小麦回交导入系的分子标记检测及QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是影响小麦(Triticum aestivum L.)生产的主要非生物胁迫因素。作物抗旱性是复杂的数量性状,对小麦抗旱相关重要农艺和生理性状进行遗传剖析和QTL定位,对小麦抗旱性的遗传改良具有重要的理论和现实意义。
     本研究以旱地品种晋麦47为轮回亲本、水地品种鲁麦14为供体亲本构建的BC_3F_4回交导入系(ILs)为材料,通过分子标记检测,对雨养(DS)和灌溉(WW)条件下小麦抗旱相关重要农艺性状(株高、穗下节长、旗叶叶枕-穗基部长、每穗总小穗数、穗顶部不孕小穗数、穗基部不孕小穗数、相对穗下节长、相对旗叶叶枕-穗基部长、单株穗数和千粒重)和生理性状(叶绿素含量、冠气温差和叶绿素荧光动力学参数)进行QTL定位,揭示了这些复杂数量性状的遗传基础和QTL表达规律。
     具体研究结果如下:
     1.利用512对小麦SSR标记引物对导入系的双亲晋麦47和鲁麦14进行多态性分析,共检测到147对多态性标记,占有效扩增的28.7%;利用其对供试的150个BC_3F_4株系基因型进行遗传选择,检测到2个株系分别有14个和32个标记位点的带型不同于双亲,表明这2个株系为假杂株,随后的分析材料为148个株系。基因型检测结果表明,晋麦47遗传背景的回复率达92.8%,接近其理论值93.8%。147个标记中有16个标记属于多染色体位点标记,不能确定其所属的染色体,不做进一步分析。
     2.根据国际小麦SSR标记整合图,将131个标记整合为回交导入系的连锁图上,并计算导入片段的数目、大小和占基因组的比例。在所有导入系中都检测到供体片段,其中,有80个标记至少出现在1个导入系中,占多态性标记的61.1%。148个导入系含有2~12个供体片段,其中2个导入系含有2个导入片段,其它均含有4个或4个以上导入片段,每个导入系平均7.5个导入片段。导入片段的长度在3.0cM~78.0cM之间,平均长度为23.6cM。导入系中的供体基因组覆盖率在1.7%~12.5%之间,平均为6.9%,导入的供体基因组总长度为1384cM,占供体基因组的54.0%。在导入系的21个染色体连锁群中,1B和6B染色体上没有检测到导入片段;5A和5D上检测到的导入片段数最多,分别为160和134。不同染色体上供体染色体的覆盖率为0~94.7%,平均覆盖率为50.9%。根据小麦SSR整合图,绘出了每条染色体的导入片段覆盖图。
     3.对148个导入系株系7个重要农艺性状的分析表明,在雨养和灌溉两种水分条件下,ILs群体多数性状表现超双亲,性状变异系数在2.34%~127.11%之间,性状均值偏向轮回亲本晋麦47:ILs群体在WW条件下的TNS极显著大于DS的,与鲁麦14相似,这可能是供体亲本鲁麦14基因导入的结果。除SST外,其余性状在两种水分条件下均呈极显著正相关(r=0.221~(**)~0.555~(**))。
     4.利用148个导入系对抗旱相关性状进行QTL分析,通过单因素方差分析共检测到146个抗旱相关性状的QTL位点。其中株高QTL 20个,穗下节长、旗叶叶枕-穗基部长、相对穗下节长、相对旗叶叶枕-穗基部长QTL 25、23、9和15个,每穗总小穗数、穗顶部不孕小穗数、穗基部不孕小穗数及单株穗数QTL 7、12、1和3个,千粒重QTL 13个,叶绿素含量QTL 7个,冠气温差QTL 2个,叶绿素荧光动力学参数初始荧光、最大荧光、可变荧光与PSⅡ最大光化学效率QTL 4、1、1和3个。60.3%位点的正向等位变异来自供体亲本鲁麦14,39.7%位点的正向等位变异来自轮回亲本晋麦47,有些QTL位点在两种水分条件下都被检测到,可能是一些较稳定的QTL位点。分析结果为进行QTL位点的精细作图奠定了良好的基础。
     5.控制小麦抗旱相关重要生理和农艺性状的QTL在不同染色体间和同一染色体内的不同区段上呈现出显著的不均匀分布,在染色体一些区段上形成了QTL热点区域。检测到的28个抗旱相关QTL热点区域分布在14条染色体连锁群上。这些热点QTL区域对于深入研究抗旱性状的遗传基础具有重要意义。
Drought stress is a major environment constraint greatly impacting wheat(Triticum aestivum L.) production in many arid and semi-arid areas of the world.Drought tolerance is a complex quantitative trait.It is very essential for genetic improvement of drought tolerance to dissect quantitative loci for physiological and agronomic traits involved in the drought tolerance in wheat.
     A set of introgression lines(ILs) generated from repeated backcross [(Jinmai 47×Lumai 14)×Jinmai 47]BC_3F_4 was used as the plant materials in this study.The SSR markers showing polymorphism between two parents were employed to screening ILs genotype.Important traits associated with drought tolerance including agronomic traits(plant height(PH),first internode length(FIL),length from flag leaf pulvinus to spike base(LPSB), total number of spikelet per spike(TNS),sterile spikelet number at spike top (SST),sterile spikelet number at spike bottom(SSB),relative first internode length(RFIL),relative length from flag leaf pulvinus to spike base(RLPSB), spike number per plant(SNP),thousand-grain weight(TGW)),and physiological traits(chlorophyll content(ChlC),canopy-air temperature difference(CTD) and parameters of chlorophyll fluorescence kinetics (PCFK)) were investigated under two water regimes,drought stress(DS) and well-watered(WW).QTLs for target traits were mapped to dissect their genetic mechanism and reveal the hot chromosome region shared by multi-QTLs.The results are as following:
     (1) Total of 147 markers selected from 512 SSR markers showing polymorphism between two parents Jinmai 47 and Lumai 14 were employed to screening ILs genotype,about 28.7%of the used primer pairs.The results showed that 2 of 150 ILs were detected 14 and 32 markers loci different from their parents,respectively.The genetic background of Jinmai 47 maintained 92.8%in 148 ILs access to its theory value 93.8%.Among 147 markers,16 were detected multi-locus and could not be exactly mapped to genetic lingkage map,did not be sequentially analyzed.
     (2) According to the wheat consensus SSR map,131 markers unique-locu were mapped in the linkage map.Total of 148 ILs were selected to detect the number,size of introgressed segment,and their ratio accounted for the whole donor genome were estimated.Eighty markers appeared in at least one introgressed line,account for 61.1%of the polymorphic markers. Two of 148 ILs detected two and the others contained 4 or more than 4 introgression fragments.Two to twelve donor fragments were identified in the 148 lines,average of 7.5 in each introgression line.The length of the introgression fragment ranged from 3 cM to 78 cM,the average length 23.6 cM.The donor genome of Lumai 14 was represented between 1.7%and 12.5%in the ILs with an average of 6.9%.The total length of the introgressed Lumai 14 genome was 1384 cM,covering 54.0%of the donor genome. Among the 21 linkage groups,there is no introgressed donor fragment in 1B and 6B chromosome,but 5A and 5D detected the most,160 and 134 introgression fragments,respectively.The introgressed donor chromosome covered from 0 to 94.7%of 21 chromsomes,and average of 50.9%.Based on the wheat SSR consensus map,the coverage map of the introgressed segments for each of the chromosomes was drawn.
     (3) The ILs phenotypes of seven important agronomy traits were analysised.Most traits of ILs exhibited transgressive segregation. Coefficients of variation for all traits in ILs ranged from 2.34%to 127.11% under two water regimes.The averages of all traits in ILs presented the tendency to be more adjacent to the recurrent parent Jinmai 47.It is similar to donor parent Lumai 14 that ILs TNS under rainfed condition were higher than that under well-watered,which maybe due to the introgression of favorable alleles from the exotic donor.All correlation coefficients for ILs traits were significant(r=0.221~(**)~0.555~(**)) between the rained and the well-watered conditions except SST.
     (4) QTL analysis was performed in the 148 ILs.Total of 146 QTLs,20 for PH,25 for FIL,23 for LPSB,7 for TNS,12 for SST,1 for SSB,9 for RFIL,15 for RLPSB,3 for SNP,13 for TGW,7 for CHlC,2 for CTD and 9 for PCFK(Fo,Fm,Fv andφPo),were detected by one way ANOVA analysis. Among the 146 QTLs,60.3%of positive alleles were from the donor parent Lumai 14,39.7%from the recurrent parent Jinmai 47.Part of the QTLs was detected under two water regimes which indicated they expressed stably. Above results made the foundation for fine mapping and cloning of the target QTLs.
     (5) Major and minor QTLs for all target traits showed disequilibrium distribution among different chromosomes and even different intervals in the same chromosome.These QTLs assembled in some specific interval formed the hot-spot region for regulating inheritances of corresponding traits.Total of 28 hot-spot regions for target traits distributed on 14 chromosomes.They were crucial regions for further elucidating genetic basis of drought-tolerant traits.
引文
[1].Obasi GO P.WMO's Role in the international decade for natural disaster reduction.Bulletin of the American Meteorological Society Author Index,1994,75(9):1655-1661
    [2].山仑,黄占斌,张岁歧.节水农业.北京:清华大学出版社.2000,12-13
    [3].汤章城.植物对渗透和淹水胁迫的适应机理.见:余叔文,汤章城主编.植物生理与分子生物学.北京:科学技术出版社.1998,739-751
    [4].康绍忠.新的农业科技革命与21世界我国节水农业的发展.干旱地区农业研究1998,16(1):11-17
    [5].张正斌.作物抗旱节水的生理遗传育种基础.北京:科学出版社.2003,1-20
    [6].景蕊莲.作物抗旱节水研究进展.中国农业科技导报2007,9(1):1-5
    [7].Bray EA.Plant response to water deficit.Trends Plant Sci,1997,2:48-54
    [8].金善宝.中国小麦学.北京:中国农业出版社.1996,754-758
    [9].Cooper B,Clarke JD,Budworth P,et al.A network of rice genes associated with stress response and seed development.Proc Natl Acad Sci USA,2003,100:4945-4950
    [10].Levitt J.Response of plants to environmental stresses,water,radiation,salt and other stresses.New York:Academic Press,1980,325-358
    [11].Blum A.Towards standard assays of drought resistance in crop plants.In:Ribaut JM and Poland D eds.Molecular approaches for the genetic improvement of cereals for stable production in water-limited environmmts.A strategic Planning Workshop held at CIMMYT,El Batan,Mexico,21-25 June,1999,29-35
    [12].Price A,urtois B.Mapping QTLs associated with drought resistance in rice:Progress,Problem and Prospects.Plant Growth Regul.,1999,29:123-133
    [13].Roustai M,Tahir M,Amiri A.The role of coteoptile length and crown node depth in cold and drought tolerance of wheat.In:A E Slinkard(ed.).Proceedings of the 9th International Wheat Genetics Symposium.Vol.4.Saskatchewan,Canada University Extension Press,1998,77-79
    [14].景蕊莲.作物抗旱研究的现状与思考.干旱地区农业研究.1999,17(2):79-85
    [15].景蕊莲,胡荣海,朱志华,昌小平.冬小麦不同基因型幼苗形态性状遗传力和抗旱性的研究.西北植物学报,1997,17:152-157
    [16].景蕊莲,昌小平,朱志华,胡荣海.小麦幼苗根系形态与反复干旱存活率的关系.西北报.2002,22(2):243-249
    [17].Boyer JS.Advances in drought tolerance in plants.Advances Agron.,1996,56:187-218
    [18].Jongdee B,Fukai S,Cooper M.Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice.Field Crops Res.,2002,76:153-163
    [19].Boyer JS.Plant productivity and environment.Science,1982,218:443-448
    [20].Kaiser WM.Effects of water deficity on photosynthetic capacity.Physiol.Plant,1987,71:142-149
    [21].Chernyadev Ⅱ,Monakhova OF.The activity and content of ribulose-1,5-bisphosphate carboxylase /oxygenase in wheat plants as affected by water stress and kartolin-4.Photosynthetica,1998,35:603-610
    [22].高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱性的关系.西北植物学报,1991,11:58-64
    [23].Borrell AK,Hammer GL.Nitrogen dynamics and the physiological basis of stay-green in sorghum.Crop Sci,2000,40:1295-1307
    [24].Richard RA.Physiological traits used in the breeding of new cultivars for water-scarce environments.Proceedings of the 4th International Crop Science Congress.2004,Brisbane,Australia.http://www.cropscience.org.au.
    [25].Borrell AK,Hammer GL,van Oosterom E.Stay-green:a consequence of balance between supply and demand for nitrogen during grain filling? Ann.Appl.Bio.,2001,138:91-95
    [26].Lu CM,Zhang JH.Effects of water stress on photosynthesis,chlorophyll fluorescence and photoinhibition in wheat plants.Aust.J.plant physiol.,1998,25:883-892
    [27].Inoue T,In anaga S,Sugimoto Y,EL Siddig K.Contribution of pre-anthesis assimilates and current photosynthesis to grain yield,and their relationships to drought resistance in wheat cultivars grown under different soil moisture.Photosynetica,2004,42:99-104
    [28].Tambussi EA,Nogues S,Araus JL.Ear of durum wheat under water stress:water relations and photosynthetic metabolism.Planta,2005,221:446-458
    [29].YANG De-long,JING Rui-lian~*,CHANG Xiao-ping,LI Wei.QTL Mapping for chlorophyll fluorescence and associated traits in wheat(Triticum aestivum L.).Journal of Integrative Plant Biology.2007,49(5):646-654
    [30].Lu CM,Zhang JH Effects of water stress on photosytemⅡ photochemistry and its thermostability in wheat plants.J.Exp.Bot.,1999,50:1199-1206
    [31].Zhang YJ,Zhao CJ,Liu LY,et al.Chlorophyll fluorescence detected passively by difference reflectance spectra of wheat(Triticum aestivum L.) leaf.J.Integrat.Plant Biol.,2005,47:1228-1235
    [32].赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响.应用生态学报,2005,16:1261-1264
    [33].Flagella Z,Campanile RG,Ronga G,et al.The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought stress resistance.Plant Sci.,1996,118:127-133
    [34].Sayed OH.Chlorophyll fluorescence as a tool in cereal crop research.Photosynetica,2003,41:321-330
    [35].王伟,邹琦.渗透调节对不同抗旱性小麦品种胚芽鞘生氏的影响.植物生理学通讯,1997,33:168-171
    [36].刘桂茹,张荣芝,卢建祥,等.小麦品种抗旱性鉴定指标与产量性状关系的探讨.河北农业大学学报,1995,18:10-14
    [37].李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1992,18:37-44
    [38].景蕊莲,昌小平,胡荣海,董玉琛.变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系.作物学报.1999,25(4):494-498
    [39].路苹,柴丽娜.水分胁迫下小麦幼苗可溶低聚糖特征表现与抗旱性关系初探.北京农学院学报,1996,2:13-17
    [40].杨德龙,李唯,景蕊莲,昌小平.小麦DH群体茎秆可溶性碳水化合物含量相关性状的遗传分析.作物学报,2007,33(9):1543-1547
    [41].Blum,A.,Improving wheat grain filling under stress by stem reserve utilization.In Wheat:Prospects for Global Improvement(eds) Braun HJ,F.Altay,W.E.Kronstad,S.P.S.Beniwal,A.McNab,Proc 5th Int.Wheat Conf,Ankara,Turkey,Kluwer Academic Publishers.1996,135-142
    [42].Setter TL,Anderson WK,Asseng S,et al.Review of the impact of high shoot carbohydrate concentrations on maintenance of high yields in wheat exposed to environmental stress during grain filling.In:Wheat Research Needs Beyond 2000 AD.Eds.S.Nagarajan,G.Singh,B.S.Tyagi,Narosa Publishers,New Delhi,London.1998,237-255
    [43].Diab AA,Teulat-Merah BD,This NZ.et al.,Identification of drought-inducible genes and differentially expressed sequence tags in barley.Theor.Appl.Genet.,2004,109:1417-1425
    [44].Ehdaie B,Alloush GA,Madore MA,et al.Genotypic variation for stem reserves and mobilization in wheat:i.postanthesis changes in internode dry matter.Crop Sci.,2006,46:735-746
    [45].van Herwaarden A,Richards R,Angus J.Water-soluble carbohydrates and yield in wheat.The Australian Society of Agronomy.Available via DIALOG.http://www.regional.org.au/au/asa/2003/c/6/vanherwaarden.htm.Cited 15 Jun 2006.
    [46].张金玲等.小麦对干旱的生理反应及抗性机理.国外农学-麦类作物,1994,5:44-46
    [47].Sivamani E,Bahieldinl A,Wraith JM.Improved biomass productivity and water use efficiency under water deficity conditions in transgenic wheat constitutively expressing the barley HVA1 gene.Plant Sci.,2000,155:1-9
    [48].张立军.小麦幼苗干旱逆境蛋白与抗旱性关系研究.沈阳农业大学学报,1998,29:106-109
    [49].Ali M,Jenesen CR,Mogensen VOT.Early signals in field grown wheat in response to shallow soil drying.Austral.J.Plant Physiol.,1998,25:871-882
    [50].薛永常,曹敏,李云荫.不同的抑制剂处理对水分胁迫诱导的冬小麦幼苗ABA累积的影响.华北农学报,1997,12:25-29
    [51].Blum A.Chemical desiccation of wheat plants as a stimulator of post-anthesis stress.Ⅱ Relations to drought stress.Field Crops Res.,1983,6:149-152
    [52].Regan KL.Evaluation of chemical desiccation as a selection technique for drought resistance in dryland wheat breeding program.Aust.J.Agrin.Res.,1993,44:1683-1691
    [53].Haley SD,et al.Early-generation selection for chemical desiccation tolerance in winter wheat.Crop Science,1993,33:1217-1223
    [54].周桂莲,杨慧霞.小麦抗旱性鉴定的生理生化指标及其分析评价.干旱地区农业研究,1996,14:65-71
    [55].Winter,SR,Music TS,Porter KB.Evaluation of screening techniques for breeding drought resistant winter wheat.Crop Sci,1988,28:512-516
    [56].Clarke JM,Romagosa I,Jana S,et al.Relationship of excised-leaf water loss rate and yield of durum wheat in diverse environments.Can.J.Plant Sci.,1989,69:1075-1081
    [57].McCaig TN,Romagosa I.Water status measurements of excised leaves:Position and age effects.Crop Sci,1991,31:1583-1588
    [58].Clarke JM,Townley-Smith TF.Heritability and relationship of excised-leaf water retention in durum wheat.Crop Sci.,1986,26:289-292
    [59].Clarke JM.Evaluation of techniques for screening for drought resistance in wheat.Crop Sci.,1982,22:503-506
    [60].Schonfeld MA,Johnson RC,Carver BF,et al.Water relations in winter wheat as drought resistance indicators.Crop Sci,1988,28:526-531
    [61].Farquhar GD,Wong SC,Evans JR,et al.Photosynthesis and gas exchange.In:Jones HG,Flowers TJ,Jones MB(Eds.),Plant under Stress,Cambridge University Press,Cambridge,1989,47-69
    [62].Cater Jr TE,Patterson RP.Use of relative water,content as a selection tool for drought tolerance in soybean.Fide Agron abstr 77th Annu Meeting,1985,77
    [63].Sinclair TR,Ludlow MM.Who taught plants thermodynamics? The unfulfilled potential of plant water potential.Aust J Plant Physiol,1985,12:213-217
    [64].柴守玺,等.与小麦抗旱性有关的几个水分指标.甘肃农业科技,1990,6:12-13
    [65].张正斌,徐萍,董宝娣,等.水分利用效率-未来农业研究的关键问题.世界科技研究与发展,2005.1:52-61
    [66].董宝娣,张正斌,徐萍,等.小麦干湿交替条件下的水分利用效率与生物学性状.干旱地区农业研究,2005.23:28-32
    [67].王月福,于振文,潘庆民.土壤水分胁迫对耐旱性不同的小麦品种水分利用效率的影响.山东农业科学,1998,3:5-7
    [68].Singh N,Singh P,Narang RS,et al.Water relation of water under different soil water conditions.J.Res.Punjab Agri.uni.,1992,29:438-422
    [69].Tubaileh AS,Sammis TW,Lugg DG.Utilization of thermal infrared thermometry for detection of water stress in spring barley.Agric Water Manage,1986,12:75-85
    [70].刘云,宇振荣,孙丹峰,等.冬小麦冠气温差及其影响因子研究.农业工程学报,2004,20:63-69
    [71].刘学著.冬小麦冠气温差及其叶水势的相关性实验研究.作物学报,1995,21:528-532
    [72].Garrity DP,O'Toole JC.Selection for reproductive stage drought avoidance in rice,using infrared thermometry.Agron.J.,1995,87:773-779
    [73].Chauhan JS,Moya TB,Singh RK,et al.Influence of soil moisture stress during reproductive stage on physiological parameters and grain yield in upland rice.Ozyza,1999,36:130-135
    [74].刘恩民,于强,谢贤群.水分亏缺对冬小麦冠层温度影响的研究.中国农业生态学报,2000,8:21-23
    [75].冯佰利,张宾,高小丽,等.抗旱小麦的冷温特征及其生理特性分析.作物学报,2004,30:1215-1219
    [76].Crosbie JM,Mock JJ.Changes in physiological traits associated with grain yield improvement in three maize breeding programs.Crop Sci.,1981,21:255-2581
    [77].Sinclair TR,Bennett JM,Muchow RC.Relative sensitivity of grain yield and biomass accumulation to drought in field-grown maize.Crop Sci.,1990,30:690-693
    [78].Nielsen DC,Nathan O.Black bean sensitivity to water stress at various growth stages.Crop Sci.1998,38:422-427
    [79].Lopez-Castaneda C,Richards RA.Variation in temperate cereals inrainfed environments.I.Grain yield, biomass and agronomic characteristics.Field Crops Res.,1994,37:51-62
    [80].Blum,A,Ramaiah S,Kanemasu ET,Paulsen GM.Wheat recovery from drought stress at the tillering stage of and development.Field Crops Res.,1990,24:67-85
    [81].孔繁玲.植物数量遗传学.北京,中国农业大学出版社,2006,358
    [82].Soller M,Brody T,Genizi A.On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines.Theoretical and Applied Genetics,1976,47:35-39
    [83].Tanksley S D,Medina-Filho H,Rick C M.Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspectific backcross of tomato.Heredity,1982,49:11-25
    [84].惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23:129-136
    [85].Lander E S and Botstein D.Mapping mendelian factors underlying quantitative traits using RLFP linkage maps.Genetics,1989,121:185-199
    [86].Janson RC.A general mixture model for mapping quantitative trait loci by suing molecular markers.Theoretical and Applied Genetics,1992,134:1277-1288
    [87].Zeng Z B.Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468
    [88].Jansen R C.Interval mapping of multiple quantitative trait loci.Genetics,1993,135:205-211
    [89].Jansen R C,Stare P.High resolution of quantitative traits into multiple loci via interval mapping.Genetics,1994,136:1447-1455
    [90].朱军.复杂数量性状基因定位的混合线性模型方法.见:王连铮,戴景瑞,编.全国作物育种学术讨论会论文集.北京,中国农业科技出版社,1998,11-20
    [91].朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报,1999,33(3):327-335
    [92].Tanksely S D.Mapping polygenes.Aaau Rev Genet,1993,27:205-233
    [93].Lin Y R,Schert K F and Paterson A H.Comparative analysis of QTLs affecting plant height and maturity across the Poaceae,in reference to an interspecific sorghum population.Genetics,1995,141:391-411
    [94].Yano M,Sasaki T.Genetic and molecular dissection of quantitative traits in rice.Plant Mol.Biol,1997,35:145-153
    [95].Zamir D:Improving plant breeding with exotic genetic libraries.Nat Rev Genet 2001,2(12):983-989
    [96].Yamasaki M,Tenaillion M,Bi I V,et al.A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.The Plant Cell,2005,17: 2859-2872
    [97].Cox TS,Sears RG,Bequette RK,Martin TJ.Germplasm Enhancement in Winter Wheat x Triticum tauschii Backcross Populations.Crop Science,1995,35(3):913-919
    [98].Fritz AK,Cox TS,Gill BS,Sears RG.Marker-based analysis of quantitative traits in winter wheat×Triticum tauschii populations.Crop Science,1995,35(6):1695-1699
    [99].Narasimhamoorthy B,Gill BS,Fritz AK,et al.Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population.Theoretical and Applied Genetics,2006,112(5):787-796
    [100].Tanksley SD,Nelson JC.Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theoretical and Applied Genetics,1996,92(2):191-203
    [101].Bernacchi D,Beck-Bunn D,Emmatty D,et al.Advanced backcross QTL analysis of tomato.Evaluation of near isogenic lines carrying single-donor introgression for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L.pimpinellifolium.Theoretical and Applied Genetics,1998,97:170-180
    [102].徐华山,王立秋,周红菊,余四斌.构建水稻优良恢复系背景的重叠片段代换系及其效应分析.作物学报,2007,33(6):979-986
    [103].王立秋,赵永锋,薛亚东,张祖新,郑用琏,陈景堂.玉米衔接式单片段导入系群体的构建和评价.作物学报,2007,33(4):663-668
    [104].Hanson W D.Early generation analysis of length of heterozygous chromosome segments around a locus held heterozygous with backcrossing or selfing.Genetics,1959,44:833-837
    [105].Stam P,Zeven A C.The theoretical proportion of donor genome in near isogeneic lines of self-fertilizers bred by backcrossing.Euphytica,1981,30:227-238
    [106].Frey K J,Browing JA.Association between genetic factors for crown rust resistance and yield in oats (Avena sativa L).Crop Science,1971,289:85-88
    [107].Frey K J.Stability indexes for isolines of oats(Avena sativa L).Crop Science,1972,12:809-812
    [108].Zeven A C,Knott D R,Johnson R.Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust,leaf rust,yellow rust.Euphytica,1983,32:319-327
    [109].Fulton T M,Beck-Bunn T,Emmatty D,et al.QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species.Theoretical and Applied Genetics,1997,95:881-894
    [110].Young N D,Tanksley S D.RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theoretical and Applied Genetics, 1989, 77: 353-359
    [111]. Kashiwagi T, Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology, 2004, 134: 676-683
    [112]. Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiology, 2003, 133: 1083-1090
    [113]. Huang XQ, Coster H, Ganal MW,et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2003, 106(8): 1379-1389
    [114]. Huang XQ, Kempf H, Ganal MW, et al. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat ( Triticum aestivumL.). Theoretical and Applied Genetics, 2004, 109(5): 933-943
    [115]. Liu S B, Zhou R H, Dong Y C, et al. Development, utilization of introgression lines using a synthetic wheat as donor. Theoretical and Applied Genetics, 2006, 112 (7):1360-1373
    [116]. Devos K M, Atkinson M D, Chinoy C N, Liu C, Gale M D. RFLP based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet, 1992, 83: 931-939
    [117]. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023
    [118]. Pestsova E, Ganal MW, Roder MS. Isolation and mapping of microsatellite markers specific for the D genome of bred wheat. Genome, 2000, 43: 688-697
    [119]. Sourdille P, Guyomarc'h H, Baron C, Gandon B, Chiquet V, Artiguenave F, Edwards K, Foissey N, Dufour P. Improvement of the genetic maps of wheat using new microsatellite markers. Plant Animal Genome IX Conference. 2001, 167
    [120]. Ellis MH , Spielmeyer W, Gale KR , Rebetzke GJ & Richards RA."Perfect"markers for the Rht2Blb and Rht2D1b dwarfing genes in wheat. Theoretical and Applied Genetics , 2002 ,105: 1038-1042
    [121]. Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theor Appl Genet, 2004, 109: 1105-1114
    [122]. Young ND, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes.Theor Appl Genet, 1989, 77: 95-101
    [123]. Hospital F. Marker-assisted backcross breeding: a case-study in genotype building theory. In Quantitative genetics, genomics and plant breeding.Edited by Manjit S. Kang, CABI Publishing, Wallingford, U.K. 2002
    [124].Moncada A J,Tanksley SD.Fine mapping of a quantitative trait locus(QTL) from Lycopersicon Hirsutum chromosome 1 affecting fruit characteristics and agronomic traits:bresking linkage among QTls affecting different traits and dissection of heterosis for yield.Theor Appl Genet,2000,100:471-479
    [125].Damania A B.Biodiversity and wheat improvement.Chichester,UK,1993
    [126].余松烈,作物栽培学.北京:中国农业出版社,1980.60-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700