白菜类蔬菜锌积累和锌胁迫反应的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是生物体必需的微量金属元素,作为蛋白质的结构和催化成分参与到许多生理生化反应中。缺Zn是严重影响我国人民身体健康的微营养不良症之一,培育Zn强化性作物是克服Zn营养不良症的新策略。缺Zn同时也是严重影响作物生产的植物营养问题之一,培育高Zn效率的作物新品种是解决植物Zn营养不足的一种更具有环境亲和性的途径。另一方面,土壤重金属污染,包括锌污染,日益严重,传统的土壤修复方法耗费很大,植物修复是上世纪九十年代提出的治理土壤污染的新策略,是利用重金属超富集植物吸收和积累土壤中的重金属,达到降低土壤重金属浓度的作用。但是,由于已经发现的重金属超富集植物都存在生物量小,生长周期长的缺点,因此这一策略并没有真正在实践中得以应用。白菜类蔬菜是我国栽培面积和产量最大的蔬菜,包括一些生长周期短,生物量相对较大的栽培种群,因此对白菜类蔬菜进行Zn营养性状的遗传分析,一方面可以为改良白菜类蔬菜的营养品质和培育高Zn效率的白菜类蔬菜新品种提供理论基础;另一方面克隆与植物Zn超富集相关的基因,通过基因工程的手段创建能够超量富集Zn的白菜类植物材料,能够为植物修复技术的实际应用创造条件。
     基于以上目的,本论文从以下几个方面对白菜类蔬菜的Zn积累和Zn胁迫下的耐性进行了遗传分析:
     1.利用原位噬菌斑杂交法,进行了Zn超富集植物Thlaspi caerulescens的cDNA文库筛选,获得了7个Zn积累相关候选基因的全长cDNA,这些序列与拟南芥的同源基因的序列相似性为86-91%。通过对酵母锌运输缺陷型突变体zrtlzrt2、铁运输缺陷型突变体fet3fet4、锰运输缺陷型突变体smfl的功能互补以及提高了野生型对Cd的敏感性,证明了TcNKAMP3和TcNRAMP4具有Zn、Fe、Mn和Cd的运输活性;TcNRAMP3在Arabidopsis thaliana的nramp3nramp4突变体中过量表达挽救了缺Fe条件下植株的生长。由此证明了TcNRAMP3和TcNRAMP4作为金属转运蛋白参与了植物体的金属积累。
     2.利用183个DH株系构建了大白菜的AFLP连锁图谱,该连锁图由10个连锁群组成,包括222个AFLP标记,覆盖基因组长度为1064cM,标记间平均间距为4.8cM。利用这一图谱,对大白菜叶片K、Na、Ca、Mg、Al、Cu、Mn、Fe、Zn和Sr等10种矿质元素含量和总磷含量进行了QTL分析,共找到22个与叶片矿质元素含量相关的QTL和2个与叶片总磷含量相关的QTL,这些QTL对性状的贡献率在6.8-18.8%之间。对这一群体的130个DH株系作了高Zn胁迫下耐性的QTL分析,发现了一个与高Zn胁迫下大白菜生长相关的QTL,和一个仅在相对更高的Zn浓度下出现的QTL。
     3.对来自于我国不同地区的分别属于7个栽培种群的184个基因型的白菜类蔬菜和2个来自于荷兰和2个来自于美国的白菜类植物的Zn积累和Zn胁迫条件下的反应进行了调查,结果表明白菜类蔬菜的叶片Zn含量存在显著差异,变化范围在23-160μg g~(-1)d.wt之间,叶片中Zn、Fe、Mn的积累显著相关。地上部或根部的相对生长量均适合于作为参数比较白菜类蔬菜对高Zn或缺Zn胁迫的耐性差异。白菜类蔬菜中存在高Zn胁迫耐性和Zn效率的显著差异。选出了两个对高Zn胁迫具有相对高耐性的基因型和一个具有高Zn效率的基因
Zn is an essential micronutrient required by all organisms for its functions in many physiological processes as a structural or catalytic component of proteins. Unfortunately Zn deficiency is a widespread problem, affecting humans in case of Zn shortage in food, but also affecting crops in case of poor Zn availability in soil. Zn deficiency in food can be improved by Zn supplementation to the daily diet. Soil can be fertilized with extra zinc. Both approaches are not always cost-efficient and in the case of soil fertilization sometimes ineffective because of zinc binding in the topsoil Breeding and growing crops for biofortified Zn content and Zn efficiency are promising and sustainable approaches to solve the Zn deficiency problems in human and soil. On the other hand heavy metal pollution of biosphere has accelerated rapidly since the onset of the industrial revolution and heavy metal toxicity poses major environmental problems. Phyremediation is a relatively new approach to removing contaminants from the environment. It maybe defined as the use of heavy metal hyperaccumulator to remove, destroy or sequester hazardous substances from environment. It has become a topical research field in the last fifteen years since it was proposed in 1991 as it is safe and potentially cheap compared to traditional techniques. However this technology has not been used in a practical way in large scale, mainly due to the shortcomings of hyperaccumulators which are long cycle and low biomass. Brassica rapa vegetable are the most important vegetable in China with the largest consumption. It also included several cultivar groups with relatively short cycling and large biomass. Genetic analysis of Zn accumulation and homeostasis in B. rapa vegetables will provid a genetic bases for the improvement Zn content and Zn efficiency in B. rapa vegetables. The genes related to Zn accumulation cloned from hyperaccumulator T. caerulescens could be used in a GMO approach to construct of materials for phytoremediation.This thesis deals with the genetic characterization of Zn accumulation and homeostasis of B. rapa vegetables and to find out if genes related to Zn accumulation in T. caerulescens can be used in GMO approach to increase Zn content in B. rapa leaves.Chapter 1 gives an overview of progress of genetic mechanism in plant Zn accumulation and QTL analysis in B. rapa.Chapter 2 describes the cloning of candidate genes related with Zn accumulation from T. caerulescens and functional analysis of some of these genes. Totally 7 full-length cDNAs were isolated by T. caerulescen cDNA library screening. Two of seven genes, TcNRAMP3 and TcNRAMP4, were confirmed for their functions in mineral transportion.Chapter 3 describes the construction of genetic linkage map and QTL analysis of leaf mineral and phosphate content in B. rapa. QTL analysis also carried out for excessive Zn toxicity in B. rapa. An AFLP map with 222 AFLPs and 10 linkage group covering 1066 cM was constructed using a
    heading Chinese cabbage DH population. The average distance of intervals is 4.81 cM. By using the map, 22 QTLs for mineral content and 2 QTLs for phosphate content were detected. The percentages of variation explained were varied between 6.8-18.8%. One QTL controlling tolerance to toxic Zn stress was detected in both 100 uM and 300uM Zn treatment, while one QTL was only detected in 300uM Zn treatment.Chapter 4 describes the characterization of the genotypic variation for Zn accumulation and Zn homeostasis in B. rapa. In total 188 genotypes belonging to 9 cultivar groups, covering the geographical distribution of B. rapa vegetables in China, have been screened for shoot Zn, Fe and Mn content and for Zn tolerance. Leaf Zn content varied between 23.2-155.9(j.g g''d. wt. Both relative shoot and root dry biomass are suitable indices for evaluation of tolerance to high or deficient Zn stress. Two relative tolerant genotypes to excessive Zn stress and one Zn efficient genotype were selected from the germplasm collection.Chapter 5 describes the establishment of Ecotilling for discovery of DNA polymorphisms in Brassica rapa natural population. We used mung bean nuclease(MBN) instead of routinely used CEL I to cleave single base pair mismatches in heteroduplex DNA templates. Nested set of primers were designed to amplify targeted region to avoid the influence of the variation in quality and quantity of the genomic DNA. To reduce the costs in fluorescently labeled primers, we adopted a strategy universal to all genes by adding Ml3 adapter to 5'end of gene specific primers to make IRD dye labeled Ml3 forward and reverse primers. A Brassica rapa ZIP gene homologue was subjected to the analysis to practice the feasibility of the method in polymorphisms detection. Our experiment showed this method is efficient in discovering DNA polymorphisms in Brassica rapa natural population.
引文
1.冯秀文.王振英,高俊琴,史群策,马瑞岩,何勋.锌钙对低锌儿童生长发育的疗效.营养学报.1993,15:485
    2.葛可佑,翟凤英,阎怀成.第三次全国营养调查报告.卫生研究.1996,25(增):3-15.
    3.胡学玉,李学垣,谢振翅.青菜品种锌效率特性研究.中国农业科学.2001,4(2):227-231.
    4.刘铮.我国土壤中锌含量的分布规律.中国农业科学.1994,27:30-37.
    5.卢刚,曹家树,陈航,向珣.白菜几个重要园艺性状的QTLs分析.中国农业科学.2002,35(8):969-974.
    6.米国华,明凤,张勇,张福锁.植物营养性状的分子标记与基因克隆,土壤与植物营养研究新动态(第四卷),2001.84-103
    7.倪俊健.应用分子标记研究水稻耐低磷胁迫数量性状位点.博士论文.浙江大学,1998.
    8.王火旭,王关林,王晓岩,方宏筠,贾士荣,唐益雄,魏毓棠.大白菜AB281高频再生系统的建立及gus基因瞬时表达的研究.园艺学报.2001.28(1):74-76
    9.王美,张凤兰,孟祥栋,刘秀村,赵岫云,樊治成.中国白菜AFLP分子遗传图谱的构建.华北农学报.2004,19(1):28-33
    10.王人民.水稻耐低锌基因型的生长发育和若干生理指标研究.植物营养与肥料学报.1998.4(3):284
    11.吴国胜,王永健,姜亦魏.大白菜耐热性遗传效应研究.园艺学报,1997,24(2):141-144
    12.吴平,倪俊健,罗安程,金戈,陶勤南.应用分子标记研究水稻耐低钾胁迫数量性状位点.植物营养与肥料学报.1997,3(3):209-217
    13.吴平,罗安程.应用分子标记研究氮素胁迫下水稻叶片叶绿素含量差异的遗传背景.遗传学报,1996,23(6):431-438
    14.谢建治,李博文,刘树庆.Cd、Zn污染对小白菜营养品质的影响.华南农业大学学报.2005,26(1):42-45
    15.许炼烽,郝兴仁,冯显湘.城市蔬菜的重金属污染及其对策.生态科学,2000,19(1):80-85
    16.严小龙.植物营养遗传学.中国农业出版社.北京.1997.
    17.杨月欣,陈学存.我国孕妇、乳母锌营养状况对小儿生长发育影响的研究.中国儿童发展.1993,8:33
    18.于栓仓,王永健,郑小鹰.大白菜叶球相关性状的QTL定位与分析.中国农业科学.2004,37(1):106
    19.于栓仓,王永健,郑小鹰.大白菜耐热性QTL定位与分析.园艺学报.2003,30(4):417-420.
    20.于栓仓,王永健,郑小鹰.大白菜部分形态性状的QTL定位与分析.遗传学报.2003,30(12):1153-1160.
    21.于栓仓,王永健,郑小鹰.大白菜分子遗传图谱的构建与分析.中国农业科学.2003,36(2):190-195
    22.张鲁刚,王鸣,陈航,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报.2000,42(5):485-489
    23.张立平,吴平,祝金明,吴运荣.水稻亚铁胁迫诱导ADH的基因定位及其遗传分析.遗传学报,1999,26(4):359-362
    24. Alloard R W. Evidence for genetic restriction of recombination in Lima bean. Genetics. 1963, 48: 1389-1395
    25. Ambler J E, Brown J C. Cause of differential susceptibility to Zn deficiency in two varieties of navy beans. Agronomy Journal. 1969, 61: 41-43
    26. Ajisaka H, Kuginuki Y, Hida K, Enomoto S, Hirai M. A Linkage map of DNA markers in Brassica campestris. Breeding Science. 1995, 45 (Suppl.): 195-197
    27. Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa ssp. pekinensis syn. Campestris L.) using bulking segregant analysis. Euphytica. 2001, 118: 75-81
    28. Assuncao A G L, Martins P Da Costa, Folter S DE, Vooijs R, Schat H, Aarts M G M. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator. Plant, Cell and Enviroment. 2001, 24: 217-226
    29. Assuncao A G L, Schat H, Aarts M G M. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist. 2003, 159: 383-390.
    30. Axelsson T, Bowmann C M, Sharpe A G, Lydiate D J, Lagercrantz U. Amphidiploid Brassicajuncea contains conserved progenitor genomes. Genome. 2000, 43: 679-688
    31. Axelsson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome. 2001, 44: 856-864
    32. Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery. 1989, 1: 81-126
    33. Baker A J M, Proctor J, van Balgooy M M J, Reeves R D. Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In: Baker A J M, Proctor J, Reeves R D, eds. The vegetation of ultramafic (serpentine) soils. Proceedings of the Firstlnternational Conference on Serpentine Ecology. Andover: Intercept, 1992, 291-304
    34. Baker A J M, Whiting S N. In search of the Holy Grail-a further step in understanding metal hyperaccumulation. New Phytologist. 2002, 155: 1-4
    35. Barbier-Brygoo H, Gaymard F, Rolland N, Joyard J. Strategies to identify transport systems in plants. Trends in Plant science. 2001, 6: 577-585
    36. Beattie John H, Kwun In-S. Is zinc deficiency a risk factor for atherosclerosis? British Journal of Nutrition. 2004, 91: 177-181
    37. Bert V, Bonnin I, Saumitou-Laprade P., de Laguerie P. Petit D. Do Arahidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytologist. 2002, 155: 47-57
    38. Bert V, Macnair MR, De Laguerie P, Saumitou-Laprade P, Petit D. Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytologist. 2000, 146: 225-233.
    39. Bowen J E. Physiology of genotypic differences in Zn and Cu uptake in rice and tomato. Proceedings of 2nd International Symposium on Genetic Aspects of Plant Mineral Nutrition. Dordrecht, The Netherlands: Kluwer Academic Publisher, 1987, 413-423
    40. Brooks R R, Lee J, Reeves R D, Jaffrre T, Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration. 1977, 7: 49-57.
    41. Brown S L, Chancy R L, Angle J S, BakerA J M. Zinc and cadmium uptake by hypaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal. 1995, 59: 125-133
    42. Cakmak I, Sari N, Marschner H, Kalayci M, Yilmaz A, Eker S, Gulut K Y. Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in Zn efficiency. Plant and Soil. 1996, 180: 173-181
    43. Cakmak I, Derici R, Torun B, Tolay I, Braun H J, Schlegel R. Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale. In: Tando T, Fujita K, Mac T, Matsumoto H, Mori S, Sekiya (eds) J. Plant Nutrition for Sustainable Food Production and Environment, Kluwer Academic Publishers, Dordrecht, The Netherlands. 1997, 237-241.
    44. Chaubey C N, Senadhira D. Conventional plant breeding for tolerance to problem soils. In: Yeo A R, Flowers T J. (Eds.), In: Soil Mineral Stresses: Approaches to Crop Improvement, Springer-Verlag, Berlin, 1994, 11-36
    45. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics. 1994, 138: 963-971
    46. Chyi Y S, Hoenecke M E, Sernyk J L. A genetic map of restriction fragment length polymorism loci for Brassica rapa (syn.campestris). Genome. 1992, 25(5): 746-757
    47. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001, 212: 475-486
    48. Cobbett C S, Hussain D, Haydon M J. Structural and functional relationships between type 1B heavy metal transporting P-type ATPases in Arabidopsis. New Phytologist. 2003, 159: 315-321
    49. Colbert T, Till B J, Tompa R. High-throughput screening for induced point mutations. Plant Physiology, 2001, 126: 480-484
    50. Coleman J E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annual Review Biochemistry. 1992, 61: 897-946
    51. Comai L, Young Kim, Till B J, Reynolds S H, Greene E A, Codomo C A. Enns L C, Johnson J E, Burtner C, Odden A R, Henikoff S. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. The Plant Journal, 2004, 37: 778-786
    52. Curtis M D, Grossniklaus Ueli. A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology. 2003, 133: 462-469
    53. Douchkov D, Gryczka C, Stephan U W, HELL R, Baumlein H. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant, Cell and Environment. 2005, 28: 365-374
    54. Drager D B, Desbrosses-Fonrouge A G, Krach C, Chardonnens A N, Meyer R C, Saumitou-Laprade P and Kramer U. Two genes encoding Arabidopsis halleri MTP 1 metal transport proteins co-segregate with zinc tolerance and account for high MTP 1 transcript levels. The Plant Journal. 2004, 39: 425-439
    55. Eren E, Arguello JM. Arabidopsis HMA2, a divalent heavy metal-transporting P1B-type ATPase, is involved in cytoplasmic Zn21 homeostasis. Plant Physiology. 2004, 136: 3712-3723
    56. Escarre J, Lefebvre C, Gruber W, Leblanc M, Lepart J, Riviere Y, Delay B. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area implications for phytoremediation. New Phytologist. 2000, 145:429-437.
    57. Ettema, T J G., Huynen, M A, de Vos W M. and van der Oost, J. 2003 TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends in Biochemical Science. 28 (4), 170-173.
    58. Fleming M D, Andrews N C. 1998. Mammalian iron transport: an unexpected link between metal homeostasis host defense. Journal of Laboratory and Clinical Medicine. 132:462-464
    59. Foolad M R, Stoltz T, Dervinis C. Mapping QTLs conferring salt to lerance during germ ination intomato by selective genotyping. Molecular Breeding. 1997, 3: 269-277
    60. Genc Y, Shepherd K W, McDonald G K, Graham R D. Inheritance of tolerance to zinc deficiency in barley. Plant Breeding. 2003, 122: 283—284
    61. Genc Y, McDonald G K. The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat. Plant and Soil. 2004, 262:23-32
    62. Gibson R S. Zinc nutrition in developing countries. Nutrition Research Review. 1994, 7: 151-73
    63. Graham R D. Breeding for nutritional characteristics in cereals. Advence in Plant Nutrtion. 1984, 1: 57—102
    64. Graham R D, Ascher J S and Hynes S C. Selecting Zn efficient cereal genotypes for soils of low Zn status. Plant and Soil. 1992, 146: 241-250
    65. Graham R D, Rengel Z. Genotypic variation in zinc uptake and utilization by plants. Zinc in Soils and Plants. Ed. AD Robson. Pp 107-118. 1993. Kluwer Academic Publishers, Dordrecht.
    66. Gravotl A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P. AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Letters. 2004, 561: 22-28
    67. Hall J L, Williams L E. Transition metal transporters in plants. Journal of Experimental Botany. 2003, 4(393): 2601-2613
    68. Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. 2002, 53: 1-11
    69. Hambidge M. Human zinc deficiency. Journal of Nutrition. 2000, 130: 1344S-1349S
    70. Hartwig E E, Jones W F, Kilen T C. Identification and inheritance of inefficient zinc absorption in soybean. Crop Science. 1991, 31: 61-63
    71. Hacisalihoglu G, Hart J J, Kochian L V. High and low affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiology. 2002, 125: 456-463
    72. Hacisalihoglu G, Kochian LV. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytologist. 2003, 159:341-350
    73. Hacisalihoglul G, Ozturk L, Cakmak I, Welchl RM, Kochian L. Genotypic variation in common bean in response to zinc deficiency in calcareous soil. Plant and Soil. 2004, 259: 71-83
    74. Herbik A, Koch G, Mock H P, Dushkov D, Czihal A, Thielmann J, Stephan U W, Baumlein H. Isolation, characterization and cDNA cloning of nicotianamine synthase from barley, a key enzyme for iron homeostasis in plants. Europe Journal of Biochemical. 1999, 265:231-139
    75. Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N K, Mori S. Cloning of Nicotianamine Synthase Genes, Novel Genes Involved in the Biosynthesis of Phytosiderophores Plant Physiology. 1999, 119: 471-479
    76. Higuchi K, Watanabel S, Takahashi M, Kawasaki S, Nakanishil H, Nishizawa N K, Mori Satosh i. Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. The Plant Journal. 2001, 25 (2): 159-167
    77. Hoekenga Owen A. Hoekenga, Todd J. Vision, Jon E. Shaft, Antonio J. Monforte, Gung Pyo Lee, Stephen H. Howell, and Leon V. Kochian. Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erectaXColumbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait Plant Physiology. 2003, 132: 936-948
    78. Hussain D, Haydon M J, Wang Y W, Wong E, Sherson S M, Yong J, Camakaris J, Harper J F, Cobbett C S. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell. 2004, 16: 1327-1339
    79. Jhee E M, Dandridge K L, Christy A M, Pollard A J. Selective herbivory on low-zinc phenotypes of the hyperaccumulator Thlaspi caerulescens (Brassicaceae). Chemoecology 1999, 9: 93-95
    80. Jun S I, Kwon S Y, Paek K Y, Pack K H. Agrobacterium-mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage (Brassica campestris spp. pekinensis cv. "Spring Flavor"). Plant Cell Reports. 1995, 14: 620-625
    81. Karimi M, Inze D, Depicker Ann. GATEWAY~(TM) vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science. 2002, 5: 193-195
    82. Kearsey M J, Hybe V. QTL analysis in plants: where are we now? Heredity. 1998, 80: 137-142
    83. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. The Plant Journal. 2004, 39(2): 237-251
    84. Kim J H., Jang C S, Cho K W, Lim Y P. AFLP and RAPD mapping of Chinese cabbage (Brassica rapa L. var pekinensis). In Proceedings of the Plant and Animal Genome Conference Ⅶ, San Diego, California, U. S. A. 17-21 January 1999. pp. 17-21
    85. Knutzon D S, Thompson G A, Radke S E, Johnson W B, Knauf V C, Kridlt J C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proceedings of National Academy of Sciences. U. S. A 1992, 89: 2624-2628
    86. Kole C, Kole P, Vogelzang R, Osborn T C. Genetic linkage map of a Brassica rapa recombinant inbred population. The Journal of Heredity, 1997, 88 (6): 553-557
    87. Kole, C. Quijada P. Michaels SD. Amasino RM, Osborn TC. Evidence for homology of flowering-time genes and level of expression of alcohol dehydrogenases in the allotetraploid plant Tragopogon miscellus and its diploid progenitors. VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theoretical and Applied Genetics. 2001, 102:425-430
    88. Kole C, Williams PH, Rimmer SR, Osborn TC. Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Bassiea rapa (syn. carnpestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome. 2002, 45:22-27
    89. Koyama M L, Levesley A, Koebner R M D, Flowers T J, Yeo A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology. 2001, 25: 406-422
    90. Kupper H, Zhao F J, McGrath S P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology. 1999, 119:305-311
    91. Kupper H, Lombi E, Zhao F J, McGrath S P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta. 2000, 212: 75-84
    92. Landy A. Dynamic, structural, and regulatory aspects of lambda sitespecific recombination. Annual Review of Biochemistry. 1989, 58: 913-949
    93. Lasat M M, Baker A J M, Kochian L V. Physiological characterization of root Zn~(2+) absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiology. 1996, 112:1715-1722
    94. Lim Y P, Kim J H, Bang J W, Nam H G, Cho K W, Jang C S. Genetic mapping of Chinese cabbage (Braasica rapa L. var. pekinensis). Plant and Animal Genome Ⅵ. Abs., 1998, 221
    95. Ling H Q, Koch G, Baumlein H, Ganal M W. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proceedings of the National Academy of Science, U. S. A. 1999, 96:7098-7103
    96. Lin H X, Yanagihara S. Identification of QTL for salt tolerance in rice via molecular markers. Chinese Journal of Rice Science, 1998, 12 (2): 72-78
    97. Lin S, Cianzio S, Shoemaker R. Mapping genetic loci for iron deficiency chlorosis in soybean. MolecularBreeding, 1997, 3:219-229.
    98. Lombi E, Zhao F J, McGrath S P, Young S D, Sacchi G A. Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. The New Phytologist. 2001, 149:53-60
    99. Lombi E, Tearall K L, Howarth J R, Zhao F J, Hawkesford M J, McGrath S P. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology. 2002, 128: 1359-1367
    100. Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele Francoise. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiology. 2003, 131: 345-358
    101. Lu G, Cao J S, Chen H. Genetic linkage map of Brassica campestris L. using AFLP and RAPD markers. Journal of Zhejiang University (Sci.), 2002, 3(5): 600-605
    102. MacDiarmid C W, Gaither L A, Eide D. Zinc transporters that regulate vacuolar zinc storage in Saccharomyes cerevisiae. The EMBO Journal. 2000, 19: 2845-2855
    103. Macnair MR. Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. The New Phytologist. 2002, 155: 59-66.
    104. Macnair M R, Bert V, Huitson S B, Saumitou-Laprade P, Petit D. Zinc tolerance and hyperaccumulation are genetically independent characters. Proceedings of the Royal Society London. B 1999, 266: 2175-2179
    105. Magalhaes J V. Garvin D F, Wang Y H, Sorrells M E, Klein P E, Schaffert R E, Li L. Kochian L V. Comparative Mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics. 2004, 167: 1905-1914
    106. Mahadevappa M, Ikehashi H, Arun P. Screening rice genotypes for tolerance to alkalinity and zinc deficiency. Euphytica 1981, 30: 253—257
    107. Maret W. Zinc biochemistry, physiology, and homeostasis-recent insights and current trends. BioMetals. 2001, 14: 187-190
    108. Marschner H. Mineral Nutrition of Higher Plants. 1995. Academic Press, London.
    109. Ma"ser P, Thomine S, Schroeder J I, Ward J M, Hirschi K, S H, Talke I N, Amtmarm A, Maathuis F J M, Sanders D, Harper J F, Tchieu J, l Gribskov M, Persans M W, Salt D E, Kim S A, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 2001, 126: 1646-1667
    110. McCallum C M, Comai L, Greene E A, HenikoffS. Targeted screening for induced mutations. Nature Biotechnology. 2000, 18: 455-457
    111. McCallum C M, Comai L, Greene E A, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiology. 2000, 123: 439-442
    112. McGrath J M, Quiros C F. Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea. Theotical and Applied Genetics. 1991, 82: 668-673
    113. Meerts P, Van Isacker N. Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecology. 1997, 133: 221-231
    114. Mills R F, Krijger G C, Baccarini P J, Hall J L, Williams L E. Functional expression of AtHMA4, a P_(1B)-type ATPase of the Zn/Co/Cd/Pb subclass. The Plant Journal. 2003, 35: 164-176
    115. Nelson N. Metal ion transporters and homeostasis. The EMBO Journal. 1999, 18: 4361-4371
    116. Novakova B, Salava J, Lydiate D. Construction of a genetic linkage map for Brassica campestris L. (syn. Brassica rapa L.). Genetika Slechteni, 1996, 32:249-256
    117. Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H. Linkage analysis among loci for RAPDs isozyme and some agronomic traits in Brassica campestris L. Euphytica, 1997, 95: 115-123
    118. Oleykowski C A, Bronson Mullins C R, Godwin A K. 1998. Mutation detection using a novel plant endonuclease. Nucleic Acids Research, 26: 4597-4602
    119. Pakniyat H, Powell W, Baird E. AFLP variation in wild barley with reference to salt tolerance and associated ecogeography. Genome. 1997, 40: 332-341
    120. Pallotta M A, Graham R D, Langridge P, Sparrow D H B, Barker S J. RFLP mapping of manganese efficiency in barley. Theoritcal Applied Genetics. 2000, 101: 1100-1108
    121. Papoyan A, Kochian L V. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology. 2004, 136: 3814-3823
    122. Pence N S, Larsen P B, Ebbs S D, Letham D L D, Lasat M M, Garvin D F, Eide D, Kochian L V. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Science of U. S. A. 2000, 97: 4956-4960
    123. Pollard A J, Baker A J M. Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. New Phytologist. 1996, 132: 113-118
    124. Pollard A J, Baker A J M. Deterrence of herbivory by zinc hyperaccurnulation in Thlaspi caerulescens, New Phytologist. 1997, 135: 655-658
    125. Pollard A J, Powell K D, Harper F A, Smith J A C. The genetic basis of metal hyperaccumultion in plants. Critical Review in Plant Science. 2002, 21: 539-566
    126. Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theoretical and Applied Genetics. 2003, 106: 607-614
    127. Quesada V, Garcy'a-Marty'nez S, Piqueras P, Ponce M R, Micol J L. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiology. 2002, 130:951-963
    128. Reeves R D, Baker A J M. Metal accumulating plants. In: EnsleyBD, Raskin I, eds. Phytoremediation of toxic metals: using plants toclean-up the environment. New York, U. S. A: John Wiley & Sons, 1999. 193-229
    129. Reither. Genetic analysis of tolerance to low phosphorus stress in maize using restriction fragment polymorphisms. Theorotical Applied Genetics. 1991, 82:561-568
    130. Riede C R, Anderson J A. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Science. 1996, 36: 905-909
    131. Sandstead H H. Is Zinc deficiency a public health problem? Nutrition. 1995, 11(1 suppl): 87-92
    132. Schilling A. Development of a molecular genetic linkage map in Brassica rapa (syn. Campestris) L. MSc Thesis, University of Massachusetts, 1991
    133. Schranz M E, Quijada P, Sung S, Lukens L, Amasino R, Osborn T. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics. 2002, 162: 1457-1468
    134. Schlegel R, Cakmak I, Torun B, Eker S, Tolay I, Ekiz H, Kalayci M, Braun H J. Screening for zinc efficiency among wheat relatives and their utilization for alien gene transfer. Euphytica. 1998, 100: 281—286
    135. Singh S P, Westermann D T. A single dominant gene controlling resistance to soil zinc deficiency in common bean. Crop Science. 2002, 42:1071—1074
    136. Shankar A H. Nutritional modulation of malaria morbidity and mortality. The Journal of Infectious Diseases. 2000, 182 (suppl): S37-53
    137. Shen Z G., Zhao F L, McGrath S P. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell and Environment. 1997. 20: 898-906
    138. Song K M, Suzuki J Y, Slocum M K, Williams P H., Osborn T C. A linkage map of Brassica rapa base on restriction fragment length polymorphism loci. Theoretical and Applied Genetics. 1991, 82: 296-304
    139. Song K M, Slocum M K, Osborn T C. Molecular marker analysis of genes encoding morphological variation in Brassica rapa (syn. campestris). Theoretical and Applied Genetics. 1995, 90: 1-10
    140. Sparrow P A C, Townsend T M, Arthur A E, Dale P J, Irwln J A. Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theortical and Applied Genetics. 2004, 108: 644-650
    141. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa N K. 2003. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell. 15: 1263-1280
    142. Takeda A. Zinc homeostasis and functions of zinc in the brain. BioMetal. 2001, 14: 343-351
    143. Teutonico R A, Osborn T C. Mapping of RFLP and quantitative trait loci in Brassica rapa and comarison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theoretical and Applied Genetics. 1994, 89: 885-894
    144. Thomine S, Wang R, Ward J M, Crawford N M, Schroeder J I. Cadium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Science, U. S. A. 2000, 97: 4991-4996
    145. Thomine S, Lelievre F, Debarbieux E, Schroeder J I, Barbier-Brygoo. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal. 2003, 34: 685-695
    146. Tian G W, Mohanty A, Chary S Na, Li S J, Paap B, Drakakaki G, Kopec C D, Li J X, Ehrhardt D, Jackson David S, Rhee Y, Raikhel N V, Citovsky V. High-throughput fluorescent tagging of full-length Arabidopsis geneproducts in plantal. Plant Physiology. 2004, 135: 25-38
    147. Till B J, Burtner C, Comai L. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Research, 2004, 32 (8): 2632-2642
    148. Vallee B L, Falchuk K H. The biochemical basis of zinc physiology. Physiology Review. 1993, 73: 79-118
    149. Van der Zaal BJ, Neuteboom LW, Pinas, J E, Chardonnens A N, Schat H, Verkleij J A C, Hooykaas P J J. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology. 1999, 119: 1047-1055
    150. Van Ooijen J W. Accuracy of mapping quantitative trait loci in autogamous species. Theoretical and Applied Genetics. 1992, 84: 803-811
    151. Van Ooijen J W. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity. 1999, 83: 613-624
    152. Verreta F, Gravota A, Auroya P, Leonhardta N, Davidb P, Nussaumeb L, Vavasseura A, Richaud P. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters. 2004, 576:306-312
    153. Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P. 2005. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal Hisll stretch. FEBS Letters, 579: 1515-1522
    154. Vert Gre-gory, Briar J F, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. The Plant Journal. 2001, 26(2): 181-189
    155. Voorrips R E, Jongerius M C, and Karme H J. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theoretical and Applied Genetics. 1997, 94: 75-82
    156. Wang X W, Lou P, He H J, Yang B J, Zbang Y G, Zhao J J. Construction of an AFLP-based genetic linkage map using a double-haploid (DH) population from a cross between Chinese kale and Broccoli. Acta Horticulture Sinica. 2005, 32(1): 30-34
    157. Weber M, Harada E, Vess C, Roepenack-Lahaye E V, Clemens S. Comparative microarray analysis of Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. The Plant Journal. 2004, 37: 296-281
    158. White P J, Whiting S N, Baker A J M, Broadley M R. Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytologist. 2002, 153: 201-207
    159. Williams L E, Pittman J K, Hall J L, Emerging machanisms for heavy metal transport in plants. Biochimical Biophysica Acta. 2000, 1465: 104-126
    160. Wu P, Zhang G, Ladha J K, McCouch S R, Huang N. Molecular marker facilitated investigation on the ability to stimulate N fixation in the rhizosphere by irrigated rice plants. Theoritcal and Applied Genetics. 1995, 91: 1177-1183
    161. Wu P, Hu B. Characterization of tissue toleranceto iron by molecular markers in different lines of rice. Plant and Soil. 1998, 203: 217-226
    162. Yang B, Wen X, Kodali N S, Oleykowski C A, Miller C G, Kulinski J, Besack D, Yeung J A, Kowalski D, Yeung A T. Purification, cloning and characterization of the CELI nuclease. Biochemistry. 2000, 39: 3533-3541
    163. Zhao H, Eid D. The yeast ZRT1 gene encodes the zinc transporter pro a high affinity uptake system induced by zinc limitation. Proceedings of National Academy of Science of U. S. A. 1996, 93: 2454-2458
    164. Zhao F J, Lombi E, Breedon T, McGrath S P. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant and Cell Environment. 2000, 23: 507-514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700