小麦抗旱相关性状数量位点的遗传剖析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响小麦(Triticum aestivum L.)生产的最主要非生物胁迫因素。作物抗旱性是复杂的数量性状,对小麦抗旱相关重要生理和农艺性状进行QTL遗传剖析,对小麦抗旱性的遗传改良具有重要理论和现实意义。
     本研究以DH群体(旱选10号×鲁麦14)和RIL群体(Opata 85×W7984)为材料,在不同年点水分组合环境、不同发育时期调查抗旱相关生理性状(叶绿素含量(ChlC)和叶绿素荧光动力学参数(PCFK))及农艺性状(株高、单株分蘖数、单株穗数、单株结实穗数、分蘖成穗率、结实穗率、单株粒重、生物学产量、收获指数和千粒重),运用条件分析等方法估算代表各性状对干旱胁迫环境特异反应和抗旱性的旱胁迫系数(DS|WW)和抗旱指数(DRI)。并通过非条件和条件QTL遗传分析方法,揭示这些性状发育的遗传控制基础和重要抗旱相关QTL区域。主要研究结果如下:
     1.小麦抗旱相关生理性状和农艺性状对干旱胁迫反应敏感,属微效多基因控制的复杂数量性状。控制这些性状的QTL表现加性效应和上位性效应。许多QTL通过与其它QTL发生上位互作形成QTL遗传网络,QTL与环境的互作效应是抗旱相关性状遗传基础的重要组成部分,小麦分子标记辅助选择育种应考虑QTL位点间的复杂制约关系,兼顾广适性QTL和环境特异性QTL的选用。
     2.控制株高发育的基因在DH群体比在RIL群体发生了更广泛分离,涉及除6D外的所有染色体。同时表达加性和上位性效应的QTL参与QTL网络是DH群体株高的主要遗传控制形式。加性主效效应主要在拔节前表达,是株高遗传变异的主要来源。株高发育旱胁迫系数(DS|WW)主要源于环境互作效应。株高发育抗旱指数(DRI)的主要遗传成分是加性主效效应,主要在早期表达。
     3. DH群体ChlC在不同时期受加性主效效应或上位主效效应控制,环境对ChlC的影响较小;上位效应是控制DH群体PCFK及其衍生性状的主要遗传效应,但多数PCFK参数QTL表达也受环境的显著影响。
     4.同时表达加性和上位性效应的QTL与其它QTL形成的QTL遗传网络是控制千粒重的主要遗传基础,加性主效效应是千粒重的主要遗传效应。控制单株分蘖数、单株穗数、单株结实穗数、分蘖成穗率、结实穗率、生物学产量、单株粒重和收获指数的主要遗传成分依次是加性、上位性、上位性、加性、加性、加性、上位性和加性效应,环境对各性状的表现均有影响。
     5.染色体1B的WMC156~P3446.1、2D的3个区域WMC181~P3470.3、WMC453.1~WMC18~Xgwm30及Xgwm157~Xgwm539、3A的CWM48.1~WMC532、4D的Xgwm165.2~Xgwm192、5A的WMC410~WMC74~Xgwm291~Xgwm410、6A的Xpsp3071~Xgwm570等是多个性状QTL共享的标记区间,对进一步研究抗旱性状的遗传基础具有重要意义。
     本文对小麦抗旱相关重要生理和农艺性状及其发育动态进行了分子水平的遗传剖析,为通过分子育种进行小麦抗旱性的遗传改良提供了理论依据和技术支撑。
Drought stress is a major environment constraint greatly impacting wheat (Triticum aestivum L.) production in many arid and semi-arid areas of the world. Drought tolerance is a complex quantitative trait; it is very essential for genetic improvement of drought tolerance to dissect quantitative loci for physiological and morphological traits involved in the drought tolerance in wheat.
     Doubled haploid lines (DHLs) (Hanxuan 10×Lumai 14) and recombinant inbred lines (RILs) (Opata85×W7984) were selected as experiment materials in this study. Important traits associated with drought tolerance including physiological traits (chlorophyll content (ChlC) and parameters of chlorophyll fluorescence kinetics (PCFK)) and agronomic traits (plant height, number of tiller per plant (NT), spike number per plant (SNP), number of setting spike per plant (NSSP), ratio of setting spike number to maximal tiller number (RSST), ratio of setting spike number to total spike number (RSSS), biomass yield (BY), grain yield per plant (GYP), harvest index (HI) and weight of thousand grain (WTG)) were investigated in different locations and years under two water regimes, drought stress (DS) and well-watered condition (WW). Drought stress coefficient (DS|WW) and drought resistance index (DRI) were estimated for the given traits through conditional analysis to evaluate their special reaction under DS and to assess drought tolerance of them, respectively. QTL for target traits and their derived traits (DS|WW and DRI) were mapped to dissect their genetic mechanism and reveal the hot chromosome region shared by multi-QTLs. The major results were as follows:
     1. All target traits of DHLs and RILs showed significantly sensitive to drought stress, which was the character of complex quantitative traits. These traits were controlled by QTLs with additive effect and/or epistatic effect. Some QTLs were involved in complex QTL network, and some responded to specific environment, therefore, marker-assisted selection (MAS) for drought tolerance should give attention to both kinds of QTLs.
     2. Genes of plant height were detected on all chromosomes except 6D. It is deduced that genes of plant height segregate widerly in DHLs than in RILs. QTLs with additive and epistatic effects were the important genetic component for plant height, most of which acted in QTL networks. And additive main effect (A) was the major genetic effect for plant height, which expressed greatly in S1|S0. DS|WW of plant height on ontogeny was mainly affected by environment components. The major genetic component for DRI of plant height was additive main effect, which mainly expressed in S1|S0.
     3. ChlC in DHLs was mainly controlled by A effect or AA effect in different stages, which were hardly affected by environments. Epistatic effect was the major genetic effect for most PCFK and their derived traits; environments greatly affected these PCFK-related traits.
     4. QTLs with the additive and epistatic effects being involved in QTL genetic networks were the major genetic basis for WTG, and additive genetic main effect was its main genetic effect. The major genetic effects for NT, SNP, NSSP, RSST, RSSS, BY, GYP and HI were additive, epistatic, epistatic, additive, additive, additive, epistatic and additive effects in turn, which showed sensitive to environments.
     5. WMC156~P3446.1 on 1B, WMC181~P3470.3, WMC453.1~WMC18~Xgwm30 and Xgwm157~Xgwm539 on 2D, CWM48.1~WMC532 on 3A, Xgwm165.2~Xgwm192 on 4D, WMC410~WMC74~Xgwm291~Xgwm410 on 5A, and Xpsp3071~Xgwm570 on 6A were common regions shared by multi-traits. They were crucial regions for further elucidating genetic basis of drought-tolerant traits.
     In conclusion, the present research dissected genetically physiological and morphological traits associated significantly with drought tolerance on ontogeny in wheat. The results provided a genetic basis and techniques for improving drought tolerance by molecular breeding in wheat.
引文
1. 左海龙, 肖坷, 张永娟等. 控制水稻叶片叶绿素含量及其离体叶片叶绿素降解速度相关的定位简报. 分子细胞生物学报, 2007, 40: 346~350.
    2. 庄巧生.中国小麦品种改良及系谱分析. 2003,北京:中国农业出版社.P.1
    3. 庄杰云, 郑康乐. 水稻产量性状遗传机理及分子标记辅助高产育种. 生物技术通报, 1998, (1): 1~9.
    4. 朱军. 遗传模型分析方法. 北京: 中国农业出版社, 1997, 88~97.
    5. 朱军. 数量性状遗传分析的新方法及其在育种中的应用. 浙江大学学报(农业与生命科学版), 2000, 26: 1~6.
    6. 周晓果, 景蕊莲, 昌小平等. 小麦苗期水分利用效率及其相关性状的 QTL 分析. 植物遗传资源学报, 2005a, 6: 20~25.
    7. 周晓果, 景蕊莲, 郝转芳等. 小麦幼苗根系性状的 QTL 分析. 中国农业科学, 2005b, 38: 1951~1957.
    8. 周淼平, 任丽娟, 张旭等. 小麦产量性状的 QTL 分析. 麦类作物学报, 2006, 26:35~40.
    9. 周桂莲. 小麦抗旱性鉴定的形态指标及其分析评价. 陕西农业科学, 1996: 33~34.
    10. 赵新华, 张小村, 李斯深等. 小麦抗旱相关生理性状的 QTL 分析. 西北植物学报, 2005, 4: 696~699.
    11. 赵丽英, 邓西平, 山仑. 渗透胁迫对小麦幼苗叶绿素荧光参数的影响. 应用生态学报, 2005, 16: 1261~1264.
    12. 张正斌, 山仑, 徐旗. 控制小麦种?属旗叶水分利用效率的染色体背景分析. 遗传学报, 2000, 27: 240~246.
    13. 张正斌, 崔玉亭, 陈兆波等. 旱地农业研究中“三大观念”的转变. 中国农业科技导报, 2003, 6: 42~47.
    14. 张永强, 毛学森, 孙宏勇等. 干旱胁迫对冬小麦叶绿素荧光的影响. 中国生态农业学报, 2002, 10: 13~15.
    15. 张秋英, 李发东, 刘孟雨等. 不同水分条件下小麦旗叶叶绿素 a 荧光参数与子粒灌浆速率华北农学报, 2003, 18: 26~28.
    16. 张秋英, 李发东, 刘孟雨. 冬小麦叶片叶绿素含量及光合速率变化规律的研究. 中国生态农业学报, 2005, 13:
    17. 张秋英, 李发东, 高克昌. 水分胁迫对冬小麦光合能力和产量的影响. 西北植物学报, 2005, 25: 1184~1190.
    18. 张林刚, 邓西平. 小麦抗旱性生理生化研究进展干旱地区农业研究. 1998, 18: 87~92.
    19. 张利华, 许梅芬. 小麦收获指数和其他几个农艺性状的基因效应分析. 核农学报, 1997, 11:135~140.
    20. 张娟, 谢惠民, 张正斌等. 小麦抗旱节水生理遗传育种研究进展. 干旱地区农业研究, 2005, 23:231~238.
    21. 张金玲等. 小麦对干旱的生理反应及抗性机理. 国外农学-麦类作物, 1994, 5: 44~46.
    22. 张殿忠.干物质积累和脯氨酸积累的水势闽值与小麦抗早性的关系.干旱地区农业研究, 1990, (2): 66~71
    23. 张灿军. 小麦抗旱性的鉴定方法与指标. 中国小麦育种与产业化进展. 北京:中国农业出版社, 2002, 119~136.
    24. 张灿军, 冀天会, 杨子光等. 小麦抗旱性鉴定方法及评价指标研究Ⅰ鉴定方法及评价指标. 中国农学通报, 2007, 23: 226~230.
    25. 詹庆才,朱克永,陈祖武等. 利用水稻F2分离群体进行苗期耐冷性数量性状基因定位. 湖南农业大学学报(自然科学版), 2004, 30: 303~306.
    26. 袁爱平, 曹立勇, 庄杰云等. 水稻株高、抽穗期和有效穗数的 QTL 与环境的互作分析. 遗传学报, 2003, 30: 899~906.
    27. 余四斌, 李建雄, 徐才国等. 上位性效应是水稻杂种优势的重要遗传基础. 中国科学(C 辑). 1998, 4: 333~342.
    28. 余叔文, 汤章城. 植物生理与分子生物学. 科学出版社, 2001, 155~187.
    29. 余守武, 谢建坤, 万勇, 胡标林. 水稻抗旱性相关性状的 QTLs 定位研究进展. 分子植物育种, 2004, 2: 391~400.
    30. 叶少平, 李杰勤, 张启军等. 不同环境条件下水稻株高的 QTL 定位分析. 四川农业大学学报, 2006, 24: 20~24.
    31. 杨永霞, Pathak P. K., 朱军. 水稻苗重的耐冷性动态QTLs定位. 浙江大学学报(农业与生命科学版), 2005, 31: 131~138.
    32. 杨晓青, 张岁岐, 梁宗锁, 山颖. 水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响. 西北植物学报, 2004, 24: 812~816.
    33. 杨权海, 陆巍, 胡茂龙等. 水稻叶片叶绿素和过氧化氢含量的 QTL 检测及上位性分析. 遗传学报, 2003, 30: 245~250.
    34. 杨凯.小麦抗旱生理性状的染色体定位和苗期抗旱分子标记. 麦类文摘, 1998, 18: 11.
    35. 杨静慧, 杨焕庭. 苹果树植物叶片角质层厚度与植物抗旱性. 天津农学院学报, 1996, 3: 27~28.
    36. 杨洪强, 接玉玲. 以脱落酸为信使的植物逆境信号传递. 山东农业大学学报(自然科学版), 2001, 32: 549~554.
    37. 杨国华, 李绍清, 冯玲玲等. 水稻剑叶叶绿素含量相关性状的 QTL 分析. 武汉大学学报(理学版), 2006, 52: 751~756.
    38. 杨德武, 郝晓玲, 张云亭. 冬小麦产量性状的遗传效应分析. 生物数学学报, 1998, 13: 527~530.
    39. 杨德龙. 小麦抗旱相关重要生理性状和农艺性状数量位点遗传剖析 [博士学位论文]. 兰州, 甘肃农业大学, 2007, 6.
    40. 严建兵, 汤华, 黄益勤等. 不同发育时期玉米株高的动态分析. 科学通报, 2003, 48: 1959~1964.
    41. 薛永国, 刘丽君, 高明杰, 杨哲. 作物中QTL 的研究进展及展望. 东北农业大学学报. 2007, 38:542~547.
    42. 薛大伟, 郭龙彪, 曾龙军等. 水稻叶片保绿相关性状的QTL 分析. 作物学报, 2007, 33: 389 ~393.
    43. 徐云碧, 朱立煌. 分子数量遗传学. 中国农业出版社, 1994, 55~187.
    44. 徐建伟, 席万鹏, 方憬军等. 水分胁迫对葡萄叶绿素荧光参数的影响. 西北农业学报, 2007, 16:175~179.
    45. 邢永忠, 徐才国. 作物数量性状基因研究进展. 遗传, 2001, 23: 498~502.
    46. 辛业芸. 水稻产量性状QTL 定位研究进展. 湖南农业大学学报(自然科学版), 2007, 33: 396~402.
    47. 吴兆苏, 魏燮中. 长江下游地区小麦品种更替中产量及有关性状的演变与发展方向. 中国农业科学, 1984, 17: 14~22.
    48. 吴平, 罗安程. 应用分子标记研究氮素胁迫条件下水稻叶片叶绿素含量差异的遗传背景. 遗传学报, 1996, 23: 431~438.
    49. 卫云宗, 乔蕊清, 刘新月. 高产耐旱冬小麦育种技术及其评价方法研究. 华北农学报, 2001, 16:17~22.
    50. 卫宪云, 李斯深, 蒋方山等. 小麦早衰及其相关生理性状的QTL 分析. 西北植物学报, 2007,27: 485~489.
    51. 王永锐. 杂交水稻产量生理. 广州: 中山大学出版社, 1986,17~23.
    52. 王永锐. 水稻生理育种. 北京, 科学技术出版社, 1995, 460~507.业气象,
    56. 阳. 土壤水分胁迫对小麦形态及生理影响的研究. 河南农业大学学报, 1992, 1: 89~97.
    58. 桥等. 两种供氮水平下水稻生长后期相关性状的QTL 定位. 遗传学报,
    59. 稻苗期耐旱性基因位点及其互作的分析. 遗传学报, 2002, 29: 235~
    60. , 纪雪梅, 杨勇等. 水稻回交世代中两个抗纹枯病主效数量基因的鉴定与标记辅助选
    61. 迫对不同基因型水稻光合特性的影响. 干旱地区农业研究, 2003, 21:
    53. 王彦梅, 张正斌, 刘昌明等. 河北省抗旱节水小麦生产现状及育种对策. 中国生态农业学报,2004, 12: 142~144.
    54. 王娟, 李德全. 逆境条件下植物体内渗透调节物质的积累与活性氧代谢. 植物学通报, 2001,18: 459~465.
    55. 王建程, 严昌荣, 卜玉山. 不同水分与养分水平对玉米叶绿素荧光特性的影响. 中国农2005, 26: 95~98.王辰
    57. 汪斌, 兰涛, 吴为人等. 水稻叶绿素含量的QTL 定位. 遗传学报, 2003, 30: 1127~1132.童汉华, 梅捍卫, 余新2006, 33: 458~467.腾胜, 钱前, 曾大力等. 水
    240.谭彩霞择. 遗传学报, 2005, 32: 399~405.史正军, 樊小林. 干旱胁
    123~126.
    62. 沈成国. 植物衰老生理与分子生物学. 中国农业出版社, 2001, 30~41.
    63. 沈波, 庄杰云, 张克勤等. 水稻叶绿素含量的QTL及其与环境互作分析. 中国农业科学, 2005, 38: 1937~1943.
    64. 山仑, 黄占斌, 张岁歧. 节水农业. 北京: 清华大学出版社. 2000, 12~13.
    65. 任正隆, 李尧权. 小麦的收获指数和几个生理特性的遗传. 中国农业科学, 1984, 17: 29~ 33.
    66. 蒲光兰, 周兰英, 胡学华等. 干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响. 干旱地区农业研究, 2005, 23: 44~48.
    67. 潘学彪, 张亚芳, 左示敏, 陈宗祥. 作物重要数量性状基因鉴定与应用的若干问题. 2005, 2: 50~55.
    68. 穆平. 水、旱稻DH和RIL群体抗旱性状相关分析及其QTL表达规律比较 [博士学位论文], 北京: 中国农业大学. 2004, 5.
    69. 毛传澡, 程式华. 水稻农艺性状QTL 定位精确性及其影响因素的分析. 农业生物技术学报, 1999, 7: 386~394.
    70. 毛蓓蓓, 蔡文娟, 章志宏等.水稻籼粳交DH群体收获指数及源库性状的QTL分析. 遗传学报, 2003, 30: 1118~1126.
    71. 罗俊, 张木清, 吕建林. 水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响. 福建农业大学学报, 2000,(1) :18~22.
    72. 罗俊, 张木清, 林彦铨等. 甘蔗苗期叶绿素荧光参数与抗旱性关系研究. 中国农业科学, 2004 , 37: 1718~1721.
    73. 卢振民. 冬小麦近轴和远轴叶面气孔对土壤水分胁迫反应的敏感性. 植物生理学报, 1988, 14:223~227.
    74. 卢丛明, 张其德, 匡廷云. 水分胁迫对小麦叶绿素a 荧光诱导动力学的影响. 生物物理学报, 1993, 9: 453~457.
    75. 刘振业, 刘贞琦. 光合作用的遗传与育种. 贵州人民出版社, 1984: 48~52.
    76. 刘贞琦, 刘振业, 曾淑芬. 水稻某些光合生理特性的研究. 中国农业科学, 1982, (5): 33~39.
    77. 刘贞琦, 刘振业, 马达鹏等. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10:
    57~64.
    78. 刘兆晔, 于经川, 杨久凯等. 小麦生物产量、收获指数与产量关系的研究. 中国农学通报, 2006,
    22:182~184.
    79. 刘彦卓, 黄农荣, 黄秋妹等. 晚季不同类型高产水稻品种光合速率和叶绿素含量变化研究初报. 广东农业科学, 2000, (1): 2~4.
    80. 刘学义. 大豆抗旱性评定方法探讨. 中国油料, 1986, 4: 23~26.
    81. 刘立峰, 穆平, 张洪亮等. 水、旱稻千粒重和产量QTL效应的验证. 中国农业科学, 2006, 39: 219~224.
    82. 刘鸿艳. 335份旱稻核心种质构建与栽培稻抗旱相关QTL定位 [博士学位论文]. 广州, 华南热带农业大学2004.
    83.刘恩民,于强, 谢贤群. 水分亏缺对冬小麦冠层温度影响的研究. 中国农业生态学报, 2000, 8:21~23.
    84. 梁峥, 骆爱玲, 赵原等. 干旱和盐胁迫诱导甜菜叶中的甜菜碱醛脱氢酶的积累. 植物生理学报, 1996, 22 : 161~164
    85. 梁银丽, 张成娥. 冠层温度-气温差与作物水分亏缺关系的研究. 生态农业26.
    86. 梁新华, 许兴, 徐兆桢等. 干旱对春小麦叶绿素a 荧光动力学特征及产量间关系的影响. 干旱地区农业研究, 2001,19: 72
    87. 栗雨勤, 张文英, 王有增等. 作物抗旱性鉴定指标研究及进展. 河北农业科学, 2004, 8: 58~61.
    88. 李跃建, 宋荷仙, 朱华忠等. 小麦收获指数、生物产量和籽粒产量的稳定性分析. 西南农业学报, 1998, 11: 25~30.
    89. 李雪华, 李新海, 郝转芳等. 干旱条件下玉米耐旱相关性状的QTL一致性图谱构建. 中国农业科学, 2005, 38: 882~890.
    90. 李杏普. 小麦遗传资源研究. 北京中国农业大学出版社, 1997. 45~63.
    91. 李卫华, 尤明山, 刘伟等. 小麦GMP含量发育动态的QTL定位. 作物学报, 2006, 32: 995~1000.
    92.李斯深, 陈茂学, 王洪刚. 利用重组自交系(RILs)群体进行质量、数量性状的遗传分析. 遗传模型和小麦产量性状遗传. 作物学报, 2001, 27: 896~904.
    93. 李德全, 邹琦, 程炳蒿. 土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质. 植物生理学报, 1992, 18: 37~34.
    94. 黎裕, 王天宇, 石云素等. 玉米抗旱性的QTL分析研究进展和发展趋势. 干旱地区农业研究, 2004, 22: 32~393
    95.兰巨生, 胡福顺. 作物抗旱指数的概念和统计方法. 华北农学报, 1990, 5: 20~25.
    96. 景蕊莲.作物抗旱节水研究进展.中国农业科技导报.2007, 9(1):1~5
    97. 景蕊莲. 作物抗旱研究的现状与思考. 干旱地区农业研究, 1999, 17: 79~85.
    98. 景蕊莲. 作物抗旱相关性状的QTLs定位研究进展. 生物技术, 2000, 10: 31~38.
    99. 景蕊莲, 胡荣海. 作物抗旱性的根系研究. 国外农学-麦类作物, 1995, (3): 37~39.
    100. 景蕊莲, 昌小平, 贾继增等. 用花药培养创建小麦加倍单倍体作图群体. 生物技术, 1999, 9: 4~8.
    101. 金善宝. 中国小麦学. 北京: 中国农业出版社, 1996.
    102.蒋明义,杨文英,徐江等. 渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用. 植物学报, 1994, 36: 289~295.
    103. 蒋高明. 植物生理生态. 高等教育出版社. 2004, 191~192.
    104.姜文来. 中国21 世纪水资源安全对策研究. 水科学进展, 2000, 5: 23~26.
    105. 贾继增. 分子标记种质资源鉴定和分子标记育种. 中国农业科学, 1996, 29: 1~9.
    106.冀天会, 张灿军, 杨子光等. 冬小麦叶绿素荧光参数与品种抗旱性的关系麦类作物学报. 2005, 25: 64~66.
    107.胡颂平, 王正功, 张琳等. 干旱胁迫下水稻叶片光合速率与叶绿素含量的相关性及其基因定位. 中国生物化学与分子生物学报, 2007, 23: 926~932.
    108.胡颂平, 梅捍卫, 邹桂花等. 正常与水分胁迫下水稻叶片叶绿素含量的QTL分析. 植物生态学报, 2006, 30: 479~486.
    109.胡荣海. 农作物资源的抗旱筛选技术极其应用. 农牧情报研究, 1989, (1): 36~41.
    110. 胡茂龙, 张迎信, 孔令娜等. 利用回交重组自交系群体检测3个水稻光合功能相关性状QTL. 作物学报, 2006, 11: 1630~1635
    111. 胡茂龙, 王春明, 杨权海等. 水稻光合功能相关性状QTL分析. 遗传学报, 2005 , 32: 818~824.
    112. 何慈信, 朱军, 严菊强等. 水稻穗干物质重发育动态的QTL定位. 中国农业科学, 2000, 33: 24~32.
    113. 韩龙植, 乔永利, 张三元等.不同生长环境下水稻主要农艺性状的QTL分析. 中国农业科学, 2005, 38: 1080~1087.
    114. 郭晓维, 赵春江, 康书江等. 水分对冬小麦形态、生理特性及产量的影响. 华北农学报, 2000, 15: 40~44.
    115.郭龙彪,水稻发育和农艺性状基因在不同时空差异表达的分子剖析 [博士学位论文]. 浙江,浙江大学,2005.
    116.高用明, 朱军. 植物QTL定位方法的研究进展. 遗传,2000, 22: 175~179.
    117. 高鹭, 陈素英, 胡春胜. 喷灌条件下冬小麦冠层温度的试验研究. 干旱地区农业研究, 2005, 23:1~5. 118. 范平, 詹克慧, 孙建英等. 小麦主要性状的遗传模型分析. 河南农业大学学报, 1999, 33: 231~234.
    119. 邓仲篪, 徐目, 陈翠莲等. 籼粳亚种组合干物质累积效率与光合特性的关系. 杂交水稻, 1992, (1) : 40~44.
    120. 程建峰, 潘晓云, 刘宜柏等.水稻抗旱性鉴定的形态指标. 生态学报, 2005, 25:3117~3125.
    121. 陈温福, 徐正进, 张龙步. 水稻超高产育种的生理基础. 沈阳:辽宁科学技术出版社, 1995, 123~150.
    122. 陈四龙, 张喜英, 陈素英等. 不同供水条件下冬小麦冠气温差、叶片水势和水分亏缺指数的变化及其相互关系. 麦类作物学报, 2005, 25: 38~43.
    123. 曹卫东, 贾继增, 金继运. 不同供氮水平下小麦苗期叶绿素含量的QTL 及互作研究. 植物营养与肥料学报, 2004,10: 473~478.
    124.曹树青, 翟虎渠, 钮中一等. 不同产量潜力水稻品种的剑叶光合特性研究. 南京农业大学学报,2000, 23: 1~4.
    125. Zhuang J.Y, Lin H.X, Lu J, et al. Analysis of QTL×Environment interaction for yield components and plant height in rice. Theor. Appl. Genet., 1997, 95: 799~808.
    126. Zhu J. Mixed model approaches for mapping quantitative trait loci. Hereditas (Beijing), 1998, 20:137~138.
    127. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633 ~ 1639.
    128. Zhao J.Y, Becker H. C, Ding H.D., et al. QTL of three agronomically important traits and their interactions with environment in a European × Chinese rapeseed population. Acta Genetica Sinica, 2005, 32: 969~978.
    129. Zhang Y.J., Zhao C.J., Liu L.Y., et al. Chlorophyll fluorescence detected passively by difference reflectance spectra of wheat {Triticum aestivum L.) leaf. J. Integrat. Plant Biol., 2005, 47: 1228— 1235
    130. Zeng Z.B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci, 1993, 90: 10972~10976.
    131. Yue B., Xue W., Luo L., et al. QTL Analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Gen. Sin., 2006, 33: 824~832.
    132. Yin X., Stam P., Dourleijn C. J., et al. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor. Appl. Genet., 1999, 99: 244~253.
    133. Yang J., Zhu J., Williams R. W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527~1536.
    134. Yang J., Zhang J., Wang Z., et al. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron. J., 2001, 93: 196~206.
    135. Yang J., Zhang J., Huang Z., et al. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci., 2000,40: 1645 ~ 1655.
    136. Yang J., Zhang J. Grain filling of cereals under soil drying. New Phyto., 2006, 169: 223~236.
    137. Yang G.H., Xing Y.Z., Li S.Q., et al. Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas, 2006, 143: 236~245.
    138. Yang D.L., Jing R. L., Chang X. P., et al. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176: 571~584.
    139. Yang D. L, Jing R. L, Chang X. P, et al. QTL mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). Journal of Integrative Plant Biology. 2007b, 49:1~9.
    140. Yan J.Q., Zhu J., He C.X., Benmoussa M, et al. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998a, 150: 1257—1265.
    141. Yan J.Q, Zhu J, He C.X, et al. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet, 1998b, 97: 267—274.
    142. Yan J.Q, Zhu J, He C.X, et al. Molecular marker-assisted dissection of genotype×environment interaction for plant type traits in rice. Crop Sci., 1999, 39: 538—544.
    143. Yadav R. S., Hash C. T., Bidinger F. R., et al. Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor.Appl. Genet., 2002, 104: 67—83.
    144. Xu Y.B. Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed. Rev. 1997, 15: 85-139.
    145. Xu W., Subudhi P. K., Crasta O. R., et al. Molecular mapping of QTLs conferring stay-green in grain sorghum {Sorghum bicolor L. Moench). Genome, 2000,43: 461—469.
    146. Xiao J., Li J., Yuan L., et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92:230—244.
    147. Wu W.R., Li W.M., Tang D.Z., et al. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999, 151: 297—303.
    148. Wu R.L., Ma C.X., Zhu J., et al. Mapping epigenetic quantitative trait loci (QTL) altering a developmental trajectory. Genome, 2002,45: 28—33.
    149. Wright, S. Evolution and the Genetics of Populations. University of Chicago Press, Chicago, 1968.
    150. Wardlaw I. F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann. Bot., 2002, 90: 469—476.
    151. Waddington S. R., Ransom J. K., Osmanzai M., et al. Improvement in the Yield Potential of Bread Wheat Adapted to Northwest Mexicol. Crop Sci., 1986, 26: 698—703.
    152. Verma V., Foulkes M. J., Worland A. J., et al. Mapping quantitative trait loci for leaf senescene as a yield determinant in winter wheat under optical and drought-stressed environments. Euphytica, 2004,135:255—263.
    153. Van, Ooster E. J., Acevedo E. Adaptation of barley to harsh Mediterranean environments, phytica, 1992: 1-14.
    154. Teulat B., This D., Kharirallah M., et al. Several QTLs involved osmotic adjustment trait variation in barley {Hurdeum vulgare L.). Theor Appl. Genet., 1998, 96: 688—698.
    155. Teulat B., Merah O., Sirault X., et al. QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl. Genet, 2002, 106:118—126.
    156. Teng S., Qian Q., Zeng D.L, et al . QTL analysis of leaf photosynthetic rate and related physiological traits in rice {Oryza sativa L.). Euphytica ,2004 ,135:127
    157. Tanksley S. D. Mapping polygenes. Annu Rev Genet, 1993,27: 205—233.
    158. Tambussi E. A., Nogues S., Araus J. L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005,221: 446—458.
    159. Sun D.S, Li W.B, Zhang Z.C, et al. Quantitative trait loci analysis for the developmental behavior of soybean {Glycine max L. Merr). Theor. Appl. Genet., 2006, 112: 665—673.
    160. Subudhi P. K., Rosenow D. T., Nguyen H. T. Quantitative trait loci for the stay green trait in sorghum {Sorghum bicolor L.Moench): consistency across genetic backgrounds and environments. Theor. Appl. Genet., 2000, 101: 733—741.
    161. Sourdille P., Cadalen T., Guyomarc'h H., et al. An update of the Courtot × Chinese Springintervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet., 2003, 106: 530-538.
    162. Sourdille P, Quarrie S. A., Pekic Q. S., et al. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J. Exp. Bot., 2006, 57: 2627—2637.
    163. Snape J. W., Law C. N., Worland A. J. Whole chromosome analysis of height in wheat. Heredity, 1977,38:25-36.
    164. Schnurbusch T, et al. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor. Appl. Genet., 2003, 107: 1226—1234.
    165. Schneider K. A., Brothers M. E., Kelly J. D. Marker assisted selection to improve drought resistance in common bean. Crop.Sci, 1997, 37: 51—60.
    166. Sayed O. H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynetica, 2003, 41: 321—330.
    167. Sawkins M. C, Farmer A. D., Hoisington D., et al. Comparative map and trait viewer (CMTV): An integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments. Plant Mol. Biol., 2004, 56: 465—480.
    168. Sari.Gorla M., Krajewski P., Di F. N., et al. Genetic analysis of drought tolerance in maize by molecular markers: II. Plant height and flowering. Theor. Appl. Genet., 1999, 99: 289—295.
    169. Sakamoto T, Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture. Curr. Opin. Biotechnol, 2004, 15: 144—147.
    170. Russell L., Malmberg, Stephanie et al. Epistasis for Fitness-Related Quantitative Traits in Arabidopsis thaliana Grown in the Field and in the Greenhouse. Genetics, 2005, 171: 2013-2027
    171. Quarrie S. A., Stojanovc J., Pekic S. Improving drought resistance in small-grained cereals: A case study, progress and prospects. Plant Growth Regul., 1999,29: 1 — 21.
    172. Quarrie S. A., Steed A., Calestani C, et al. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQl and its use to compare QTLs for grain yield across a range of environments Theor. Appl. Genet., 2005, 110: 865—880.
    173. Quarrie S. A., Gulli M, Calestani C, et al. Location of a gene regulation dronght-production on the long arm of chromosome 5 A of wheat. Theor. Appl. Genet., 1994, 89: 794—800.
    174. Quarrie S. A., et al. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J. Exp. Bot., 2006, 57: 2627—2637.
    175. Price A., Urtois B. Mapping QTLs associated with drought resistance in rice: Progress, Problem and Prospects. Plant Growth Regul., 1999,29: 123—133.
    176. Plaut Z., Butow B. J., Blumenthal C. S., et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res, 2004, 86: 185—198.
    177. Peter V., John W., Ritsert J. Mapping multiple QTL of different effects: comparison of a simple sequential testing strategy and multiple QTL mapping. Molecular Breeding, 2000, 6: 11 —24.
    178. Pestsova E.G., Borner A., Roder M. S. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor. Appl. Genet., 2006, 112: 634~647.
    179. Pestsova E., Roder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor. Appl. Genet., 2002, 106: 84—91.
    180. Peng J.Y., Ronin T., Fahima M. S., et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci., 2003, 100: 2489—2494.
    181. Pawan Kulwal, Neeraj Kumar, Ajay Kumar, et al. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics, 2005, 5: 254~259.
    182. Orjan C and Haley C. S. Epistasis: too often neglected in complex trait studies? Nature Reviews Genetics, 2004, 5: 618—625.
    183. Nguyen H. T., Babu R. C, Blum A. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci., 1997, 37: 1426—1434.
    184. Nelson J. C, Sorrells M. E., Deynze A. E. V, et al. Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 1995c, 141: 721 —731.
    185. Nelson J. C, Deynze A. E. V, Autrique E., et al. Molecular mapping of wheat. Homoeologous group 3. Genome, 1995a, 38: 525—533.
    186. Nelson J. C, Deynze A. E. V., Autrique E., et al. Leroy wheat. Homoeologous group 2. Genome, 1995b, 38:516-524.
    187. Morgan J. M., Tan M. K. Chromosomal location of a wheat osom-regulation gene using RFLP analysis. Aust. J. Plant physiol, 1996,23: 803—806.
    188. Mohamed E., El.Lithy, Emile J. M., et al. Quantitative trait locus analysis of growth-related traits in a eew arabidopsis recombinant enbred population. Plant Physiology, 2004, 135: 444—458.
    189. McCartney C.A, et al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain'. Genome, 2005, 48: 870—883.
    190. McBee G. G, Waskom R. M., Miller F. R., et al. Effect of senescence and non-senescence on carbohydrates in sorghum during late kernel maturity states. Crop Sci., 1983, 23: 372—376.
    191. Marino C. L., Nelson J. C, Lu Y.H, et al. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome, 1996, 39: 359—366.
    192. Malmberg R. L., Mauricio R. QTL-based evidence for the role of epistasis in evolution. Genet Res Camb, 2005, 86: 89—95.
    193. Malmberg R. L., Held S., Waits A., Mauricio R. Epistasis for fitness-related quantitative traits in arabidopsis thaliana grown in the field and in the greenhouse. Genetics, 2005, 171: 2013—2027.
    194. Main M. A. R., Bailey M. A., Ashley D. Molecular markers associated with water use efficiency and leaf ash in soybean.Crop Sci., 1996, 36: 1252—1257.
    195. Main M. A. R., Ashley D., Bailey M. A. An additional QTL for water use efficiency in soybean. Crop Sci., 1998, 38: 390—393.
    196. Maccaferri M., Sanguineti M. C, Corneti S., et al. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 2008, 178: 489—511.
    197. Lu C. M., Zhang J.H. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust. J. plant physiol., 1998,25: 883—892.
    198. Lu C. M, Zhang J. H. Effects of water stress on photosytem II photochemistry and its thermostability in wheat plants. J. Exp. Bot., 1999, 50: 1199—1206.
    199. Liu S.B., Zhou R., Dong Y.C., et al. Development, utilization of introgression lines using a synthetic wheat as donor. Theor. Appl. Genet., 2006, 112: 1360—1373.
    200. Lin H.X, Qian H. R, Zhuang J.Y, et al. RFLP mapping of QTLs for yield and related character in rice(Oryza sativa L.). Theor. Appl. Genet., 1996,92: 920—927.
    201. Lilley J. M., Ludlow M. M. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. Field Crops Res, 1996,48 : 185—197.
    202. Li Z.K, Yu S. B, Afitte H. R., et al. QTL×Environment interactions in rice. I. Heading date and plant height. Theor Appl. Genet, 2003, 108: 141 — 153.
    203. Li Z.K, Pinson S. R. M., Park W. D., et al. Epistasis for three grain yield components in rice. Genetics, 1997, 145: 453—465.
    204. Li W.L, Nelson J. C, Chu C.Y, et al. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica. 2002, 125:357—366.
    205. Levitt J. Response of plants to environmental stresses, water, radiation, salt and other stresses. New York: Academic Press, 1980, 325—358.
    206. Lebreton C. V, Steed L. A., Pekic S., et al. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot., 1995,46: 853—865.
    207. Law C. N., Snape J. W., Worland A. J. The genetical relationship between height and yield in wheat. Heredity, 1973,40: 133-151.
    208. Lark K. G, Chase K., Adler F. R., et al. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA, 1995, 92: 4656—4660.
    209. Lander E. S., Botstein S. Mapping Mendelian factors underlying quantitative teak loci using RFLP linkage maps. Genetics, 1989, 121: 185—199.
    210. Lanceras J. C, Pantuwan G, Jongdee B., et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice plant physiology, 2004, 135: 384—399.
    211.Kulwal P. L., Kumar N., Kumar A., et al. Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content Funct Integr Genomics, 2005, 5: 254—259.
    212. Korzun V, Roder M. S., Ganal M. W., et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104—1109.
    213. Kashiwagi T., Ishitnaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol., 2004, 134: 676~683.
    214. Kao C. H., Zeng Z.B. General formulas for obtaining the MLE and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics. 1997, 53: 359-371.
    215. Jompuk C, Fracheboud Y., Stamp Peter, et al. Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions, J. Exp. Bot., 2005, 56: 1153—1163.
    216. Jiang G.M., Sun J.Z., Liu H.Q., et al. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. J Plant Res, 2003, 116: 347~354.
    217. Jiang G H., He Y.Q., Xu C.G, et al. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor. Appl. Genet., 2004, 108: 688—698.
    218. Jiang C, Zeng Z.B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140: 1111-1127.
    219. Inoue T., Inanaga S., Sugimoto Y., et al. Contribution of pre-anthesis assimilates and current photosynthesis to grain yield, and their relationships to drought resistance in wheat cultivars grown under different soil moisture. Photosynetica, 2004,42: 99—104.
    220. Huang X.Q., Coster H., Ganal M. W., et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379—1389.
    221. Herve D, Francoise F, Berrios EF, et al. QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annum L.) under greenhouse condition. J. Exp. Bot., 2001, 52, 1857—1864.
    222. Haussmann B. I. G, Mahalakshmi V., Reddy B. V. S., et al. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet, 2002, 106: 133—142.
    223. Hao Z.F., Chang X.P, Jing R.L., et al. QTL mapping for drought tolerance at stages of germination and seedling in wheat {Triticum aestivum L.) using a DH population. Agricultural Sciences in China, 2003,2:943—949.
    224. Guo L.B, Qian Q, Zeng D.L, et al. Genetic dissection for leaf correlative traits of rice (Oryza sativa L.) under drought stress. Acta Gen. Sin., 2004, 31: 275—280.
    225. Groos C, Robert N, Bervas E, et al. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106:1032—1040.
    226. Fracheboud Y., Ribaut J. M., Vargas M., et al. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J. Exp. Bot., 2002, 53: 1967—1977.
    227. Fracheboud Y, Jompuk C, Ribaut J. M., et al. Genetic analysis of cold-tolerance of photosynthesis in maize Plant. Molecular Biology, 2004, 56: 241—253.
    228. Flagella Z, Campanile RG, Ronga G, et al. The maintenance of photosynthetic electron transport inrelation to osmotic adjustment in durum wheat cultivars differing in drought stress resistance. Plant Sci., 1996,118: 127—133.
    229. Fick G. N., Qualset C. O. Genes for dwarfness in wheat, Trztzcum aestzcum aestzvuml. Genetics, 1973,75:531—539.
    230. Eriksen L., Borum E, Jahoor A. Inheritance and localisation of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat {Triticum aestivum L.) genome with DNA markers. Theor Appl Genet, 2003, 107: 515—527.
    231. Ellis M. H., Spielmeyer W., Gale K. R., et al. "Perfect" markers for the Rht-Blb and Rht-Dlb dwarfing genes in wheat. Theor Appl Genet, 2002, 105:1038—1042.
    232. Ellis M. H., Rebetzke G. J., Azanza F., et al. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423—430.
    233. Ekanayake I. J., Toole J. C, Carrity D. P. Inheritance of root characters and their relations to drought resistance in rice. Crop Sci., 1985,25: 927—933.
    234. EI.Hafid R, Smith D H, Karrou M., et al. Physiological responses of spring durum wheat cultivars to early season drought in a mediterranean environment. Ann. Bot., 1998, 81: 363—370.
    235. Deynze A. E. V, Dubcovsky J., Gill K. S., et al. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome, 1995, 38: 45—59.
    236. De Koeyer D. L., Tinker N. A., Wight. P., et al. Molecular linkage map with associated QTLs from a hulless x covered spring oat population. Theor Appl Genet, 2004, 108: 1285—1298.
    237. Courtois G M., Shinha P. K., Prasad K., et al. Mapping QTL s associated with drought avoidance in upland rice. Mol. Breed., 2000, 6: 55—66.
    238. Choosak Jompuk et al. Mapping of quantitative trait loci associated with chilling tolerance in maize(Zea mays L.) seedlings grown under field conditions. J. Exp. Bot. 2005, 56: 1153—1163
    239. Chandra B. R., Pathan M., Blum A., et al. Comparison of measurement methods of osmotic adjustment in rice cultivars. Crop Sci., 1999, 39: 150—158.
    240. Champoux M. C, Wang G, Sarkarung S., et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969— 981.
    241. Ceccarelli S., Acevedo E, Grando S. Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica, 1991, 56: 169— 185.
    242. Cao G, Zhu J., He C, et al. Impact of epistasis and QTL× environment interaction on the developmental behavior of plant height in rice (Oryza saliva L.). Theor Appl Genet, 2001, 103: 153-160.
    243. Cakir R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res, 2004, 89: 1~16.
    244. Cadalen T., Sourdille P., Charmet G., et al. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet, 1998, 96: 933~940.
    245. Byrne P. F., Butler J. D., Anderson G. R., et al. QTLs for agronomic and morphological traits in a spring wheat population derived from a cross of heat tolerant and heat sensitive lines (poster). In: Plant, Animal and Microbe Genomes X Conf. San Diego, Calif. 2002
    246. Bryan G. J., Collins A. J., Stephenson P., et al. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet, 1997, 96:557—563.
    247. Borrell A. K., Hammer G. L. Nitrogen dynamics and the physiological basis of stay-green in sorghum. Crop Sci., 2000,40: 1295 — 1307.
    248. Borrell A. K, Hammer G L, van Oosterom E, et al. A consequence of balance between supply and demand for nitrogen during grain filling. Ann. Appl. Bio., 2001, 138: 91—95.
    249. Borrell A. K, Bidinger F. R, Sunitha K. et al. Trait associated with yield in recombinant inbred sorghum lines varying in rate of leaf senescence. Int Sorghum and Millets Newslett, 1999,40: 31~ 34.
    250. Borner A, Schumann E, FUrste A, Coster H. Leithold B. Roder M., Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat {Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921—936.
    251. Blum A. Towards standard assays of drought resistance in crop plants. In: Ribaut JM and Poland D eds. Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. A strategic Planning Workshop held at CIMMYT, El Batan, Mexico, 1999,29—35.
    252. Baum M., Grando S., Backes G, et al. QTLs for agronomic traits in the mediterranean environment identified in recombinant inbred lines of the cross 'Arta' × H. spontaneum 41-1. Theor Appl Genet, 2003, 107: 1215—1225.
    253. Bansal U. K., Saini R. G, Kaur A. Genetic variability in leaf area and chlorophyll content of aromatic rice. International Rice Research Notes, 1999, 24: 21.
    254. Bansal K. C, Sinha S. K. Assesaent of drought resistance in 20 accessions of Triticum aestivum and related species I. Total dry matter and grain yield stability. Euphytica, 1991, 56: 7—14.
    255. Babu R. C, Nguyen B. D., Chamarerk V, et al. Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Sci., 2003, 43: 1457—1469.
    256. Ayala L., Henry M., van Ginkel M., et al. Identification of QTLs for BYDV tolerance in bread wheat. Euphytica, 2002,128: 249—259.
    257. Atchley W. R., Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics , 1997, 147: 765—776.
    258. Ali M., Jenesen C. R., Mogensen V. O. T. Early signals in field grown wheat in response to shallow soil drying. Austral. J. Plant Physiol., 1998,25: 871—882.
    259. Agrama H. A. S., Moussa M. E. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996, 91: 89—97.ages on vegetative and reproductive growth of corn. Field Crops Res, 2004, 89: 1 — 16.
    244. Cadalen T., Sourdille P., Charmet G, et al. Molecular markers linked to genes affecting plant height

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700