸长生长与植物激素.植物学通报,19(1):109-115.
    32.贾洪涛,党金鼎,刘风莲.2003.植物生长延缓剂多效唑的生理作用机理及应用.安徽农业科学,31(2):323-324.
    33.金建松,夏有龙.1998.江苏粳稻发展的原则及配套技术.江苏农业科学,1:6-10.
    34.金雪花,王嘉宇,徐正进,等.2003.水稻直立穗型基因多效性的研究.沈阳农业大学学报,34(5):332-335.
    35.金雪花.2001.水稻直立穗性状与其它形态性状关系的研究.沈阳农业大学.硕士学位论文.
    36.金正勋,秋太权,孙艳丽,等.2001.氮肥对稻米垩白及蒸煮食味品质特性的影响.植物营养与肥料学报,7(1):31-35.
    37.金正勋,秋太权,孙艳丽,等.2000.黑龙江省稻米蒸煮食味品质特性的品种间变异研究.黑龙江农业科学,(1):1-4.
    38.孔祥斗,张洪熙,刘晓静.1997.江苏省粳稻品种经济性状的演变及高产育种的设想.江苏农业科学,(3):2-16.
    39.李金峰.1994.水稻不同穗型品种的产量比较研究.杨守仁.水稻高产理论与实践.北京:中国农业出版社,246-251.
    40.李仕贵,黎汉云,周开达,等.1995.杂交水稻稻米品质性状的遗传相关分析.西南农业大学学报,17(3):196-201.
    41.李雪梅,樊金娟,徐正进.2003.不同穗型水稻品种灌浆期生理特性的差异.沈阳农业大学学报,34(5):347-350.
    42.李玉福,李德华.1987.辽粳5号和辽粳287紧穗性状遗传规律初报.粳稻科技,2:50.
    43.林鸿宣,熊振民,闵绍楷,等.1991.矮生性水稻对赤霉素反应的初步研究.中国水稻科学,5(1):13-18.
    44.凌启鸿,蔡建中,苏祖芳.1982.水稻茎秆维管束数与穗部性状关系及其应用的研究.江苏农学院学报,3(3):7-16.
    45.凌忠专,Mew T,王久林,等.2000.中国水稻近等基因系的育成及其稻瘟病菌生理小种鉴别能力.中国农业科学,33(4):1-8.
    46.刘光杰,曹立勇,张文辉,等.2002.水稻抗白背飞虱近等基因系的构建及其抗性表现.,18(1):24-25.
    47.刘金波,洪德林.2005.粳稻穗角和每穗颖花数的遗传分析.中国水稻科学,19(3):223-230.
    48.刘立军,谢光辉.2001.稻穗颖花开花日序对籽粒胚乳细胞数和米质的影响..中国水稻科学,15(2):119-124.
    49.刘宛,陈温福,徐正进.2000.水稻不同穗型品种穗部的某些生理特性观察.植物生理学通讯,36(6):527-530.
    50.刘宛,徐正进,陈温福.2001.不同氮素水平对直立穗型水稻品种群体光合特性的影响.沈阳农业大学学报,32(1):8-2.
    51.吕文彦,曹萍,邵国军,等.1997.辽宁省主要水稻品种品质性状研究.辽宁农业科学.(5):7-11.
    52.吕文彦,邵国军,曹萍,等.2001.辽宁省水稻品质兼及产量关系的研究 Ⅲ.不同穗型强势粒与弱势粒稻米品质差异.辽宁农业科学,1:1-3.
    53.骆荣挺,鲍根良,张铭铣.2000.对浙江省优质晚梗稻新品种选育的思考.浙江农业学报,12(4):224-227.
    54.马均,马文波,田彦华,等.2004.重穗型水稻植株抗倒能力的研究.作物学报,30(2):143-148
    55.孟凡华.2000.利用近等基因系研究小麦矮秆基因对株高及农艺性状的影响.中国农业科学院.硕士学位论文.
    56.阮仁武,傅大雄,戴秀梅.2003.用近等基因系研究小麦显性矮源对主要经济性状的影响.西南农业学报,16(4):8-13.
    57.阮仁武,傅大雄,戴秀梅.2001.小麦显性矮源对株粒重及产量构成因素的影响.麦类作物学报,21(3):9-12.
    58.申时全,曾亚文,普晓英.2004.水稻孕穗期耐冷性近等基因系的评价.西南农业学报,17增刊:18-23.
    59.申宗坦,吕子同,李壬生.1965.选育早熟矮秆水稻类型中一些性状的遗传分析.作物学报,4(4):391-402.
    60.石春海,申宗坦.1995.早籼粒形的遗传与改良.中国水稻科学,(1):27-32.
    61.舒庆尧,吴殿星,夏英武,等.1998.稻米淀粉RVA谱特征与食用品质的关系.中国农业科学,31(3):25-29.
    62.宋平,高红胜,曹显祖,等.1998.不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系.西北植物学报,18(3):380-385.
    63.汤日圣,张金渝.1991.矮秆基因对水稻性状控制的机理探讨.中国农业科学,24(2):51-56.
    64.唐亮,徐正进,袁媛.2007.水稻RIL群体产量和品质性状与穗部性状的关系.种子,26(5):67-71.
    65.田清震,周荣华,贾继增.2004.小麦抗白粉病近等基因系遗传背景的分子标记检测.作物学报,30(3):205-209.
    66.王伯伦,董玉慧,王术.1997.水稻半矮生与穗直立性状遗传规律研究.沈阳农业大学学报,28(2):83-87.
    67.王丰,程方民.2004.从籽粒灌浆过程上讨论水稻粒间品质差异形成的生理机制.种子,23(1):31-35.
    68.王嘉宇,范淑秀,徐正进,等.2007.几个不同穗型水稻品种籽粒灌浆特性的研究.作物学报,33(8):1366-1371.
    69.王嘉宇,徐正进.2005.外源赤霉素对不同穗型水稻穗部性状的影响.沈阳农业大学学报,36(1):18-20
    70.王嘉宇.2006.水稻直立穗型遗传及生理特性的研究.沈阳农业大学.博士学位论文.
    71.王余龙,姚文礼,李昙云.1995.水稻不同粒位籽粒的结实能力.作物学报,21(4):434-441.
    72.王志琴,杨建昌.1998.亚种间杂交稻籽粒充实度不良的原因探讨.作物学报,24(6):782-787.
    73.吴成,李秀兰,邓晓建,等.2003.一个新的水稻小粒矮秆突变基因的遗传鉴定.中国水稻科学,17(2):100-104.
    74.徐大勇,杜永,方兆伟,等.2006.江淮稻区不同穗型粳稻品种主要农艺和品质特性的比较分析.作物学报,32(3):379-384.
    75.徐大勇,方兆伟,胡曙鋆,等.2004.江苏省直立穗型粳稻品种主要农艺性状和品质性状分析.植物遗传资源学报,5(1):47-51.
    76.徐大勇,金军,蔡一霞,等.2005.不同穗型粳稻品种米质形成的生理生化特性差异.作物学报,31(9):1167-1172.
    77.徐建龙,张金渝.1992.半矮秆水稻内源GA与IAA和ABA的含量.浙江农业大学学报,18(3):49-52.
    78.徐建龙,申宗坦,林贻滋.1989.水稻品种对赤霉素反应的遗传.浙江农业学报,1(2):91-93.
    79.徐正进.1988.不同穗型水稻物质生产特性分析.辽宁农业科学,(4):38-40.
    80.徐正进,陈温福,张龙步.1989.水稻直立穗型的初步观察.沈阳农业大学学报,20(2):150-153.
    81.徐正进,陈温福,张龙步,等.1990.水稻不同穗型群体冠层光分布的比较研究.中国农业科学,23(3):6-11.
    82.徐正进,陈温福,张龙步,等.1993.水稻品质性状的品种间差异及产量关系.沈阳农业大学学报,23(3):217-223.
    83.徐正进,陈温福,张龙步,等.1995a.水稻直立穗性状评价与利用研究进展.沈阳农业大学学报,26(4):335-341.
    84.徐正进,陈温福,张龙步,等.1995b.水稻直立穗性状的遗传与其它性状的关系.沈阳农业大学学报,26(1):1-7.
    85.徐正进,陈温福,张龙步,等.1996.直立穗型水稻生理生态特性及其利用前景.科学通报,41(12):1122-1126.
    86.徐正进,陈温福,孙占惠,等.2004a.辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系.中国农业科学,37(7):963-967.
    87.徐正进,张树林,周淑清,等.2004b.水稻穗型与抗倒伏性关系的初步分析.植物生理学通讯,40(5):561-563.
    88.徐正进,陈温福,马殿荣,等.2004c.稻谷粒形与稻米主要品质性状的关系.作物学报,30(9):894-900.
    89.徐正进,陈温福,张文忠,等.2004d.北方粳稻新株型超高产育种研究进展.中国农业科学。37(10):1407-1413.
    90.徐正进,陈温福,张树林,等.2005a.辽宁水稻穗型指数品种间差异及其与产量和品质的关系.中国农业科学,38(9):1926-1930.
    91.徐正进,陈温福,马殿荣,等.2005b.辽宁水稻食味值及其与品质性状的关系.作物学报,31(8):1092-1094.
    92.徐正进,陈温福,韩勇,等.2007a.辽宁水稻穗型分类及其与产量和品质的关系.作物学报,33(9):1411-1418.
    93.徐正进,陈温福,黄瑞冬,等.2007b.水稻穗型改良的生理与遗传基础研究进展.自然科学进展,17(9):1161-1167.
    94.杨建昌,刘立军,王志琴,等.1999.稻穗颖花开花时间对胚乳发育的影响及其生理机制.中国农业科学,32(3):44-51.
    95.杨建昌,彭少兵,顾世梁,等.2001.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报,27(2):157-164.
    96.杨守仁.1998.籼粳稻杂交育种的理论体系和技术关键.杨守仁水稻文选.沈阳:辽宁科学技术出版社,233-236.
    97.姚海根,姚坚,汤美玲.2000.近20年来浙江省晚粳稻和晚糯稻品种推广应用概况及今后育种方向.浙江农业科学,(4):155-159.
    98.姚焱,卢永根,刘向东,等.2004.粳稻台中65及其F_1花粉不育近等基因系和它们的F_1花药培养特性.华南农业大学学报,25(1):1-4.
    99.张佩莲,钟旭华,曾宪江,等.1995.穗上不同部位籽粒的稻米垩白度差异的研究.江西农业大学学报,17(4):396-399.
    100.张强,李自超,傅秀林,等.2005.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究.作物学报,31(9):1198-1206.
    101.张三元,李彻,张俊国,等.2001.吉林省水稻超高产育种研究.吉林农业科学,26(6):3-10.
    102.张石成,刘祖祺.1999.植物化学调控原理与技术.北京:中国农业大学出版社,333-437.
    103.张文忠,徐正进,张龙步,等.2002a.水稻直立穗型遗传特性及其综合评价利用.辽宁农业科学,5:24-27.
    104.张文忠,徐正进,陈温福,等.2002b.直立穗型水稻品种演进状况分析.沈阳农业大学学报,33(3):161-166.
    105.张文忠,徐正进,陈温福,等.2002c.直立穗型水稻研究进展.沈阳农业大学学报,33(6):471-475.
    106.张文忠.2001.水稻直立穗型遗传及生理生态特性的研究.沈阳农业大学.博士学位论文.
    107.张宪政.1992.作物生理研究法.沈阳:农业出版社,148-150.
    108.张小明,石春海,Horiuchi H,等.2002.粳稻穗部不同部位米粒直链淀粉含量的差异分析.作物学报,28(1):99-103.
    109.张毅,李云峰,谢戎,等.2006.水稻小穗簇生性近等基因系的构建及其近等性评价.作物学报,32(3):397-401.
    110.张忠旭,陈温福,杨振玉,等.1999.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,30(2):81-85.
    111.张忠旭.1997.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学.硕士学位论文.
    112.张祖建,王志琴,朱庆森.1998.水稻胚乳细胞增殖动态分析及其与籽粒生长的关系.作物学报,24(3):257-264.
    113.章琦,杨文才,施爱农,等.1998.3个粳稻抗白叶枯病近等基因系的构建.作物学报,24(6):800-804.
    114.赵步洪,张文杰,常二华,等.2004.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学,37(8):1123-1129.
    115.郑康乐,钱惠荣,庄杰云,等.1995.应用DNA标记定位水稻抗稻瘟病基因.植物病理学报,25(4):307313.
    116.中国科学院上海植物生理研究所,上海市植物生理学会.1999.现代植物生理学实验指南.北京:科学出版社,261-262.
    117.中国水稻研究所.1985.稻米品质及其理化分析.杭州:中国水稻研究所:40-48,5,12-16,160.
    118.钟旭华,张佩莲,曾宪江,等.1996.强弱势粒的稻米垩白度差异及其与谷粒粒重的关系.江西农业大学学报,18(2):154-159.
    119.朱海江,程方民,王丰,等.2004.两种穗型粳稻穗内粒间直链淀粉含量变异与粒位分布特征.中国水稻科学,18(4):321-325.
    120.朱立宏,顾铭洪.1979.水稻落粒性的遗传.遗传,1(4):17-19.
    121.朱立宏,谢重庆,王浩熙,等.1995.籼稻矮秆等基因系分析.中国水稻科学,9(3):141-148.
    122.朱庆森,曹显祖,骆亦奇.1988.水稻籽粒灌浆的生长分析.作物学报,14(3):182-192.
    123.邹江石,吕川根.2005.水稻超高产育种的实践与思考.作物学报,31(2):254-258.
    124.左晓旭,鲍根良,王俊敏,等.2005.密穗型和散穗型粳稻品种品质特性比较.植物遗传资源学报,6(2):216-200.
    125.#12
    126.#12
    127.#12
    128.松尾孝嶺.1990.稻学大成(第3卷 遺伝编).東京:農山漁村文化協会,197-198.
    129.#12
    130.Abhijit S,Sarkar R K,Yamagishi Y,et al.1998.Effect of time of nitrogen application on spikelet differentiation and degeneration office.Botanical Bulletin of Academia Sinica,39:119-123.
    131.Amadon H I,Kaltsikes P J,Bebeli P J.2003.Agronomic Characters of Near-isogenie Lines of Durum Wheat(Triticum durum Desf.).Breeding Science,53:319-324.
    132.American Association of Cereal Chemistry(AACC).1995.Approved Methods of the AACC,9th ed.Methods 61-02 for RVA.The Association:St.Paul,MN.
    133.Ashikari M,Wu J Z,Yano M,et al.1999.Rice gibberellin-insensitive dwarf mutant gene Dwarfl encodes the α-subunit of GTP-binding protein.Proc Natl Acad Sci USA,96:10284-10289.
    134.Borbora T K,Hazarika G N.1998.Study of genetic variability,heritability and genetic advance for panicle characters in rice.Oryza,35:19-21.
    135.Chaudhry F M,Nagato K.1970.Role of vascular bundles in ripening office kernel in relation to the locations on panicle.Proc Crop Sci Jpn,39:301-309.
    136.Cheng W D,Zhang G P,Zhao G P,et al.2003.Variation in rice quality of different cultivars and grain positions as affected by water management.Field Crops Res,80:245-252.
    137.Fell B,Fossati D.1997.Phytic acid in triticale grains as affected by cultivar and environment.Crop Sci,37:916-921.
    138.Gomaz K.1979.Effect of environment on protein and amylase content office.In Proc.Workshop on Chemical Aspects of Rice Grain Quality,Los Banos,Philippines:IRRI,pp:59-68.
    139.Govindarasu R,Martian K,Ramamoorthi N,et al.1999.Panicle characters and yield capacity in rice (Oryza sativa L.).Indian Journal of Agricultural Sciences,69:767-769.
    140.Hansen H,Grossmann K.2000.Auxin-induced enthylene triggers abscisic acid biosynthesis and growth inhibition.Plant Physiol,124:1437-1448.
    141.Henrik B P,Lisbeth D S,Preben B H.2002.Engineering crop plants:getting a handle on phosphate.Trends in Plant Science,7:118-124.
    142.Hoffmann-Berming S,Kende H.1992.On the role of abscisic acid and gibberellin in the regulation of growth in rice.Plant Physiol,99:1156-1161.
    143.Hushibuchi K Y.1992.Rice Breeding of Japan.Tokyo:Society of Agricultural Technology,pp 182-184(in Japanese).
    144.IRRI.1973.Annual Report for 1972.Los Banos,Philippines:IRRI,pp:246.
    145.Iwasaki Y,Mae T,Makino A,et al.1992.Nitrogen accumulation in the inferior spikelet of rice ear during ripening.Soil Sci Plant Nutr,38:517-525.
    146.Jongkaewwattana S,Geng S,Hill J E,et al.1993.Within-panicle variability of grain filling in rice cultivars with different maturities.J Agron Crop Sci,171:236-242.
    147.Jongkaewwattana S,Geng S.1991.Effect of nitrogen and water management on panicle development and milling quality of California rice(Oryza sativa L.).J Agron Crop Sci,167:43-52.
    148.Juliano B O,Butista G M,Lugay J L,et al.1964.Rice quality-studies on some physicochemical properties office.Agric Food Chem,12:131-138.
    149.Kato T.1995.Change of sucrose synthase activity in developing endosperm of rice cultivars.Crop Sci,35:827-831.
    150.Kato T.2004.Effect of spikelet removal on the grain filling of Akenohoshi,a rice cultivar with numerous spikelets in a panicle.J A gric Sci,142:177-181.
    151.Kende H,van der Knaap E,Cho H T.1998.Deepwater dee:a model plant to study stem elongation.Plant Physiol,118:1105-1110.
    152.Kende H,Zeevaart J A D.1997.The five "classical" plant hormones.Plant Cell,9:1197-1210.
    153.Kinoshita T.1984.Gene analysis and linkage map.In Biology of Rice.eds by S.Tsunoda and N.Takahashi.JSSP/Elsevier,Tokyo.187-274.
    154.Kobayasi K,Horie Y,Imaki T.2002.Relationship between apical dome diameter at panicle initiation and the size of panicle components in rice grown under different nitrogen conditions during the vegetative stage.Plant Production Science,5:3-7.
    155.Kong F N,Wang J Y,Zou J C,et al.2007.Molecular tagging and mapping of the erect panicle gene in rice.Mol Breeding,19:297-304.
    156.Krishnasamy V,Chetty N K.1989.Quality of seeds as influenced by their position in the panicle in rice cv.A DT 36.Madras Agricultural Journal,76:350-351.
    157.Liang C Z,Gu M H,Pan X B,et al.1994.RFLP tagging of a new semidwarfing gene in rice.Theor Appl Genet,88:898-900.
    158.Liu Z H,Cheng F M,Cheng W D,et al.2005.Positional variations in phytic acid and protein content within a panicle of japonica rice.J Cereal Sci,41:297-303.
    159.Luthe D S.1983.Storage protein accumulation in developing rice(Oryza sativa L.) seeds.Plant Sci Lett,32:147-158.
    160.Mallik S,Aguilar A M,Vergara B S.1988.Rice panicle characteristics.International Rice Research Newsletter,13:7-8.
    161.Mallik S,Aguilar A M,Vergara B S.1989.Analysis of rice panicle structure.International Rice Research Newsleter,14:10-12.
    162.Matsue Y,Odahara K,Hiramatsu M.1994.Differences in protein content,amylose content and palatability in relation to location of gains within rice panicle.Jpn J Crop Sci,63:271-277.
    163.Matsue Y,Odahara K,Hiramatsu M.1995.Differences in amylose content,amylographie characteristics and storage proteins of grains on primary and secondary rachis branches in rice.Jpn J Crop Sci,64:601-606.
    164.Matsuo T,FutsuharaY,Kikuchi F,et al.1997.Science of the Rice Plant,Vol.3,Genetics.Tokyo:Food and Agriculture Policy Research Center,pp:422-430.
    165.Mohapatra P K,Patel R,Sahu S K.1993.Time of flowering affects grain quality and spikelet partitioning within the rice panicle.Australian Journal of Plant Physiology,20:231-241.
    166.Mohapatra P K,Sahu S K.1991.Heterogeneity of primary branch development and spikelet survival in rice panicle in relation to assimilates of primary branches.J Exp Bot,42:871-879.
    167.Muehlbauer G J,Specht J E,Thomas-Compton M A,et al.1988.Near-isogenic lines-A potential resource in the integration of conventional and molecular marker linkage maps.Crop Sci,28:729-735.
    168.Murai,Sato,Nagayama A,et al.2002.Effects of a Major Gene Url Characterized by Undulation of Rachis Branches on Yield and its Related Traits in Rice.Breeding Science,(52):299-307.
    169.Murai M et al.1995.Molecular mapping of semidwarfing gene,sd-1,using RAPD and RFLP markers.Breeding Science,45(2):163-171.
    170.Murai M,Izawa M.1994.Effects of major genes controlling morphology on panicle in rice.Breed Sci,44:247-255.
    171.Murai M,Komazaki T,Sato S.2004.Effects of sdl and Url(Undulate rachis-1) on Lodging Resistance and Related Traits in Rice.Breeding Science,(54):333-340.
    172.Nagao S,Takahashi M.1963.Trial construction of twelve linkage groups in Japanese rice(Genetical studies on dee plant,ⅩⅩⅦ).J Fac Agric Hokkaido Univ,53(1):72-130.
    173.Nagato K,Ebata M.1958.Studies on white core rice kernel.I.On the occurrence of white-core.Jpn J Crop Sci.27:49-51.
    174.Padhye V W,Saiunkhe D K.1979.Extraction and characterization office proteins.Cereal Chem,56:389-393.
    175.Patel R,Mohapatra P K.1992.Regulation of spikelet development in rice by hormones.J Exp Bot,43:257-262.
    176.Patrick J W.1997.Phloem unloading:sieve element unloading and post-sieve element transport.Annu Rev Plant Physiol Plant Mol Biol,48:191-222.
    177.Pilar Antonio.1999.Development of SCARs by direct sequencing of RAPD product:a practical tool for the introgression and marker-assisted selection of wheat.Molecular Breeding,5:245-253.
    178.R L(?)sztity D So.1984.The Chemistry of Cereal Proteins,Boca Raton,Florida:CRC press,pp:3-12.
    179.Raboy V,Below F E,Dickinson D B.1989.Recurrent selection for maize kernel protein and oil has altered phytica acid levels.Journal of Heredity,80:311-315.
    180.Raboy V,Dickinson D B,Below F E.1984.Variation in seed total phosphorus,phytic acid,zinc,calcium,magnesium,and protein among lines of Glycine max and G.soja.Crop Sci,24:431-434.
    181.Raboy V,Noaman M M,Taylor G A,et ai.1991.Grain phytic acid and protein are highly correlated in winter wheat.Crop Sci,31:631-635.
    182.Rogers S O,Bendch A J.1988.Extraction of DNA from plant tissues.In:Gelvin SB,Schilperoort RA (eds) Plant Molecular Biology Manual,vol 6.Kluwer Academic Publisher,Dordretch,pp:1-10.
    183.Romano C P,Cooper M L,Klee H J.Uncoupling auxin and ethylene effects in transgenic tobacco and arabidopis plants.Plant Cell,1993,5:181-189.
    184.Sasahara T K,Kodama,Kambayashl M.1981.Studies on structure and function on the rice ear.Ⅳ.Classification of ear type by number of grain on the secondary rachis-branch.Jpn J Crop Sci,51:26-34.
    185.Seko,H.1962.Studies on lodging in rice plant.Bill.Kyushu Agr.Exp.Sta.7:419-499.
    186.Senanayake N,Naylor R E L,Datta S K,et al.1996.Effect of nitrogen fertilization on rice spikelet differentiation and survival.J Agri Sci,127:303-309.
    187.Shen Y,Newbury H J,Ford-lloyd B V.1996.The taxonomic characterization of annual Beta germplasm in a genetic resources collection using RAPD markers.Euphytica,91:205-212.
    188.Simmonds N W.1995.The relation between yield and protein in cereal grain.Journal of the Science of Food and Agriculture,67:309-315.
    189.Stm,P and Zeven A.C.1981.The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing.Euphytica,30:227-238.
    190.Taiiehiro O,Kuni I.1992.Varietal difference of physical characteristics of the culm related to lodging resistance in paddy rice.Jpn J Crop Sci,61(3):419-425.
    191.Takahashi R,Hayashi J,Moriya I.1963.The effects of the uzu gene on productive traits in barley.I.Evaluation of the genetic effects in different genetic background.Ber.Ohara Inst.Landw.Forsch,24:24-39.
    192.Takuya W,Masao T,Yuji H,et al.2006.Evaluation and use of physicochemical properties as index traits for selecting rice cultivars with extremely high palatability.Jpn J Crop Sci,75(1):38-43.
    193.Tanksley H P.1999.Mapping in plant breeding.Biotechnology,7:257-268.
    194.Tashiro T,Ebata M.1974.Studies on white-belly rice kernel.Ⅱ.Location on the panicle on occurrence of white-belly kernel.Jpn J Crop Sci,43:105-110.
    195.Tsutomu I,Tatsuro H,Toshiaki M,et al.2005.Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in dee(Oryza sativa L.):Comparison of earyopses located at different positions in a panicle.Plant Cell Physiol,46(4):620-628.
    196.Umemoto T,Nakamura Y,Ishikura N.1994.Effect of grain location on the panicle on activities involved in starch synthesis in rice endosperm.Phytochemistry,36:843-847.
    197.Wang F,Chen S,Cheng F,et al.2007.The differences in grain weight and quality within a rice(Oryza sativa L.) panicle as affected by panicle type and source-sink relation.J Agron Crop Sci,193:63-73.
    198.Wang F,Cheng F M,Zhang G P.2006.The relationship between grain filling and hormone content as affected by genotype and source-sink relation.Plant Growth Regul,49:1-8.
    199.Wang Y.1981.Effectiveness of supplied nitrogen at the primordial panicle stage on dee plant characteristics and yields.International Rice Research Newsletter,6:23-24.
    200.Xu Z J,Chen W F,Zhang L B,et al.2005.Design principles and parameters office ideal panicle type.Chinese Science Bulletin,50(19):2253-2256.
    201.Yamagishi M,Takeuchi Y,Kono L,et al.2002.QTL analysis for panicle characteristics in temperate japonica rice.Euphytica,128:219-224.
    202.Yamamuro C,Ihara Y,Wu X.2000.Loss of function of a rice brassinosteroid insensitive homolog prevents internode eniongation and bending of the lamina joint.Plant Cell,191:1591-1605.
    203.Yan C J,Zhou J H,Yan S,et al.2007.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice(Oryza sativa L.).Theor Appl Genet,115(8):1093-1100.
    204.Yang J C,Peng S B,Visperas R M,et al.2000.Grain filling pattern and cytokinin content in the grains and roots of rice plants.Plant Growth Regul,30:261-270.
    205.Yang J C,Peng S B,Zhang Z J,et al.2002.Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid flee.Crop Sci,42:766-772.
    206.Yang J C,Zhang J H,Wang Z Q,et ai.2006.Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene.J Exp Bot,57:149-160.
    207.Yang J C,Zhang J H,Wang Z Q,et al.2003.Hormones in the grains in relation to sink strength and postanthesis development of spikelets in flee.Plant Growth Regul,41:185-195.
    208.Yoshida S.1972.Physiological Aspect of Grain Yield.Ann Rev Plant Physiology,23:437-464.
    209.Young N D,Tanksley S D.1989.RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding.Theor Appl Genet,77:353-359.
    210.Young N D,Zamir D,Ganal M W,et ai.1988.Use of isogenic lines and simultaneous probing to identify DNA markers tightly inked to the Tm-2a gene in tomato.Genetics,120:579-585.
    211.Yu Z H,Maekill D J,Bonman J M,et al.1991.Tagging genes for blast resistance in rice via linkage to RFLP markers,Theor Appl Genet,81:471-476.
    212.Yuji M,Koji O,Michikazq H.1994.Differences in protein content,amylase content and palatability in relation to location of grains within rice panicle.Crop Sci,63(2):271-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700