水稻光合功能相关性状QTL分析及转绿型白叶突变体基因的图位克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界人口的不断增长,粮食短缺已成为本世纪全球最严重的问题之一。水稻提供了半数以上世界人口的食粮,其产量的提高必然是解决未来全球粮食危机的有效途径之一。光合作用及相关生理性状是决定产量的重要因素。叶色突变体是开展光合生理研究的理想材料。本研究利用3个定位群体为材料,检测控制水稻光合功能相关生理性状QTL。同时以转绿型白叶突变体玉兔S为材料,开展了光合生理研究,并自行开发了分子标记精细定位和图位克隆了突变基因,从而为水稻高光效生理育种的分子改良和转绿型白叶突变体在生产上应用奠定了理论基础。主要结果如下:
     1利用重组自交系群体检测水稻光合功能相关性状QTL
     利用粳稻Kinmaze/籼稻DV85杂交后代单粒传衍生的81个F_(11)家系所组成的重组自交系群体,研究水稻光合功能相关性状的数量性状基因座(QTL)。在水稻抽穗后7d测定叶片全氮含量(TLN)、叶绿素a/b比值(Chl.a:b)和叶绿素含量(Chl),共检测到6个QTL,各QTL的LOD值为2.66~4.81,贡献率为11.2~29.6%。其中,在第1、2和11染色体上检测到3个与全氮含量相关的QTL,相应贡献率为17.3%、15.3%、13.7%;在第3和4染色体上检测到2个与叶绿素a/b比值相关的QTL,贡献率为13.8%和29.6%;在第1染色体上检测到1个与叶绿素含量相关的QTL,贡献率为11.2%。4个QTL为本研究新检测的基因座。有趣的是,控制叶绿素含量的qCC-1,位于第1染色体上RFLP标记C122附近,与已报道的NADH-谷氨酸合成酶基因位置一致,而叶绿素合成始于谷氨酸,暗示该基因座与水稻光合功能关系极为密切。然而,对抽穗后30d叶绿素含量进行QTL分析,结果未检测到与其相关的QTL,表明控制叶绿素含量qCC-1效应随水稻叶片的衰老而降低。
     2利用回交重组自交系群体检测水稻光合功能相关性状QTL
     利用98个家系组成的日本晴(粳稻)/Kasalath(籼稻)∥日本晴回交重组自交系群体(BC_1F_(10)),研究水稻光合功能相关性状的数量性状基因座(QTL)。在水稻抽穗后7d测定叶片全氮含量(TLN)、叶绿素a/b比值(Chl.a:b)和叶绿素含量(Chl),共检测到8个QTL,各QTL的LOD值为2.61~6.42,贡献率为9.7~21.0%。其中,在第1和6染色体上检测到2个与全氮含量相关的QTL,相应贡献率为9.7%、10.8%;在第2、3和12染色体上检测到3个与叶绿素a/b比值相关的QTL,贡献率为10%、10.5%、21%;在第1、4和8染色体上检测到3个与叶绿素含量相关的QTL,贡献率为13.7%、10.7%、10%。有趣的是,此群体检测的qCC-1,也位于第1染色体上RFLP标记C122附近,进一步表明该基因座对水稻光合功能的重要性。对抽穗后30 d叶绿素含量进行QTL分析,结果在第4和6染色体上检测到2个QTL与其相关,而位于标记C122附近的qCC-1也未被检测到,从而进一步暗示此位点的效应随水稻叶片的衰老而降低。
     3利用染色体片段置换系群体检测水稻光合作用及相关生理性状QTL
     利用由籼稻品种IR24和粳稻品种Asominori杂交衍生的Asominori染色体片段置换系群体为材料,研究了水稻光合作用及相关生理性状的QTL。在水稻抽穗后7 d测定叶片光合速率(PHO)、蒸腾速率(TR)、气孔导度(SCO)、胞间CO_2浓度(IC)、叶绿素含量(CHL)、全氮含量(TLN)。共检测到10个QTLs,分布于第1、3、4、5、7、8和10染色体上,LOD值在2.77~8.42之间,贡献率变幅为9.5~46.5%。其中仅有控制气孔导度的qSCO-8与控制叶绿素含量的gCHL-8以及第10染色体上控制气孔导度的gSCO-10与控制胞间CO_2浓度的gIC-10位置相同,分别位于第8染色体上标记R727和第10染色体上标记C1166附近。其它QTL在染色体上的位置不同,暗示水稻光合功能遗传机理的复杂性。
     4水稻转绿型白叶突变体基因的图位克隆
     利用一个由~(60)Co-γ射线诱变得到的水稻转绿型白叶(vwl)突变体玉兔S为材料,其在2叶1心期前表现白化,以后慢慢转绿,恢复正常生长。对突变体的光合色素、叶绿体显微结构及突变基因克隆进行了比较系统的研究,得到以下结果:
     (1)光合色素测定结果显示,转绿前突变体叶片中无法正常合成叶绿素a、叶绿素b、β-类胡萝卜素;转绿后上述3种光合色素合成正常。表明突变体苗期白化是由总的光合色素减少所致。
     (2)转绿前后的叶绿体电镜显微观察表明,转绿前突变体细胞内完全丧失了叶绿体结构,只有一些类似前质体的结构;转绿后突变体细胞内具有正常的叶绿体结构,含有丰富的类囊体。
     (3)遗传分析表明,该突变属于单基因隐性突变。
     (4)利用公共图谱上SSR分子标记和F_2群体中672个突变体单株对突变基因进行了初步定位。结果表明,突变基因位于第3染色体上标记RM411和RM6832之间,距离分别为1.1cM和1.2cM。
     (5)利用根据水稻基因组数据自行开发的SSR、CAPS以及dCAPS分子标记和F_2群体中2240个突变体单株,构建了FWL基因区域高密度遗传图谱和BAC重叠群,最终将突变基因定位在标记P45和D8之间的45kb范围内,与标记P50共分离。
     (6)对定位区域内所有潜在的基因进行分析,发现在预期的目标基因位置存在一个编码假定PPR(pentatricopeptide repeat)蛋白的基因(暂命名为OsPPR2)。已知PPR蛋白属于RNA结合蛋白一类,控制叶绿体mRNA的稳定或翻译。因此,这个基因应是vwl的一个候选基因。测序结果显示,突变体中该基因编码区有一个5bp的缺失。基于缺失设计的InDel标记I1分析F_2群体中的2240个突变体单株和20个正常叶色的水稻品种,结果表明标记I1与vwl共分离。由此可以初步认为,OsPPR2就是VWL。
Food shortage is one of the most serious global problems with the increasing of the worldwide population in this century. Rice is the most important food crop in the world and feeds over half of the global population. To meet the expanding food demands of the rapidly growing world population, increases in rice yield and production will be required. Photosynthesis and its related physiological traits play an important role in yield determination. Leaf coloration mutant is one of the most ideal materials for photosynthesis research. In the present study, three mapping populations were utilized for quantitative trait loci (QTL) detection controlling photosynthesis and its related physiological traits. Meanwhile, a virescent white leaf mutant (tentatively designated as vwl), a Indica variety named Yutu S, was used for photosynthetic physiological analysis. Fine mapping and map-based cloning of vwl gene, were carried out on the mutant using molecular marker developed based on the public sequence data. These results should be useful for marker-assisted selection in rice high photosynthetic efficiency breeding and utilization of vwl mutant in rice production. The main conclusions are as follows:1 QTL detection for traits associated with photosynthetic functions in rice, using recombinant inbred linesA mapping population of 81 F_(11) lines (Recombinant Inbred Lines, RILs), derived from a cross between a japonica variety Kinmaze and an indica variety DV85 by single-seed descent method, was used to detect quantitative trait loci (QTL) for traits associated with photosynthetic functions. Total leaf nitrogen content (TLN), chlorophyll a/b ratio (Chl.a:b) and chlorophyll content (Chl) were measured in leaves of rice (Oryza sativa L.) at seven days after heading, and a total of six putative QTLs were detected with percentage of variance explained (PVE) running between 11.2 - 29.6%, and LOD of QTLs 2.66 - 4.81. Of those putative QTLs, three for TLN were detected on chromosomes 1, 2 and 11, with PVE of 17.3%, 15.3% and 13.7%, respectively; Two controlling Chl.a:b on chromosomes 3 and 4, PVE 13.8% and 29.6%; One controlling Chl on chromosome 1, PVE 11.2%. Four of those detected QTLs were newly reported in this study. Interestingly, the QTL controlling chlorophyll content, namely qCC-1 reported here, was detected in the region of the RFLP marker C122 on chromosome 1, where harbored NADH-glutamate synthase structure gene according to the previous study. Because the biosynthesis of chlorophyll begins with glutamate, qCC-1 would play a vital role in photosynthetic functions. Whereas, no QTL controlling chlorophyll content were detected 30 days after heading, suggesting that the effect of the QTL controlling chlorophyll content decreased during leaf senescence.
     2 QTL detection for traits associated with photosynthetic functions in rice, using backcross inbred lines
     A mapping population, the backcross inbred lines derived from a cross of Nipponbare/Kasalath//Nipponbare by the single seed descent method, was used to detect quantitative trait loci (QTL) for traits associated with photosynthetic functions. Total leaf nitrogen content (TLN), chlorophyll a/b ratio (Chl.a:b) and chlorophyll content (Chl) were measured in leaves of rice (Oryza sativa L.) at 7th day after heading, and a total of eight putative QTLs were detected with percentage of variance explained (PVE) running between 9.7~21% and LOD of QTLs 2.61~6.42. Of those putative QTLs, two for TLN were detected on chromosomes 1 and 6, with PVE of 9.7% and 10.8%, respectively; Three controlling Chl.a:b on chromosomes 2、3 and 12, PVE 10%、10.5% and 21%; Three controlling Chl on chromosome 1、4 and 8, PVE 13.7%、10.7% and 10%. More interestingly, the QTL controlling chlorophyll content, namely qCC-1 in this population, was also detected in the region of the RFLP marker C122 on chromosome 1. So qCC-1 would play a vital role in photosynthetic functions. Two QTLs controlling Chl were detected on chromosomes 4 and 8 at the 30th day after heading, however, no QTL were also detected in the vicinity of C122, further suggesting that the effect of the qCC-1 controlling Chl decreased during leaf senescence.
     3 QTL detection for photosynthesis and its related physiological traits in rice, using chromosome segment substitution lines
     Sixty-five chromosome segment substitution lines (CSSLs), derived from a cross between an indica (IR24) and a japonica variety (Asominori) of rice (Oryza sativa L.), were utilized for quantitative trait loci (QTL) mapping for photosynthetic and related physiological traits. Net photosynthesis rate (PHO), stomatal conductance (SCO), transpiration rate (TR), intercellular CO_2 concentration (IC), leaf chlorophyll (CHL), and total leaf nitrogen content (TLN) were measured in flag leaves 7 d after heading. The CSSLs showed transgressive segregation for many of the traits, and significant correlations were observed for most of the traits. In total, ten QTLs were detected on chromosomes 1, 3, 4, 5, 7, 8, and 10 with a range of percentages of variance explained (PVE) stomatal conductance (qSCO-10) and intercellular CO_2 concentration (qIC-10) in the vicinity of C1166 on chromosome 10. No other overlapping loci associated with different traits were detected. These results suggested that the genetic mechanism of photosynthesis was very complex in rice.
     4 Map-based cloning of a virescent white leaf gene in rice
     The virescent white leaf mutant (tentatively designated as vwl) was screened from a PA64S M_2 population mutagenized with ~(60)Co gamma rays. The mutant (named Yutu S, a Indica rice) leaves exhibit albino but finally turn to normal green after 3rd leaf stage. However, no difference in other agriculture traits was observed between the wild type and the mutant. Systematical research including photosynthetic pigment, chloroplast microscopic observation and gene cloning was carried out on the vwl mutant. The results are as follows:
     (1) The measurement of photosynthetic pigment in the leaves showed that the mutant had no neither chlorophyll a and chlorophyll b, norβ-carotenoid before the leaves turned to normal green, however, no difference in photosynthetic pigment was observed between the mutant and the wild-type leaves after the leaves turned to normal green. These results suggested that the deficient in the total photosynthetic pigment led to the albinism at the stage office seedling.
     (2) Transmission electron microscopic examination revealed that the mesophyll cells of the mutant contained some proplastid-like structures instead of the normal chloroplasts before the leaves turned to normal green, however, had plenty of normal chloroplasts which contain thylakoid membranes after the leaves turned to normal green.
     (3) The genetic analysis of the vwl mutant indicated that the phynotype of virescent white leaf was controlled by a recessive gene.
     (4) The vwl locus is primarily located between markers RM411 and RM6832, at the distances of 1.1 and 1.2 cM, respectively, on chromosome 3, using available SSR molecular markers and 672 mutant individuals of the F_2 population.
     (5) For fine mapping of the vwl gene, more PCR-based markers, such as SSR, CAPS and dCAPS, were designed on basis of public rice genome sequence data. Using these markers and over 2240 mutant plants of the F2 population, the high-resolution genetic map and BAC eontig of the vwl locus were constructed. Eventually, the vwl locus was narrowed to a 45-kb genomic DNA region between two markers, P45 and D8, and cosegregated with marker P50.
     (6) In the 45-kb target gene region, a gene (tentatively designated as OsPPR2) encoding putative pentatricopeptide repeat (PPR) protein was discovered at the expected position of vwl. PPR proteins belong to RNA-binding protein family, which have shown to influence stability or translation of specific chloroplast mRNA. We took OsPPR2 as the possible candidate gene of vwl. Sequencing the OsPPR2 and comparing the counterpart DNA region between the vwl mutant and the wild-type revealed that the mutant had 5-bp deletions within the coding region. The InDel marker I1 developed on basis of the deletion was used to survey over 2240 mutant plants of the F2 population and 20 different wild-type rice varieties. The results showed that the I1 was cosegregated with the vwl lucos, suggesting that the gene OsPPR2 is very likely VWL.
引文
Abrol Y P, Chatterjee S R, Kumar P A, et al. Improvement in nitrogen use efficiency: physiological and molecular approaches. Cur Sci, 1999, 76: 1357-1364
    Ajay K G, Kim J K, Thomas G O. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 2002, 99: 15898-159031
    Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci., 1996, 93: 15503-15507
    Arnon D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-15
    Arun K T, Baishnab C T. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol, 1998 117: 851-858
    Asa S, Tadao A, Jose A, et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinⅨ. Nature, 2003, 421 (2): 79-83
    Ashikari U Y, Lisa M, Takuichi F, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483
    Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding, 2002, 121: 281-291
    Bansal U K, Saini R G, Kaur A. Genetic variability in leaf area and chlorophyll content of aromatic rice. International Rice Research Notes, 1999, 24 (1): 21
    Basten C J, Weir B S, Zeng Z B. QTL Cartographer version 1.13: A reference manual and tutorial for QTL mapping. 1999, World Wide Web URL: Http://statgen.ncsu.edu/qtlcart/cartographer.html
    Carbonell, E A, Asins M J. Statistical models for the detection of genes controlling quantitative trait loci (QTL) expression. In: Jain S M, Sopory S K eds. In Vitro Haploid Production in Higher Plants. Dordrecht (Netherlands): Kluwer Academic Publishers. 1996, 2: 255-285
    Causse M A, Kflton T M, Kcho Y G, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274
    Cha K W, Lee Y J, Koh H J, et al. Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet, 2002, 104: 526-532.
    Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant Journal, 2005, 41(3): 364-375
    Chen M S, Gernot P, Barbazuk W B, et al. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14: 537-545
    Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95: 553-567
    Cheng Z, Dong F, Langdon T, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant cell, 2002, 14: 1691-1704
    Chory J. Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biol, 1991, 3: 538-548
    Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971
    Cook M G, Evans L T. Some physiological aspects of the domestication and improvement of rice (Oryza sativa L.). Field Crops Res, 1983, 6: 219-238
    Davis S J, Kirepa J. Viertra R D. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci, 1999, 96: 6541-6546
    Debabrata R, Sheshehayee M S, Mukhopadhyay K, et al. High nitrigen use efficiency in rice genotypes is associated with higher net photosynthetic at lower rubisco content. Biologia Plantarum, 2003, 46: 251-256
    Delphine H, Francoise F, Ericka F B, et al. QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J of Exp Bot, 2001, 52: 1857-1864
    Ding Y H, Liu N Y, Tang Z S, et al. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase Ⅱ subunit Ⅲ. Plant Cell, 2006, on line
    Doi K, Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independent of Hd1. Genes & Development, 2004, 18: 926-936
    Dong Y J, Dong W Q, Shi S Y, et al. Identification and genetic ananlysis of a thermo-sensitive seeding-colour mutant in rice (Oryza sativa L.). Breeding Science, 2001, 51: 1-4
    Elena Y, Valeria Z, Gaby W, et al. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barely mutant albostrians. Plant Journal, 2003, 35: 512-522
    Emile J M, Clerkx M E, Vierling E L, et al. Analysis of natural allelic variation of arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol, 2004; 135: 432-443
    Enamul H, Bassem A S, Matthew H, et al. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science, 2004, 305: 1937-1941
    Enrique L J, Jarvis R P, Atsuko T, et al. New Arabidopsis cue mutants suggest a close connection between plastid-and phytochrome regulation of nuclear gene expression. Plant Physiol, 1998, 118: 803-815
    Fambrini M, Castagna A, et al. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS Ⅱ activity and low endogenous level of abscisic acid. Plant Science, 2004, 167: 79-89
    Frachebout Y, Ribout J M, Vargas M, et al. Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J of Exp Bot, 2002, 53: 1967-1977
    Frary A, Nesbitt TC, Frary Am, et al. fw2.2: A quantitative trait locus key to the evolution of Tomato fruit size. Science, 2000, 289: 85-88
    Gary N C. SAS Institute SAS users guide: statistics. SAS Institute, 1988
    Georg J, Susan R N, Steven D R, et al. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129: 440-450
    Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) Science, 2002, 296: 92-100
    Harushima Y K, Yano M, Kshimura A, et al. A high density rice genetic linkagemap with 2275 markers using a single F2 population. Genetics, 1998, 148: 479-494
    He Z H, Li J M, Christer S, et al. Developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol, 1994, 106: 537-546
    Heidi U B, Isabelle F, Waly D, et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 2004, 16: 2499-2513
    Henrik N, Agnethe H, Tom J, et al. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development. Journal of Cell Science, 2004, 117: 4807-4818
    Hiroki S, Kensuke K, Yuzum T, et al. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45(8): 958-996
    Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J of Exp Bot, 2000, 5: 475-485
    Hu S P, Yon Y M. Genetic analysis of chlorophyll content in rice by molecular markers. Agricultural Science & Technology Newsletter, 2004, 5 (2): 8-11
    Iba K, Takamiya K I, Yoshihiro T, et al. Formation of functionally active chloroplasts is determined at a limited stage of leaf development in virescent mutants of rice. Developmental Genetics, 1991, 12: 342-348
    Ishimaru K, Kobayashi N, Ono K, et al. Are contents of rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics ? J of Exp Bot, 2001a, 52: 1827-1833
    Ishimaru K, Yano M, Aoki N, et al. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theor Appl Genet, 2001b, 102: 793-800
    Iwata N, Omura T. Studies on the trisomics in rice plants (Oryza sativa L) Ⅲ relation between trisomics and genetic linkage groups. Japan J Breed, 1975, 25(6): 363-368
    Janardhan K V, Murty K S, Rawlo S. Path coefficient analysis and heritability of photosynthetic rate andassociated leaf characters in rice varieties. Indian Journal of plant physiology, 1983, 26 (2): 168-1761
    Jean L P, Nicole S D. Source-sink manipulations and carbohydrate metabolism in maize. Crop Sci, 1992, 32: 751-756
    Johanna E C, Matthew J T, Alison G S. Green or red: what stops the traffic in the tetrapyrrole pathway? TRENDS in Plant Science, 2003, 8(5): 224-430
    John R E. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant physiol, 1983, 72: 297-302.
    Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-ceficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472
    Kannangara C G, Gough S P, Bruyant P, et al. tRNA~(glu) as a cofactor in 5-aminolevulinate biosynthesis. Trends Biochem. Sci 1988, 13: 139-143
    Kao C H, Zeng Z B, Teadaler D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203-1216
    Karen T C, Rosana M O, Jackie L, et al. Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell, 1998, 10: 741-752
    Ken H, Makoto T, Ralf N, et al. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of arabidopsis NPH3 is required for phototropism of Coleoptiles and lateral translocation of auxin. Plant Cell, 2005, 17: 103-115
    Kensuke K, Akiko M, Mitsuo N, et al. A virescent gene V_1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant Journal 1997, 12(6): 1241-1250
    Kensuke K, Asanori Y, Naoko M, et al. Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol, 2004, 45(9): 1194-1201
    Kensuke K, Hitoshi I, Kawabata S, et al. Chlorophyll deficiency caused by a specific blockage of the C_5-pathway in seedlings of virescent mutant rice. Plant Cell Physiol, 1994, 35(3): 445-449
    Kodiveri M, Gothandam E S K, Hongjoo C, et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Molecular Biology, 2005, 58: 421-433
    Kohchi T, Mukougaw A K, Frankenberg B, et al. The Arabidopsis HY2 gene encodes phytochromobilin synthase, aferredoxin-dependent biliverdin reductase. Plant cell, 2001, 13: 425-436
    Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant cell physiol., 2002, 43(10): 1096-1105
    Kourill R, Ilikl P, Nausl J, et al. On the limits of applicability of spectrophotometric and spectrofluorimetric methods for the determination of chlorophyll a/b ratio. Photosynth Res, 1999, 62: 107-116
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genetics Newsletter, 1999, 1: 104-106
    Kushnir S, Babiyehuk E, Storozhenko S, A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89-100
    Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits RFLP linkage maps. Genetics, 1989, 121: 185-199
    Lang C A. Simple micro-determination of Kjeldahl nitrogen in biological materials. Analytical Chemistry, 1958, 30: 1692-1694
    Leech R M, Rumsby M G, Thomson W W. Plastid differentiation, acy lipid, and fatty acid changes in developing green maize leaves. Plant Physiol, 1973, 52: 240-245
    Leonp A A, Machenzie S. Nuclear control of plastid and mitochondrial development in higher plants. Annu Rev Plant Physiol, 1998, 49: 453-480
    Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939
    Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice. Nature, 2003a, 422: 618-621
    Li Y H, Qian Q, Zhou Y H, et al. Brittle culml, which encodes a cobra-like protein, affects the mechanical properties of rice plants. Plant Cell, 2003b, 15: 2020-2031
    Lincion S, Daly M, Lander E S. Construction genetic maps with MAPMAKER/EXP 3.0. In: Whitehead Institute Technical Report. 2nd ed. Cambridge: Whitehead Institute, 1992
    Liu J P, Eck J V, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shape tomato fruit. Proc. Natl. Acad. Sci., 2002, 99(20): 13302-13306
    Ma J F, Tamail K, Yamaji N, et al. A silicon transporter in rice. Nature, 2006, 440: 688-691
    Mac Y. Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis and yield potential. Plant and Soil, 1997, 196: 201-210
    Makoto K, Kenzo M, Shuichi I, et al. Low glutelin contentl: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455-1467
    Mann C C. Crop scientists seek a new revolution. Science, 1999a, 283: 310-314
    Mann C C. Genetic engineers aim to soup crop photosynthesis. Science, 1999b, 283: 314-316
    Mark A B, Madhavan S, John M. Two sweetclover (Melilotus alba Desr.) Mutants temperature sensitive for chlorophyll expression. Plant Physiol, 1993, 103: 1123-1131
    Maurice S B, Sakae A, Mika N. High-level expression of maize phosphoenolpyruvate carbboxylase in transgenicrice plants. Nature, 1999, 17: 76-801
    McCouch S R, Cho Y G, et al. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11-13
    Mccouch S R, Doerge R W. QTL mapping in rice. Trends Genet, 1995, 11: 482-487
    Mccouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice(O ry z a sativa L.) DNA Research, 2002, 9: 199-207
    Mcfadden G I. Chloroplast origin and integration. Plant Physiol, 2001, 125: 50-53.
    Megan T S, Michael J T, Bernard E P, et al. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell, 2006, 18: 283-294
    Meskauskiene R, Nater M, David G, et al. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci, 2001, 98: 12826-12831
    Mitsuhiro O, Makot K, Yoshimichi F, Masahiro Y, Makoto H, Tomyuki Y, Yadashi S. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J of Exp Bot, 2001, 52: 1209-1217
    Miyoshi K, Ito Y, Serizwa A, et al. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant Journal. 2003, 3: 532-540
    Mochizuki N, Brusslan J A, Larkini R, et al. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci., 2001, 98: 2053-2058
    Morita K. Release of nitrogen from chloroplasts during leaf senescence in rice (Oryza sativa L.). Ann bot, 1980, 46: 297-302
    Motohashi R, Ito T, et al. Functional analysis of the 37kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant Journal, 2003, 34(5), 719-731
    Motoyuki A, Hitoshi S, Lin S Y, et al. Cytokinin oxidase regulates rice grain production. Science, 2005, 23: 1-8
    Muller R B, Ehrhardt T, Plesch G. Molecular features of stomatal guard cells. J of Exp Bot, 1998, 49: 293-304
    Mullet J E, Dynamic regulation of chloroplast transcription. Plant Physiol, 1993, 103: 309-313
    Nagata N, Ryouichi T, Soichirou S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species. Plant Cell, 2005, 17: 233-240
    Nori K, Kazumaru M, Ken I N, et al. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46: 48-62
    Obara M, Kajiura M, Fukuta Y, et al. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthease in rice (Oryza sativa L.). J of Exp Bot, 2000, 5: 475-485
    Ohno Y. Varietal difference of photosynthetic efficiency and dry matter production of Indica rice. Tech. Bull TARC, 1976, no.9
    Olivier L, Chaillou P, Merigout J T, et al. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol, 2003, 131: 345-358
    Osman A M, Milthorpe F L. Photosynthesis of wheat leaves in relation to age, illuminance and nutrient supply. Photosynthetica 1971, 5: 61-70
    Palmer R G, Mascia P N. Genetic and ultrastructure of a Cytoplasmically inherited yellow mutant in soybeans. Genetics, 1980, 95: 889-892
    Paterson A, Hklander E, Skhewitt J D, et al. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 35: 721-726
    Pierre C, David S, Cordelia B, et al. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57-68
    Prina A R, Arias M C, Lainez V A, et al. A cytoplasmically inherited mutant controlling early chloroplast development in barley seedlings. Theor Appl Genet, 2003, 107: 1410-1418
    Prioul J L, Steve Q, Mathide C, Dominique D V. Dissecting complex physiological functions through the use of molecular quantitative genetics. J of Exp Bot, 1997, 48: 1151-1163.
    Rawson H M, Hackett C. An exploration of the carbon economy of the tobacco plant, Gas exchange of leaves in relation to position on the stem, ontogeny and nitrogen content. Aust J Plant physiology, 1974 1: 551-560
    Ray D T, McCreight J D. Yelow-tip: a cytoplasmicaly inherited trait in melon (Cucumis mlo L.). Journal of Heredity, 1996, 87: 245-247
    Reinbothe S, Pollmann S, Springer A, A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH: protochlorophyllide oxidoreductase (POR) A. Plant Journal, 2005, 42(1): 1-12
    Ren Z H, Gao J P, Cai X L, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature genetics, 2005, 37:1141-1146
    
    response of Syrian barley landraces to high-light and heat stress. Aust. J. Plant Physiol, 1999, 26: 569-578
    Robert M L, Jose M A, Joseph R E, GUN4, a Regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902-906
    Robertson D, Laetsch W M. Structure and function of developing barely plastids. Plant Physiol, 1974, 54: 148-159
    Robson P R , Donnison I S, Wang K, et al. Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnology Journal, 2004, 2: 101-112
    
    Rodermel S. Pathways of plastid-to-nucleus signaling. Trends Plant Sci, 2001, 6: 471-478
    Samuel I B. Enzymes of chlorophyll biosynthesis. Photosynth Res, 1999, 60: 43-73
    Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994; 17: 915-919
    Sasaki T, Song J, Koga B Y, et al. Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNA from a callus cDNA library. Plant Journal, 1994, 6: 615 - 624
    Schultes N P, Sawers R J H, et al. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant Journal, 2000, 21(4): 317-327
    Shan X Q, Wang H O,Zhang S Z, et al. Accumulation and uptake of light rare earth elements in hyperaccumulator Diccroteris dichotoma. Plant Science, 2004, 165: 1343-1353
    Sheehy J E, Michell P L, Hardy B. Redesigning rice photosynthesis to increasing yield. Amsiterdam: Elsevier Science, 2000, 167-175
    Shoemaker R C, Palmer R G. A possible interaction between Cyt-Y3 and Y20-K2. Soybean genet Newsletter, 1984, 111-113
    Shoemaker R C. Characterization of a cytoplasmically inherited yellow foliar mutant(Cyt-Y3)in soybean. Thero Appl Genet, 1985, 69:27-284
    Simko I, Mcmurry S, Yang H M, et al. Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiol, 1997, 115: 1453-1459
    Small I D, Peeters N. The PPR motif-a TPR related motif prevalent in plant organellar proteins. Trends Biochem. Sci, 2000, 25: 46-47
    Stern D B, Hanson M R, Barkan A. Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends Plant Sci, 2004, 9: 293-301
    Sumiyo T, Motoyuki A, Shozo F, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790
    Surpin M, Larkin R M, Chory J. Signal transduction between the chloroplast and nucleus. Plant Cell, 2002, 14: S327-S338
    Susek R E, Ausubel F M, Chory J. Signal transduction mutants of Arabidopsis uncouple nuclear CAB and RBCS gene expression from chloroplast development. Cell, 1993, 4: 787-799
    Susek R E, Chory J. A tale of two genomes: role of a chloroplast signal in coordinating nuclear and plastid genome expression. Plant Physiol, 1992, 19: 387-399.
    Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu. Rev. Genet., 1997, 31: 61-89
    Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the asubunit of protein kinase CK2. Proc. Natl. Acad. Sci., 2001, 98(14): 7922-7927
    Takashi M, Wu J Z, Hiroyuki K, et al. The map-based sequence of the rice genome. Nature 2005, 436(11): 793-800
    Takeuchi Y, Lin SY, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor. Appl. Genet., 2003, 107: 1174-1180
    Tan Y F, Li J X, Yu S B, et al. The three important traits for cooking and eating quality office grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet, 1999, 99: 642-648
    Tankley S D. Mapping polygenes. Annu Rev Genet, 1993, 27: 205-233
    Tanya C F, Staehelin L A. Characterization of a family of chlorophyll-deficient wheat(Triticum) and barley (Hordeum vulgare) mutants with defects in the magnesium-Insertion step of chlorophyll biosynthesis. Plant Physiol, 1994 104: 639-648
    Tanya G F, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants. Physiologia plantarum, 1996, 97: 311-320
    Taylor W C. Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol, 1989, 40: 211-233
    Teare I D, Peterson C J, Law A G. Size and frequency of leaf stomata in cultivars of Triticum aestivum and other Triticum species. Crop Sci. 1971, 11: 496-498
    Teng S, Qian Q, Zeng D L, et al. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 2004, 135: 1-7
    Terry M J, Kendrick R E. Feedback Inhibition of Chlorophyll Synthesis in the Phytochrome Chromophore-Deficient aurea and yellow-green-2 Mutants of Tomato. Plant Physiol., 1999, 119: 143-152
    Terry M J, Ryberg M, Raitt C E, Page A M. Altered etioplast development in phytochrome chromophore-deficient mutants. Planta, 2001, 214: 314-325
    Thoday J M. Location of polygenes. Nature, 1961, 191: 368-370
    Thomas R S, Vincent V. Physiological traits for crop yield improvement in low N and P environments. Plant and Soil., 2002, 245: 1-15
    Tuinstra M R, Grote E M, Goldsbrough P B, et al. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor L. Moench. Mol Breed, 1997, 123: 439-448.
    Utako Y, Yano M, Lin H X, et al. A rice spotted leaf gene, Sp17, encodes a heat stress transcription factor protein. Proc. Natl. Acad Sci., 2002, 99: 7530-7535
    Wan X Y, Wan J M, Su C C, et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet, 2004, 110 (1): 71-79
    Wan X Y, Wan J M, Weng J F, et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments, Theor Appl Genet, 2005, 110 (7), 1334-1346
    Wang G L, Mackill D J, Bonman J M, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136: 1421-1434
    Wang Z H, Zou Y J, Li X Y, et al. Cytoplasmic male sterility of rice with boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, online
    Weller J L, Terry M J, et al. The phytochrome-deficient pcdl mutant of pea is unable to convert heme to biliverdin a. Plant Cell, 1996, 8: 55-57
    Weller J L, Terry M J, et al. The phytochrome-deficient pcd2 mutant of pea is unable to convert biliverdin Ⅸa to 3(Z)-phytochromobilin. Plant Journal, 1997, 11: 1177-1186
    Wettstein D V, Kahn A, Nielesn O F, et al. Genetic regulation of chlorophyll analyzed with mutant in barely. Science, 1976, 184: 800-802
    Wettstein D V, Simon G C, Gamini K. Chlorophyll biosynthesis. Plant Cell, 1995, 7: 1039-1057
    Wolfgang L, Gillmor C S, Wolf R S. Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol., 2000, 123: 795-805
    Wu J, Maehara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525-535
    Xiao J, Li J, Grandillo S, et al.. Identification of trait-improving quantitative trait loci alleles from a wild rice relative Oryza rufipogon. Genetics, 1998, 150: 899-909
    Xu W, Subudhi P K, Crasta O R, et al. Molecular mapping of QTLs conferring stay2green in grain sorghum ( Sorghum bicolor L. Moench). Genome, 2000, 43 (3): 461-469
    Yamamoto T, Kuboki Y, Lin SY, et al. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendellan factors. Theor. Appl. Genet., 1998, 97: 37-44
    Yamamoto T, Lin HX, Sasaki T, et al. Identification of heading date quantitative trait locus Hd-6 and characterization of its epistatic interactions with Hd2 in rice using advanced baekcross progeney. Genetics, 2000, 154: 885-891
    Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J of Exp Bot, 2002, 53: 917-925
    Yang Q H, Lu W, Hu M L, et al. QTL and epistatie interaction underlying leaf chlorophyll and H_2O_2 contents variation in rice (Oryza sativa L.). Acta Genetica Sinica, 2003, 30 (3): 245-250
    Yano M, Katayose Y, Ashikari M, et al. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant cell, 2000, 12: 2473-2483
    Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol, 1997, 35: 145-153
    Yoshida S. Coronel V. Nitrogen nutrition, leaf resistance and leaf photosynthetic rate of the rice plant. Soil Sci Plant Nutr, 1976, 22: 207-211
    Yu J, Hu S, Wan G J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79-92
    Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    Zhai H Q, Cao S Q, Wan J M, et al. Relationship between leaf photosynthetic function at grain filling stage and yield in super high-yield hybrid rice (Oryza sativa. L). Science in China(Series C), 2002, 45: 637-646
    Zhou P H, Tan Y F, HE Y Q, et al. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor. Appl. Genet, 2003, 106: 326-331
    Zhu J. Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University: Natural Science, 1999, 33(3): 327-335
    Zou J, Chen Z, Zhang S, et al. Characterizations and fine mapping of a mutant gene for high-tillering and dwarf in rice (Oryza sativa L.). Planta, 2005, 222: 604-612
    曹树青,陆巍,翟虎渠等.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究.中国水稻科学,2001,15(4):309-313
    曹树青,翟虎渠,杨图南等.水稻种质资源光合速率及光合功能期的研究.中国水稻科学,2001,15(1):29-34
    陈温福,徐正进,张步龙.水稻超高产育种生理基础.辽宁科学技术出版社,1995,106-166
    陈温福,徐正进,张龙步等.水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究.中国水稻科学.1990,4(4):163—168
    陈悦,王学华,廖轶等.水稻剑叶取向对其光合功能的影响.植物生理与分子生物学学报,2002,28(5):396-398
    崔海瑞,夏英武,高明尉.温度对水稻突变体W1叶色及叶绿素生物合成的影响.核农学报,2001,15:269-273
    戴新宾,曹树青,许晓明等.低叶绿素b高产水稻突变体及其光合特性的研究.植物学报,2000,42:1289-1294
    方宣均,吴为人,唐纪良.作物DNA标记辅助选择.科学出版社,2002
    龚红兵,陈亮明,刁立平等.水稻叶绿素b减少突变体的遗传分析及其相关特性.中国农业科学,2001,34(6):686-689
    广东省农业科学院水稻高光效育种组.水稻净光合速率的品种间差异及高光效育种.植物生理学报,1978,4(2):113-121
    何瑞锋,丁毅,余金洪等.水稻“斑马叶”叶绿素含量及几种酶活性的变化.武汉大学学报(自然科学版),2000,46:761-765
    胡茂龙,王春明,杨权海.水稻光合功能相关性状的QTL分析.遗传学报,2005,32(8):818-824
    胡忠,彭丽萍,蔡永华.一个黄绿色的水稻细胞核突变体.遗传学报,1981,8:256-261
    来乐春,富吴伟,徐建良等.粳稻6108白叶突变性状的遗传分析及农艺性状表现.作物研究,2003,1:10-12
    李强,万建民.SSRHunter,一个本地化的SSR位点搜索软件的开发.遗传,2005,27(5):808-810
    梁乃亭,魏玉波,布哈丽且木.水稻超绿突变体“绿花舞”.上海农业学报,2002,18:81-83
    刘贵富,吴跃进,许霞等.诱发温度敏感型水稻叶色突变体的研究.安徽农业科学,1996,24.16-19
    刘国栋.水稻的氮素利用效率、光合作用和产量潜力.世界农业,2000,3:26-26
    刘彦卓,黄农荣,黄秋妹等.晚季不同类型高产水稻品种光合速率和叶绿素含量变化研究初报.广东农业科学,2000,1:2-4
    刘友杰.激光诱发褪绿色突变体及其遗传表现.应用激光,1998,8:177-187
    刘贞琦,刘振业,曾淑芬等.水稻某些光合生理特性的研究.中国农业科学,1982,5:33-39
    刘贞琦.不同株型水稻光合特性的研究.中国农业科学,1980,3:6-10
    刘振业,刘贞琦.光合作用的遗传与育种.贵阳:贵州人民出版社,1984,48-52
    刘振业,刘振琦,赵玫等.水稻净光合速率(Pn)的遗传研究.种子,1984,2:14-16
    莫惠栋.数量性状遗传基础研究的回顾与思考—后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版),2003,24(2):2003
    屠曾平.水稻高光效育种研究,Ⅰ水稻单叶光合速率的遗传.广东农业科学,1980,5:8-13
    汪斌,兰涛,吴为人等.水稻叶绿素含量的QTL定位.遗传学报,2003,30(12):1127-1132
    王保莉,郭蔼光,汪沛洪.小麦突变体返白系返白阶段叶绿素代谢的变化.植物学报,1996,38:557-562
    王布哪,黄溱,舒理慧等.两个来源于野生稻的抗褐飞虱新基因的分子标记定位.科学通报,2001,46.46-49
    王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究.应用生态学报2003,14(10):1632-1636
    王学华.超级稻上部叶片光合能力的研究.作物研究,2004,2:68-71
    王永锐.杂交水稻产量生理.广州:中山大学出版社,1986,17-23
    吴殿星,舒庆尧,夏英武等.一个新的水稻转绿型白化突变系W25的叶色特征及遗传.浙江农业学报,1996,8:372-374
    吴关庭,王贤裕,金卫.水稻温敏型紫叶突变体PLM12及其遗传研究.核农学报,2001,15:70-74
    吴平,罗安程.应用分子标记研究氮素胁迫条件下水稻叶绿素含量差异的遗传背景.遗传学报,1996,23(6):431-438
    吴为人,李维明.基于性状-标记回归QTL区间测验方法.全国动植物数量遗传与育种学术研讨会文集,中国遗传学会、扬州大学编,2000,13-18
    夏英武,刘贵付,蒋荣花等.籼型温敏核不育水稻叶绿素突变体的诱变及其初步研究.核农学报,1995,9(3):129-133
    夏英武,吴殿星,舒庆尧.人工诱发的植物叶绿素突变体的遗传及其应用.核农学通报,1996b,1:41-44
    夏英武,吴殿星,舒庆尧等.水稻辐射白色转绿突变系的遗传及叶绿体超微结构的分析.核农学报,1996a,17:1-4
    徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系.作物学报,1995,21(2):171-175
    许大全.光合速率、光合效率与作物产量.生物学通报,1999,34(8):8-10
    杨权海,王春明,胡茂龙等.水稻剑叶全氮含量及其变化的遗传分析,中国水稻科学,2005,19(1):7-12
    袁隆平.从育种角度展望我国水稻的增产潜力.杂交水稻,1996,4:1-2
    赵海军,吴殿星,舒庆尧等.携带白化转绿型叶色标记光温敏核不育系玉兔S的选育及其特征特性.中国水稻科学,2004,18(6):515-521

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700