不同水分条件下小麦重要农艺性状的遗传分析及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响小麦(Triticum aestivum L.)生产的最主要的非生物胁迫因素,小麦对非生物逆境的抗性或耐性是多基因控制的数量性状,易受环境条件的影响。分子数量遗传学的发展为深入研究数量性状的遗传基础提供了可能,开展小麦抗旱相关复杂数量性状的QTL定位和遗传剖析,增强对这些性状遗传基础的认识,对于提高抗旱育种效率具有重要的意义。
     本研究在干旱胁迫和正常灌溉两种水分条件下,利用小麦抗旱性强的旱地品种旱选10号与水地高产品种鲁麦14杂交创建的加倍单倍体群体(doubled haploid lines,DHLs)(共150个株系)为遗传研究材料,(1)考察不同年份和地点田间小麦重要形态性状(灌浆期上部3叶长、宽以及叶基角、穗下节长、株高)、生理性状(叶片持绿性和离体叶片失水速率)、生育期(抽穗期和扬花期)和产量相关性状(穗长、小穗数、不孕小穗数、穗粒数、穗粒重、籽粒长、籽粒宽以及千粒重);(2)考察不同播种深度(3 cm、6 cm和9 cm播深)、PEG(polyethylene glycol)处理和对照条件下的胚芽长、胚芽鞘重、幼苗株高,以及干旱胁迫和正常灌溉条件下的幼苗生物学产量。对这些性状进行QTL定位、效应分析以及相关QTL位点与环境的互作效应分析,探讨环境条件对目标性状的影响以及性状间的相互关系。主要研究结果如下:
     1、随着播种深度的增加,小麦胚芽鞘长、重及幼苗株高增加;对照条件下的幼苗株高明显高于PEG胁迫处理的,而对照条件下的胚芽鞘长、重的表型值低于PEG处理的;干旱胁迫抑制小麦的生长发育,导致植株幼苗生物量减少、叶片大小变小、植株变矮,加速植株衰老,进而导致减产。
     2、小麦重要形态、生理、生育期和产量相关性状对干旱胁迫反应敏感,属微效多基因控制的复杂数量性状。控制这些性状的遗传因子不仅有加性、上位性,一些性状还检测到加性×环境(A-QEI)和上位性×环境(E-QEI)的显著互作。
     3、控制目标性状的QTL位点在不同染色体上或同一染色体内的不同区间上呈现出显著的不均匀分布,在染色体一些区间上形成了QTL热点区域;另外一些稳定表达的QTL位点在不同年份被重复检测到。
     4、共检测到13个和24对控制胚芽鞘长、胚芽鞘重、幼苗株高以及幼苗生物量的加性和上位性QTL,分布在除1A、1D和6D以外的18条染色体上;在4D的Xgwm165.2~Xgwm192区间内检测到控制胚芽鞘长、胚芽鞘重以及幼苗株高的重合位点;在6A(P3465-460~P3526-130)和7B(Xpsp3033~Xgwm297)分别同时检测到幼苗株高、幼苗生物量和胚芽鞘长、胚芽鞘重的加性QTL位点;7个加性QTL和11对上位性QTL与环境发生显著互作。
     5、检测到50个加性QTL和22对上位性QTL控制灌浆期顶部3叶长、宽及叶基角,分布在除6D以外的20条染色体上;2B染色体的Xgwm630~WMC223、2D的WMC453.1~WMC18、3B的P3156-1851~P5138-100、5A的Xgwm304~P2470-280、Xgwm595~WMC410、WMC410~WMC74和Xgwm291~Xgwm410,以及7B的Xpsp3033~Xgwm297,是多个QTL共享的标记区间。QTL位点QFll.cgb-5A-1、QSll.cgb-5A-1、QTll.cgb-5A-1、QFlw.cgb-2B、QFlw.cgb-3B-2、QSlw.cgb-3B、QFla.cgb-1B、QFla.cgb-5A-1、QSla.cgb-5A-1和QTla.cgb-3B在两年中均被重复检测到;1个控制倒2叶基角的加性QTL位点和1对控制倒2叶长的上位性QTL与干旱胁迫环境发生显著互作。
     6、控制叶绿素含量和离体叶片失水速率的QTL位点分布在除1A、3D、4D和6D的17条染色体上;在5A染色体的标记区间P2470-280~Xgwm154内,检测到控制不同发育时期叶绿素含量的QTL位点(QChlc.cgb-5A-3),在7D染色体WMC436~Xgwm44区间内同时检测到控制抽穗期离体叶片在不同处理时间失水速率的QTL位点;3个加性QTL及3对上位性QTL与环境发生显著互作。
     7、共检测到14个控制抽穗期和扬花期的加性QTL和5对上位性QTL,分布在1B、1D、2D、3A、3B、4D、5A、6B、7A、7B和7D染色体上;Q.Hs.cgb-1D、Q.Fd.cgb-1D-1和Q.Hs.cgb-3A、Q.Fd.cgb-3A分别同时定位在1D的WMC432~WMC222和3A的Xgwm391~P8422-170区间内;Q.Hs.cgb-7B-2和Q.Fd.cgb-1B-1与水分环境具有显著互作。
     8、分别检测到10个产量相关性状的62个加性和29对上位性QTL,涉及小麦18条染色体(除1D、5D和6D外),主要分布在1B、2D、3B、6A和7A染色体上(≥10)。在染色体1B、2B、2D、3B、3D、4A、4D、5B、6A和7A上检测到多个性状QTL共享的标记区间;Q.Sn.cgb-1B-3、Q.Ils.cgb-2D-1、Q.Ph.cgb-2D、Q.Sl.cgb-2D-1、Q.Isn.cgb-5A-1、Q.Sn.cgb-6A和Q.Sl.cgb-7B在两年中均被检测到。
     本研究首次在不同处理条件下对小麦顶部3叶长、宽以及叶基角、胚芽鞘长、胚芽鞘重、幼苗株高、粒长和粒宽进行了QTL定位分析,同时也在不同水分条件下对小麦重要的生理以及产量相关性状进行QTL定位和遗传剖析,揭示了这些复杂数量性状的遗传基础和QTL表达规律,为发掘小麦重要形态、生理以及产量相关性状的分子标记,进行标记辅助选择育种及抗旱性的遗传改良提供了理论依据和技术支撑。稳定表达的加性QTL位点和QTL热点区域对于进行QTL的功能研究及图位克隆具有重要意义。
Drought stress is a major environment constraint greatly impacting wheat (Triticum aestivum L.) production in many wheat planted area that rely on rainfed of the world. The resistance or tolerance to abiotic stress were essentially subjected to complex quantitative genetics regulated by minor-effect polygenes, which were easily affected by different environments. The development of molecular quantitative genetics for studying the genetic basis of quantitative traits provides the possibility. Therefore, it is very important to improve the efficiency of drought resistance breeding plays an important role that to map QTLs and to dissect genetic factors for complex quantitative traits, and to enhance awareness of these traits.
     Doubled haploid lines (DHLs) (Hanxuan 10×Lumai 14) (150 lines) were selected as experiment materials in this study, (1) Under rainfed (drought stress) and well-watered conditions, important agronomic traits including morphological traits (leaf length, leaf width, leaf angle of the top three leaves, first internode length below spike (ILS) and plant height (PH) ), physiological traits (chlorophyll content, ChlC and rate of excised-leaf water loss,RWL), growth period (heading date (HD) and flowering date (FD) and yield-related traits (spike length (SL), spikelet number (SN), infertile spikelet number (ISN), grain number per spike (GNS), grain weight per spike (GWS), grain length (GL), grain width (GW) and thousand grain weight (TGW)) were investigated in two years; (2) coleoptile length (CL), coleoptile weight (CW), seedling height (SH) under different sowing depth, PEG (polyethylene glycol) treatment and water control conditions and seedling biomass (SB) (under drought stress and well-watered) simultaneously investigaed. QTL (quantitative trait loci) mapping and QTLs×water environment interactions (QEIs) were analyzed for these target traits, and explored environmental conditions that had impacted on these target traits, as well as relatonship between target traits. Main research results were as follows:
     1. Coleoptile length, weight and seedling height increased with the increase of sowing depth. Plant height of control was significantly higher than PEG treatment, but coleoptile length and weight were converse. Drought stress inhibited the seedling growth, resulting in the reduced of seedling biomass, leaf size and plant height, accelerated plant senescence, which eventually led to the reduction of production.
     2. Many important morphological, physiological and agronomic traits of wheat showed significantly sensitive to drought stress, which were characters of complex quantitative traits and easily affected by different environments. The genetic factors regulating these traits consisted of additive QTLs, epistatic QTLs, additive QEIs (A-QEIs) and epistatic QEIs (E-QEIs) effects.
     3. Major and minor QTLs for all target traits showed disequilibrium distribution among different chromosomes and even different intervals in the same chromosome. These QTLs assembled in some specific interval formed the hot-spot region for regulating inheritances of corresponding traits; some stable expression QTLs were detected in different years.
     4. A total of 13 additive and 24 pairs of epistatic QTLs were detected for CL, CW, SH and SB, which distributed on 18 (except for 1A, 1D and 6D) chromosomes. Co-located QTLs for CL, CW and SH were detected in the interval Xgwm165.2~Xgwm192 on 4D; major QTL loci for SH, SB and CL, CW were found in P3465-460~P3526-130 on 6A and Xpsp3033~Xgwm297 on 7B, respectively; 7 additive QTL and 10 pairs of epistatic QTL were identified significant QEIs with environment.
     5. A total of 50 additive and 22 epistatic QTLs were detected for leaf length, leaf width, and leaf angle of the top three leaves, which distributed on 20 (except for 6D) chromosomes. Xgwm630~WMC223 on 2B, WMC453.1~WMC18 on 2D, P3156-1851~P5138-100 on 3B, Xgwm304~P2470-280, Xgwm595~WMC410, WMC410~WMC74 and Xgwm291~Xgwm410 on 5A and Xpsp3033~Xgwm297 on 7B were common regions shared by multi-trait QTLs. QFll.cgb-5A-1, QSll.cgb-5A-1, QTll.cgb-5A-1, QFlw.cgb-2B, QFlw.cgb-3B-2, QSlw.cgb-3B, QFla.cgb-1B, QFla.cgb-5A-1, QSla.cgb-5A-1 and QTla.cgb-3B were detected in both two years. One additive QTL for second leaf angle and one pair of epistatic QTL for second leaf length were found significant QEIs with rainfed environment.
     6. QTLs for ChlC and RWL were distributed on 17 (except for 1A, 3D, 4D and 6D) chromosomes; QTL for ChlC in different development stages were detected in the interval P2470-280~Xgwm on 5A, QTL for different excised duration in heading date were detected in WMC436~Xgwm44 on 7D. Total of 3 additive QTL and 3 pairs of epistatic QTL were found significant QEIs with water environment.
     7. A total of 14 additive and 5 pairs of epistatic QTLs were detected for HD and FD which distributed on 1B, 1D, 2D, 3A, 3B, 4D, 6B, 7A, 7B and 7D chromosomes. Q.Hd.cgb-1D, Q.Fd.cgb-1D-1 and Q.Hd.cgb-3A, Q.Fd.cgb-3A were simultaneously located on the interval WMC432~WMC222 on 1D and Xgwm391~P8422-170 on 3A; QHd.cgb-7B-2 and Q.Fd.cgb-1B-1 were found significant A-QEIs with rainfed environment.
     8. A total of 62 additive and 29 pairs of epistatic QTLs for 10 yield relative traits in DHLs were distributed on 18 chromosomes (except for 1D, 5D and 6D), of which more QTLs were distributed on 1B, 2D, 3B, 6A and 7A(≥10). Some intervals were common shared by multi-trait QTLs on 1B, 2B, 2D, 3B, 3D, 4A, 4D, 5B, 6A and 7A chromosomes; Q.Sn.cgb-1B-3, Q.Ils.cgb-2D-1, Q.Ph.cgb-2D, Q.Sl.cgb-2D-1, Q.Isn.cgb-5A-1, Q.Sn.cgb-6A and Q.Sl.cgb-7B were simultaneously in different years; 4 additive QTLs and 1 pair of epistatic QTL were found significant QEIs with water environment.
     In present study, QTL analysis for leaf length, width and leaf angle of the top three leaves, CL, CW, SH, GL and GW were dissected for the first time at different treatment, and QTL mapping and genetic basis were also dissected for the traits associated with important physiology and yield under different water regimes. The results rvealed the genetic basis of the complex quantitative traits related to drought stress tolerance, provided a genetic basis and techniques for marker-assisted selection and genetic improvement of drought tolerance. And, some important QTLs with stable expression and some important hot-spot chromosome regions for specific traits played critical roles to QTL functional research and clone based on mapping.
引文
[1] Leung J, Giraudat J. Abscisicacid signal transduction[J].Annu.Rew.Plant Physiol.Plant Mol.Biol. 1998, 49: 199-222.
    [2] Turner N C. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems[J]. J. Exp Bot,2004, 55: 2413-2425.
    [3]唐先兵,吴贤婷,刘沛.植物耐旱与基因工程[J].植物杂志, 2001,2:3-4.
    [4]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社. 2003.
    [5]庄巧生.中国小麦品种改良及系谱分析[M].北京:中国农业出版社,2003.
    [6] Akkaya M S, Bhagwa A A, Cregan P B. Integration of simple sequence repeat DNA markers into a soybean linkage map[J].Crop Sci,1995,5:1439-1445.
    [7] Taramino G,Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize [J]. Genome, 1996,39:277-287.
    [8] Kearsey M J, Jinks J L. A general method of detecting additive, dominace, and epistatic variation for metrical traits [J]. Theory Heredity, 1968, 23:403-409.
    [9] Bostein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32: 314-331.2
    [10]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报, 1999, 15(4):1-5.
    [11]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2002.
    [12]邢永忠,徐才国.作物数量性状基因研究进展[J].遗传, 2001, 23: 498-502.
    [13] Parterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Meadelian factors, using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335: 721- 726.
    [14]徐云碧,朱立煌.分子数量遗传学[M].中国农业出版社.1994.
    [15] Tanksley S D, Ganal M W, Martin G B. Chromosome landing: A new paradigm for map-based cloning in species with large genome[J]. Trends in Genetics .1995, 11:63-68.
    [16] Moreno-Gonzalez J. Genetic models to estimate additive and non-additive effects of marker- assocoated QTL using mutiple regression techniques[J]. Theor Appl Genet., 1992, 85:435-444.
    [17] Keightley P D, Blfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection[J].Genet. Res., 1993, 62:195-203.
    [18]张小明,李春寿,叶胜海.混合分组分析法在作物基因定位上的研究进展[J].上海农业学报,2002,18:24-27.
    [19] Kearsey M J. The principles of QTL analysis (animal mathematics approach) [J].J Exp Bot, 1998, 49: 1619-1623.
    [20]梅德圣,李云昌,王汉中.作物产量性状QTL定位的研究现状及应用前景[J].2003, 19(5):83-88.
    [21] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121:185-199.
    [22] Lincoln S E, Daly M J, Larder E S.Constructing genetic maps with MapMaker/EXP 3.0.2.ed. Cambridge,Whitehead Institute Technical Report.1992.
    [23] Zeng Z B.Theoretical basis of separation of multiple linked gene effects on mapping quantitative traitloci[J].Proc Natl Acad Sci,1993,90:10972-10976.
    [24]吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法[J].福建农业大学学报,1996,25(4):394-399.
    [25] Kao C H, Zeng Z B. General formulas for obtaining the MLE and the asymptotic variance- covariance matrix in mapping quantitative trait loci when using the EM algorithm[J]. Biometrics. 1997,53:359-371.
    [26] Wang D L, Zhu J, Li Z K, Paterson A H.Mapping QTL with epistatic effects and genotype environment interactins by mixed linear model approaches[J].Theor Appl Genet, 1999, 99:1255-1264.
    [27] Wu W R, Li W M, Tang D Z, et al. Timed-related mapping of quantitative trait loci underlying tiller number in rice[J].Genetics,1999,151:297-303.
    [28] Lebreton C, Lazic-JancicV, Steed A, et al. Identification of QTLs for drought responses in maize and their use in testing causal relationships between traits[J]. J Exp Bot, 1995, 46: 853-865.
    [29] Agrama H A S, Moussa M E. Mapping QTLs in breeding for drought tolerance in maize (zea mays L ) [J] .Euphytica,1996,91:89-97.
    [30] Lander E S, Green P, Abraham S J, et al. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations[J].Genomics 1987 , 1 : 174-181.
    [31]毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析[J].农业生物技术学报,1999, 7(4):3 86-39.
    [32] Atchley W R, Zhu J. Developmental quantitative genetics,conditional epigenetic variability and growth in mice [J].Genetics,1997,147:765-776.
    [33] Zhuang J Y, Lin H X, Lu J, et al.Analysis of QTL×Environment interaction for yield components and plant height in rice[J].Theor Appl Genet,1997,95 :799-808.
    [34] Yan J Q, Zhu J, He C X, et al. Molecular marker-assisted dissection of genotype×environment interaction for plant type traits in rice[J].Crop Science,1999,39:538-544.
    [35]朱军.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生物科学版),2000,26:1-6.
    [36] Ungerer M C, Halldorsdottir S S, Purugganan M D, et al.Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana[J].Genetics, 2003,165:353-365.
    [37] Fridman E, PlebanT, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 by wittin an invertase gene[J].Proc Natl Acad Sci USA , 2000,97:4718-4723.
    [38] Frary A, Nesbit T C, Grandillo S, et al. fw 2.2: a quantitative trait locus key to the evolution of tomato fruit size[J].Science,2000,28 9:85 -88.
    [39] Stuber C W. Mapping and maniqulating quantitative traits in maize[J].Trends Genet,1995,11:477- 488.
    [40] Schneider K A, Brothers M E, Kelly J D. Marker-assisted selection to improve drought resistance in common bean[J].Crop Sci.,1997,37 :51-60.
    [41] FullonT M, Grandillo S, Bech-Bunn T, et al. Advanced backcross QTL an alysis of a Lycopersicon esculentumx and Lycopersicon parviflorum cross[J]. Theor Appl Genet., 2000, 100: 1025- 1042.
    [42] Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato[J]. Proc Natl Acad Sci,1996,9 3:1 5503-15507.
    [43] Simon M R. Inheritance of flag-leaf angle,flag-leaf area and flag-leaf area duration in four wheat crosses[J].Theor Appl Genet ,1999,98:310-314.
    [44]任正隆.小麦叶型遗传的初步研究[J].遗传,1979,1:20-24.
    [45] Nigam S N, Srivastava J P. Inheritance of leaf angle in Triticum aestivum L.[J].Euphytica,1976,25: 457-461.
    [46] Hsu P, Walton P D. Relationships between yield and its components and structures above the flag leaf node in spring wheat[J].Crop Sci1,1971,1:190-193.
    [47] B?rner A, Schumann E, Fürste A, et al. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.) [J]. Theor Appl Genet , 2002, 105: 921-936.
    [48] Li W L, Nelson J C, Chu C Y, et al. Chromosomal locations and genetic relationships of tiller and spike characters in wheat[J]. Euphytica, 2002, 125:357-366.
    [49] Yang D L,Jing R L, Chang X P, et al. QTL Mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L) [J]. Journal of Integrative Plant Biology.2007,49(5):646-654.
    [50] Yang D L, Jing R L, Chang X P, et al. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems[J]. Genetics, 2007, 176:571-584.
    [51] Quarrie S A, Gulli M, Calestani C, et al. Location of a gene regulation dronght–production on the long arm of chromosome 5 A of wheat[J].Theor Appl Genet, 1994,89:794-800.
    [52]杨凯.小麦抗旱生理性状的染色体定位和苗期抗旱分子标记[J].麦类文摘,1998,18:11
    [53]赵新华,张小村,李斯深,等.小麦抗旱相关生理性状的QTL分析[J].西北植物学报,2005,4:696-699.
    [54] Shah M M, Gil K S, Baenziger P S, et al.Molecular mapping of loci for agronomic traits on chromosome 3A of breadwheat[J]. Crop Sci, 1999, 39:1728-1732.
    [55] Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat[J]. Theor Appl Genet, 1999, 98:977-984.
    [56] Kulwal P L, Roy J K, Balyan H S, et al. QTL mapping for growth and leaf characters in bread wheat[J].Plant Sci ,2003,164:267-277.
    [57] Sourdille P, Cadalen T, Guyomarch H, et al. An update of the Courtot×Chinese Sping intervarietal molecular marker linkage map for t he QTL detection of agronomic t rait s in wheat [J ]. Theor Appl Genet, 2003 ,106 :530-538.
    [58] Marza F, Bai G H, Carver B F, et al. Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. [J]. Theor Appl Genet, 2006, 112: 688-698.
    [59] McCartney C A, Somers D J, Humphreys D G, et al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452×ACDomain[J]. Genome ,2005,48:870-883.
    [60] Lelley J.Wheat breeding-theoyr and practice[M]. Hungayr, Akademiai Kiado Budapest, 1976.
    [61] Quarrie S A , Steed A, Calestani C, et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring×SQ1 and its use to compare QTLs for grain yield acrossa range of environments [J]. Theor.Appl.Genet, 2005,110:865-880.
    [62] Prasad M, Varshney R K, Kumar A, et al. A microsatellite marker associated with a QTLfor grain protein content on chromosome arm 2DL of bread whea[J]t. Theor Appl Genet, 1999,99:341-345.
    [63] Parker G D, Chalmers K J, Rathjen A J, et al. Mapping loci associated with floor colour in wheat(Tritleum aestivum L) [J].Theor Appl Genet,1998, 97:238-245.
    [64] Udall J A, Souza E, Anderson J A, et al. Quantitative trait loci for flour viscosity in winter wheat[J]. Crop Sci, 1999, 39:238-242.
    [65] Trethowan R M, Singh R P, Huerta-Espino J, et al. Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheat [J]. Field Crops Res, 2001, 70: 167–176.
    [66] Foster S A, Joanson C H. The relationship between seed size and establishment conditions in tropical woody plants[J].Ecology, 1985,66: 773-780.
    [67] Lioret F, Casanovas C, Penüelas J. Seedling survival of Mediterranean shrubland species in relation to root shoot ratio, seed size andwater and nitrogen use[J]. Func-tional Ecology, 1999,13: 210-216
    [68] Seiwa K. Effects of seed size and emergence time on tree seedling establishment: Importance of developmental constraints[J].Oecologia, 2000,123: 208-215.
    [69] Fenner M, Thompson K. The Ecology of Seeds[M]. New York: CABI Publishing, 2005.
    [70] Karrel E E, Chandler J M, Foolad M R, et al. Correlation betweenα-amylase gene expression and seedling vigor in rice[J]. Euphytica ,1993, 66:163–169.
    [71]胡颂平,梅捍卫,邹桂花,等.正常与水分胁迫下水稻叶片叶绿素含量的QTL分析[J].植物生态学报,2006,30:479-486.
    [72]王玮,邹琦.胚芽鞘长度作为冬小麦抗旱性鉴定指标的研究[J].作物学报,1997, 23(4):459- 467.
    [73]周晓果,景蕊莲,郝转芳,等.小麦幼苗根系性状的QTL分析[J].中国农业科学. 2005, 38 (10): 1951-957.
    [74]周晓果,景蕊莲,昌小平,等.小麦苗期水分利用效率及其相关性状的QTL分析[J].植物遗传资源学报, 2005, 6: 20-25.
    [75] Hao Z F, Chang X P, Guo X J, et al. QTL mapping for drought tolerance at stages of germination and seedling in wheat(Triticum aestivum L.) using a DH population[J].Agricultural Sciences in China (En). 2003, 2(9):943-949.
    [76] Redo?a E D, Mackill D J .Genetic variation for seedling vigor traits in rice[J]. Crop Sci, 1996, 36: 285-290.
    [77] Takahashi H, Sato K, Takeda K. Mapping genes for deep-seeding tolerance in barley [J]. Euphytica, 2001, 122: 37-43.
    [78] Rebetzke G J, Appels R, Morrison A, et al. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.)[J]. Aust J Agric Res, 2001, 52:1221-1234.
    [79]景蕊莲,昌小平,贾继增,等.用花药培养创建小麦加倍单倍体作图群体[J].生物技术,1999,9: 4-8.
    [80] Yang J, Hu C C, Ye X Z, et al. QTLNetwork 2.0. Instituteof Bioinformatics, Zhejiang University, Hangzhou China .2005. (http://www.ibi.zju.edu.cn/software/qtlnetwork)
    [81] Mc Intosh R A, Hart G E, Devos K M, et al. Catalogue of gene symbols for wheat. 1999, Http://grain. jouy.inra.fr/ ggpages/ wgc.
    [82] Kirby E J M. Effect of sowing depth on seedling emergence, growth and development in barley andwheat[J]. Field Crop Res, 1993, 35: 101-111.
    [83] Mahdi L, Bell C J, Ryan J. Establishment and yield of wheat (Triticum turgidum L.) after early sowing at various depthsin a semi-arid Mediterranean environment [J].Field Crop Res, 1998, 58:187–196.
    [84] Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.) [J]. Plant Soil, 2005, 272: 87-100.
    [85] Rebetzke G J, Richards R A, Fettell N A, et al. Genotypic increases in coleoptilelength improves wheat establishment, early vigour and grainyield with deep sowing[J]. Field Crop Res, 2007, 100: 10-23.
    [86] Ellis R H. Seed and seedling vigor in relation to crop growth and yield[J]. Plant Growth Regul, 1992, 11:249-255.
    [87] Rebetzke G J, Richards R A. Gibberellic acidsensitive dwarfing genes reduce plant height to increase seed number and grain yield of wheat [J]. Aust J Agric Res, 2000, 51: 235-245.
    [88] Allan R E. Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat [J]. Crop Sci, 1989, 29: 1103-1108.
    [89] Keyes G J, Paolillo D J, Sorrells M E. The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat [J].Ann Bot, 1989, 64: 683-690.
    [90] Allan R E, Pritchett J A. Prediction of semidwarf culm-length genotypes in wheat [J].Crop Sci. 1973, 13:597-599.
    [91] Landjeva S, Neumann K, Lohwasser U, et al. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress [J]. Biologia plantarum, 2008, 52 (2): 259-266
    [92]王玮,邹琦,杨兴洪,等.低水势下冬小麦胚芽鞘长度与叶片的渗透调节能力及大田产量关系的研究[J].植物学通报, 1997, 14(suppl): 55-59.
    [93] Redo?a E D, Mackill D J. Mapping quantitative trait loci for seedling vigor in rice using RFLP[J]. Theor Appl Genet ,1996,92:395-402
    [94] Cui K H, Peng S B, Xing Y Z, et al. Molecular dissection of seedling vigor and associated physiological traits in rice[J]. Theor Appl Genet ,2002, 105:745-753
    [95] Spielmeyer W, Hyles J, Joaquim P, et al. A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptiles, greater seedling vigour and final plant height[J]. Theor Appl Genet , 2007,115:59-66
    [96] Rebetzke G J, Ellis M H, Bonnett D G R, et al. Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet , 2007,114:1173-1183.
    [97] Rebetzke G J, Richards R A, Fischer V M, et al. Breeding long coleoptile, reduced height wheats[J]. Euphytica,1999 106: 159-168.
    [98] Mcvittie J A, Gale M D, Marshall G A, et al. The intrachromosomal mapping of the‘Norin 10’and‘Tom Thumb’dwarfing genes[J]. Heredity, 1978,40:67-70.
    [99] Sourdile P, Charmet G, Trotet M, et al., Linkage between RFLP molecular markers and the dwarfing genes Rht-BI and Rht-D1 [J].Heredity,1997.
    [100] Peng J.‘Green revolution’genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400: 256-261.
    [101]武仙山.小麦抗旱相关性状数量位点的遗传剖析[D].北京,中国农业科学院,2008
    [102] Li Z K, Pinson S R M, Park W D, et al. Epistasis for three grain yield components in rice[J]. Genetics, 1997, 145:453-465.
    [103] Sylvester-Bradley R, Scott R K, Wright C E. Physiology in the production and improvement of cereals. Home grown Cereals Authority Research Review, 18. HGCA, 1990, London.
    [104] Mae T. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential [J]. Plant Soil,1997, 196: 201-210.
    [105]魏爱丽,张小冰,邢勇,等.小麦旗叶和穗光合作用与耐旱性关系研究[J].西北植物学报, 2005, 25(11): 2245-2249.
    [106] Giunta F, Motzo R, Pruneddu G. Has long-term selection for yield in durum wheat also induced changes in leaf and canopy traits? [J]. Field Crops Res, 2008, 106: 68-76.
    [107] Feng H, Wang W H, Xu N, et al. Inheritance of several plant type characters in truss tomato[J]. Sci Agric Sin, 2008, 7(5): 535-541.
    [108]房全孝,陈雨海,李全起,等.土壤水分对冬小麦生长后期光能利用及水分利用效率的影响[J].作物学报, 2006, 32 (6) : 20-23.
    [109]杨文雄.旱地春小麦株型指标与产量形成关系研究[J].干旱地区农业研究, 2006, 24(1): 43-46
    [110] Cao G Q, Zhu J. QTL mapping for epistatic effects and QTL×environment interaction effects on flag leaf width of rice with a DH population[J]. J.of Zhengzhou Univ. 2006:38 (3)103-107.
    [111] Cao G Q, Gao Y M, Zhu J. QTL analysis for flag leaf length in a rice DH population under multi environments[J]. Acta Agronomica Sinica ,2007 ,33 (2) :223-229.
    [112]金善宝.中国小麦学[M].北京:中国农业出版社, 1996.
    [113]杨德龙,李唯,景蕊莲,等.小麦DH群体茎秆可溶性碳水化合物含量相关数量性状的遗传分析[J].作物学报, 2007, 33(9): 1543-1547.
    [114] Chaves M M, Joao P M, Joao S P, Understanding plant responses to drought-from genes to the whole plant[J]. Funct Plant Biol, 2003, 30: 239-264.
    [115]胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报, 2007, 33(10) :1711-1719.
    [116] Saab L N, Ho T H D, Sharp R E. Translatable RNA populations associated with maintenance of primary root elongation and inhibition of mesocotyl mesocotyI elongation by abscisic acid in maize seedlings at low water potentials[J]. Plant Physiol, 1995, 109: 593-601.
    [117] Saab, L N, Sharp R E. Non-hydraulic signals from maize roots in drying soil: Inhibition of leaf elongation but not stomatal conductance[J]. Planta, 1989, 25: 466-474.
    [118] Xue D W, Chen M C, Zhou M X, et al. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content[J]. Journal of Zhejiang University, 2008 9(12):938-943.
    [119] Xiao J, L i J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross[J]. Theor Appl Genet, 1996, 92: 230-244.
    [120] Lu C F, Shen L S, Tan Z B, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled-haploid population[J]. Theor Appl Genet, 1996, 93:1211–1217.
    [121] Tuberosa R, Sanguineti M C, Landi P, et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes[J]. Plant Mol Bio, 2002, 48: 697-712.
    [122] Gasowski A. Influence of wheat leaf position on leaf rust severity[J]. Euphytica, 1990, 48:211-214.
    [123] Paterson A H, Damon S, Hewitt J D, et al. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments[J]. Genetics, 1991, 127: 181-197.
    [124] Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments. I.Grain yield and yield components [J]. Crop Sci,1996, 36:1310-1319.
    [125] Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments. II. Plant height and flowering [J]. Crop Sci ,1996,36:1320-1327.
    [126] Ma B L,Dwyer L M. Nitrogen up take and use of two contrasting maize hybrids in leaf senescence [J]. Plant and Soil, l998, l99: 283-291.
    [127] Leshem Y Y, Wurzburger J, Grossman S. Cytokinin interac-tion with tree radical metabolism and senescence [J]. Physiol Plant,1981,53: 9-12.
    [128] Nakazawa F, Tunoda K, Torikura H. On the photosynthetic characteristics of high yielding rice varieties I. Leaf photosynthetic rate [J]. Japanese Crop Science, 1990, 59(1): 72-79.
    [129]曹树青,翟虎渠,钮中一,等.不同产量潜力水稻品种的剑叶光合特性研究[J].南京农业大学学报,2000,23(1): 1-4.
    [130] Subudhi P K, Rosenow D T,Nguyen H T. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L.Moench): consistency across genetic backgr ounds and environments[J]. Theor Appl Genet,2000,101:733-741.
    [131] Xu W, Subudhi P K, Crasta O R, et al. Molecular mapping of QTLs conferring stay-green in grain sorghum(Sorghumbicolor L.Moench) [J]. Genome,2000,43:46-469.
    [132] Borrell A K, Hammer G L. Nitrogen dynamics and the physiological basis of stay-green in sorghum[J]. Crop Sci,2000,40:1295-1307.
    [133] Borrell A K, Hammer G L, Van Oosterom E, et al. A consequence of balance between supply and demand for nitrogen during grain filling[J].Ann.Appl.Bio.,2001,138:91-95.
    [134]马瑞昆,贾秀领,张全国.冬小麦离体叶片失水速率和农艺性状的同步选育效应[J].河北农业大学学报,2002 ,25(2) :4-9.
    [135] Winter S R, Music T S, Porter K B. Evaluation of screening techniques for breeding drought resistant winter wheat[J].Crop Sci,1988,28:512-516.
    [136] Mccaig T N, Romagosa I. Water status measurements of excised leaves: Position and age effects [J].Crop Sci,1991,31:1583-1588.
    [137] Clarke J M, Townley-Smith T F. Heritability and relationship of excised-leaf water retention in durum wheat[J].Crop Sci.,1986,26:289-292.
    [138] Clarke J M, Richards R A, The effect of glacousness, epicuticular wax, leaf age, plant height and growth environment on water rates of the excised leaves[J]. Can J Plant Sci ,1988, 68: 975-982.
    [139]周桂莲,杨慧霞.小麦抗旱性鉴定的生理生化指标及其分析评价[J].干旱地区农业研究, 1996 14:65-71.
    [140]刘桂茹,张荣芝,卢建祥,等.小麦品种抗旱性鉴定指标与产量性状关系的探讨[J].河北农业大学学报,1995,18:10-14.
    [141] This D, Borries C, Souyris I, et al. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley[J].Barley Gen.News.,2000,30:20-23.
    [142] Jiang G H, He Y Q, Xu C G, et al.The genetic basis of stay-green in rice analyzed in a population ofdoubled haploid lines derived from an indica by japonica cross[J].Theor Appl Genet, 2004, 108: 688-698.
    [143]曹卫东,贾继增,金继运.不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究[J].植物营养与肥料学报,2004,10:473-478.
    [144]蒋明义,杨文英,徐江,等.水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报.1994,36:289-295.
    [145] Verma V, Foulkes M J, Worland A J, et al. Mapping quantitative trait loci for leaf senescene as a yield determinant in winter wheat under optical and drought-stressed environments[J]. Euphytica, 2004, 135: 255-263.
    [146] Snape J W, Foulkes M J, Simmonds J, et al. Dissecting gene×environmental effects on wheat yields via QTL and physiological analysis[J].Euphytica,2007,154:40-408.
    [147]杨德龙.小麦抗旱相关重要生理性状和农艺性状数量位点遗传剖析[D].甘肃,甘肃农业大学, 2007.
    [148] Clarke J M, Richards R A , Condon A G. Effect of drought stress on residual transpiration and its relationship with water use of wheat [J ] . Canadian Journal of Plant Science, 1991, 71: 695-702.
    [149] Farshadfar E, Koszegi B, Tischner T, et al. Substitution analysis of drought tolerance in wheat (Triticum aestivum L.) [J]. Plant Breeding ,1995 ,114(6) :542-544.
    [150]白志英,李存东,孙红春.干旱胁迫对小麦染色体代换系旗叶相对含水量和离体失水速率的影响[J].华北农学报, 2008 ,23(1): 62-65.
    [151] Tóth B, Galiba G, Fehér E, et al. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat[J]. Theor Appl Genet , 2003, 107:509-514.
    [152] Song Y X, Jing R L, Huo N X, et al. Detection of QTLs for heading in common wheat (Triticum aestivum L.) using different populations[J]. Sci Agricul Sin, 2006, 39: 2186-2193.
    [153] Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat[J]. Theor Appl Genet, 2000,101:1114-1121.
    [154] Iwaki K, Nishida J, Yanagisawa T, et al.Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat(Triticum aestivum L.)[J].Theor Appl Genet, 2002,104: 571-576.
    [155] Nelson J C, Sorrells M E, Van Deynze A E, et al.Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7[J]. Genetics ,1995,141:721-731.
    [156] Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proc Natl Acad Sci,2003,100: 6263-6268.
    [157] Welsh J R, Keim D L, Pirasteh B, et al. Genetic control of photoperiod response in wheat. In: Sears ER, Sears LMS (eds) Proceedings of the Fourth International Wheat Genetic Symposium, Columbia, MI. 1973.
    [158] Scarth R, Law C N. The location of the photoperiod gene, Ppd2 and an additional genetic factor for ear emergence time on chromosome 2B of wheat[J]. Heredity, 1983, 51: 607-619.
    [159] Shindo C, Tsujimoto H, Sasakuma T. Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines[J]. Heredity, 2003, 90: 56-63.
    [160]宋彦霞.小麦抽穗期及其它农艺性状的QTL分析[D].北京,中国农业科学院,2005.
    [161] Dadkhodaie N A, Assad M T. Evaluation of genetics improvement in yield, yield components anddrought resistance in Iranian bread-wheat cultivars (Triticum aestivum L.).In:Pogna NE,Romano EA,Galterio G.Tenth international wheat genetics symposium.Rome,Italy,2003,661-663.
    [162] Main M A R, Bailey M A , Ashley D. Molecular markers associated with water use efficiency and leaf ash in soybean[J].Crop Sci., 1996, 36: 1252-1257.
    [163] Lu C F, Shen L S, Tan Z B, et al. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population[J].Theor Appl Genet, 1997, 94: 145-150.
    [164]李仕贵,马玉清,何平,等.不同环境条件下水稻生育期和株高的QTL分析[J].作物学报, 2002,28:546-55.
    [165] Slafer G A,Rawson H M. Instrinsic earliness and basic development rate assessed for their response to temperature in wheat [J]. Euphytica,1996, 83:175-183.
    [166] Teulat B, Merah O, Sirault X, et al. QTLs for grain carbon isotope discrimination in field-grown barley [J]. Theor Appl Genet., 2002, 106:118-126.
    [167] Ammiraju J S. Identification of inter-simple suquence repeat (ISSR) makers associated with seed size in wheat[J].Theor Appl Genet,2001,102:726-732.
    [168] Li Z K, Yu S B, Lafitte H R, et al. QTL×Environment interactions in rice. I. Heading date and plant height [J]. Theor Appl Genet, 2003, 108: 141-153.
    [169]程建峰,潘晓云,刘宜柏,等.水稻抗旱性鉴定的形态指标[J].生态学报,2005,25: 3117-3125.
    [170] Quarrie S A, Stojanov? J, Peki? S. Improving drought resistance in small-grained cereals: A case study, progress and prospects[J]. Plant Growth Regul., 1999, 29: 1-2.
    [171] Plaut Z, Butow B J, Blumenthal C S, et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature [J].Field Crops Res,2004,86:185-198.
    [172] Yang J, Zhang J. Grain filling of cereals under soil drying[J].New Phyto,2006,169:223-236.
    [173] B?rner A, Worland A J, Plaschke J, et al. Pleiotropic effects of genes for reduced height (Rht) and day length insensitivity (Ppd1) on yield and its components for wheat grown in middle Europe[J]. Plant Breed, 1993, 111: 204-216.
    [174] Korzun V, R?der M S, Ganal M W, et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 1998,96:1104-1109.
    [175]王竹林,王辉,孙道杰,等.小麦株高的QTL分析[J].西北农林科技大学学报, 2008,36(12):59-63.
    [176]周淼平,黄益洪,任丽娟,等.利用重组自交系检测小麦株高的QTL[J].江苏农业学报, 2004, 20: 201-206.
    [177]刘冬成.小麦重要农艺性状的QTL定位[D].北京,中国农业大学, 2002.
    [178]张坤普,赵亮,海燕,等.小麦白粉病成株抗性和抗倒伏性及穗下节长度的QTL定位[J].作物学报, 2008,34(8):1350-1357.
    [179] Huang X Q, Kempf H, Ganal M W, et al. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.) [J].Theor Appl Genet,2004, 109:933–943.
    [180]王瑾.小麦穗粒数及相关性状的QTL分析[D],河北,河北农业大学, 2008.
    [181] Ma Z Q, Zhao D M, Zhang C Q, et al. Molecular genetic analysis of five spike-related traits in wheatusing RIL and immortalized F2 populations [J]. Mol Genet Genomics, 2007, 277:31-42.
    [182] Giura A, Saulescu N N. Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.) [J]. Euphytica,1996, 89:77-80.
    [183] Campbell K G, Bergmem C J, Gualberto D G, et al Quantitative trait loci associated with kernel traits in a soft×hard wheat cross [J]. Crop Sci, 1999, 39:1184–1195.
    [184] Dholakia B B, Ammiraju J S S, Singh H, et al. Molecular marker analysis of kernel size and shape in bread wheat[J]. Plant Breeding, 2003,122:392–395.
    [185] Botwright T L, Condon A G, Rebetzke G J, et al. Field evaluation of early vigour for genetic improvement of grain yield in wheat[J].Aust J Agric Res,2002,53:1137–1145.
    [186] Blair C P. Factor regression for interpreting genotype environment interaction in bread wheat trial [J].Theor Appl Genet,1992,83:1022–1026.
    [187] Chastain T G, Ward K J, Wysocki D J. Stand establish-ment responses of soft white winter wheat to seedbed residue and seed size[J].Crop Sci ,1995,35:213–218.
    [188] Breseghello F, Sorrells M E. QTL analysis of kernel size and shape in two hexaploid wheat mapping population wheat[J]. Field Crops Res, 2007, 101:172–179.
    [189] Sun X Y, Wu K, Zhao Y, et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat [J]. Euphytica,2009,165:615-624.
    [190] Groos C, Robert N, Bervas E, et al. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat[J]. Theor Appl Genet, 2003, 106:1032-1040.
    [191] Austin D F, Lee M. Comparative mapping in F2:3and F6:7 generations of quantitative trait loci for grain yield and yield components in maize[J]. Theor Appl Genet, 1996,92:817-826.
    [192] Yu S B, Li J X, Xu C G. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. PNAS, 1997, 94:9226-9231.
    [193] Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. biomass and grain yield [J]. Genetics, 2001, 158: 1737- 1753.
    [194] Vander Knaap E, Lippman Z B, Tanksley D D. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions [J]. Theor Appl Genet, 2002,104:241-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700