氮胁迫条件下玉米籽粒和秸秆品质及N、P、K含量的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以玉米杂交种农大108及其F2:3和F2:4家系为材料,研究了施氮和不施氮两种处理对玉米籽粒和秸秆品质以及N、P、K含量的影响,并对有关基因进行了QTL分析,本研究主要结论如下:
     1)构建了包含194个SSR标记,覆盖玉米10条染色体的遗传连锁图谱,图谱总长度2100.9cM,平均间距为10.82cM。
     2)利用近红外反射光谱(NIRS)定量分析模型测定了F2:5家系的蛋白质、淀粉、油分和赖氨酸等4个籽粒品质性状以及F2:4群体的酸性洗涤纤维(ADF)、中性洗涤纤维(NDF)、粗蛋白(CP)和粗脂肪(CF)等4个秸秆品质性状含量。利用鲍士旦介绍的植物常量元素的测定方法测定玉米籽粒和秸秆中的氮、磷、钾含量。
     3)利用复合区间作图法共定位了11个籽粒品质相关性状的QTL,其中在缺氮条件下检测到7个QTL,施氮条件下共检测到4个QTL,分布在1, 3, 7,9染色体上。其中,与蛋白质含量相关的QTL 2个,在7,9染色体上,单个QTL贡献率为9.50%~14.60%;与淀粉含量有关的2个QTL分别位于3,9染色体上,单个QTL贡献率为8.77%~9.90%;与油分含量有关的3个QTL位于第3染色体上,单个QTL贡献率为9.82%~17.66%;与赖氨酸含量有关的4个QTL分别位于1, 3, 7,9染色体上,单个QTL贡献率在8.05%~10.25%之间;部分显性、超显性、加性对籽粒品质的遗传均起着主要的作用。
     4)共检测出19个有关秸秆品质性状的QTL,在缺氮条件下两个地点共检测到5个,施氮条件下共检测到14个。其中,NDF的3个QTL,单个QTL贡献率为9.53%~12.79%;ADF的4个QTL,单个QTL贡献率为8.55%~14.05%;CF检测到4个QTL,单个QTL贡献率为10.03%~12.66%之间;CP检测到7个QTL,单个QTL贡献率为10.26%~15.04%之间;加性和部分显性对秸秆品质的遗传均起着主要的作用。
     5)共检测出22个有关籽粒中N、P、K含量的QTL,在缺氮条件下两地点共检测到10个,施氮条件下共检测到12个。其中,与N含量有关的8个QTL,单个QTL贡献率为7.80%~14.91%;与P含量有关的7个QTL,单个QTL贡献率为8.12%~13.03%;与K含量有关的7个QTL,单个QTL贡献率为8.85%~12.36%之间;部分显性和超显性是控制玉米籽粒中N、P、K含量基因的主要作用形式。
     6)共检测出25个有关秸秆中N、P、K含量的QTL,在缺氮条件下两地点共检测到12个,施氮条件下共检测到13个。其中,与N含量有关的9个QTL,单个QTL贡献率为7.30%~31.09%;与P含量有关的7个QTL,单个QTL贡献率为7.57%~16.65%;与K含量有关的9个QTL,单个QTL贡献率为7.23%~32.82%之间;超显性是控制玉米秸秆中N、P、K含量基因的主要作用形式。
In this investigation,a elite hybrid maize Nongda108, it’s F2:3,F2:4 families were used to identify and analyz the QTL for nutrient components under nitrogen plus (N+)and no- nitrogen plus (N-) treatments. The results were as follows:
     1)The genetic linkage map with 194 marker loci was constructed on maize(Zea maysL.)and covered 2100.9cM on 10 chromosomes with an average interval length of 10.82cM
     2)Four nutrient components in kernel:protein,starch,oil and Lysine and four nutrient components in straw: Acid Detergent Fiber(ADF),Neutral Detergent Fiber(NDF), Crude Protein(CP)and Crude Fat (CF),were measured using near infrared reflectance spectroscopy (NIRS) method.Three components of kernel and straw:N,P and K, were measured using familiar element of plant mensuration method.
     3)A total of 11 QTL associated with nutrient components of kernel were detected using composite interval mapping method (CIM) in F2:5 population. The result showed that 7 QTL were detected under N- condition and 4 QTL were detected under N+ condition. The QTL were lie on chromosomes 1,3,7 and 9. There were 2 QTL associated with protein,mainly concentrating on chromosomes 7 and 9,each QTL could explain over 9.50%~14.60% of phenotypic variation. There were 2 QTL associated with starch lying on chromosomes 3 and 9. Each QTL could explain over 8.77%~9.90% of phenotypic variation. There were 3 QTL associated with oil locating on chromosomes 3. Each QTL could explain over 9.82%~17.66% of phenotypic variation. There were 4 QTL associated with Lysine locating on chromosomes 1,3,7 and 9. Each QTL could explain over 8.05%~10.25% of phenotypic variation, Partially dominant ,over-dominant and additive effects played main functions in the heredity of nutrient components of kernel.
     4)A total of 19 QTL associated with nutrient components of straw were detected in F2:4 population. The result showed that 5 QTL were detected under N- condition and 14 QTL under N+ condition. Three QTL were identified for NDF, Each QTL could explain over 9.53 % ~12.79 % of phenotypic variation.Four QTL were identified for ADF,each QTL could explain over 8.55%~14.05% of phenotypic variation. Four QTL were identified for CF, each QTL could explain over10.03%~12.66% of phenotypic variation.Seven QTL were identified for CP, each QTL could explain over 10.26%~15.04% of phenotypic variation,Partially dominant and additive effects played main functions in the heredity of nutrient components of straw.
     5)A total of 22 QTL associated with N、P and K components of kernel were detected in F2:4 and F2:5 population. The result showed that 10 QTL were detected under N- condition and 12 QTL under N+ condition. Eight QTL were identified for N, Each QTL could explain over 7.80%~14.91% of phenotypic variation.Seven QTL were identified for P,each QTL could explain over 8.12%~13.03% of phenotypic variation. Seven QTL were identified for K, each QTL could explain over 8.85%~12.36% of phenotypic variation ,which indicate that partially dominant and additive effects are main gene action for N、P and K components of kernel.
     6)A total of 25 QTL associated with N、P and K components in straw were detected in F2:3 and F2:4 population. The result showed that 12 QTL were detected under N- condition and 13 QTL under N+ condition.Nine QTL were identified for N, Each QTL could explain over 7.30%~31.09% of phenotypic variation.Seven QTL were identified for P,each QTL could explain over 7.57%~16.65% of phenotypic variation. Nine QTL were identified for K, each QTL could explain over7.23%~32.82% of phenotypic variation,which indicate that over-dominant effect is main gene action for N、P and K components in straw.
引文
[1] Presterl T, Seitz G, Landbeck M, Thiemt E M, Schmidt W, Geiger H H, 2003.Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Sci , 43:1259-1265.
    [2]江立庚.2003.水稻品种氮素吸收利用效率的生理生态特征及调控研究,南京农业大学博士学位论文
    [3]武志杰.1997.我国化肥生产应用中的问题及对策,科技导报,9:37-39
    [4]陈新平,周金池,王兴仁等. 2000.小麦-玉米轮作制中氮肥效应模型的选择——经济和环境效应分析,土壤学报,37(3):346-354
    [5] Dissection of complex maize traits using genomics,germplasm,and bioinformation. U.S.Plant,Soil and Nutrition Research,2004 Annual Report
    [6]张福琐,米国华,刘建安等.1997.玉米氮利用效率遗传改良与应用,农业生物技术学报,2:112-117
    [7]章履孝.1998.提高玉米氮肥利用效率的遗传改良,作物杂志,(增):124-126
    [8]詹其厚.1997.氮肥不同用量对玉米产量的影响及肥效分析,安徽农业科学,25(4):352-353,370
    [9] Rogério P S,Eduardo do V L,Tiago R B, et al., 2004.Nitrogen fertilization of fall panicum cultivars(Panicum dichotomiflorum Michx.):Biochemical and agronomical aspects. Sci.Agric. (Piracicaba,Braz.), 61(1):82-87
    [10] Bob Nielsen R.L.,2006.N loss mechanisms and nitrogen use efficiency. Purdue nitrogen management workshops,1-5
    [11]张维理,田哲旭,张宁等.1995.我国北方农用氮肥造成地下水硝酸盐污染的调查,植物营养与肥料学报,1(2):80-87
    [12]吕忠贵,扬圆。1997.氮、磷肥的利用和农业生态污染的分析.农业环境与发展,(3):30-34
    [13]吕殿青,同延安,孙本华.1998.氮肥施用对环境污染影响的研究,植物营养与肥料学报,4(1):8-15
    [14] Dipl Biol C Tietze,H H Geiger, Research strategies towards the improvement of nitrogen-use efficiency in maize(EUREKA).(网页)
    [15] Bertrand H,Pascal B,Isabelle Q,et al.,2001.Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize ,Plant Physiol,125(3): 1258-1270
    [16] Moll R.H.,Kamprath E.J.,Jackoon W.A.Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J].Agron.J., 1982,74:562-568.
    [17] Tsai C.Y.,Huber D.M.,Glover D.V.,Warren H.L.Relationship of N deposition to grain yield and Response of three maize hybrids[J]. Crop Sci,1984,24:277-281.
    [18]向春阳,关义新,凌碧莹等.玉米氮素效率基因型差异的研究进展[J].玉米科学,2002,10(1):75-77.
    [19]Machado A.T.,Magalhaes J.R.,Magnavaca R,et al.Activity of enzymes involved in the nitrogen metabolism in different maize genotypes[J].Revista Gbrasileira de Fisiologia Vegetal,1992,4(1):45-47.
    [20]Sherrard J.H.,Lambert R.J.,Below F.E.,et al.Use of physiological traits,especially those of nitrogen metabolism for selection in maize [A] .In :C. A Beyal (Eds),Biochemical basis of plant breeding ,Vol.2[C].Nitrogen Metabolism. CRC Press.Boca Raton.FL,1986,109-130.
    [21] Machado A.T.,Magalhaes J.R.,Magnavaca R.,et al.Activity of enzymes involved in the nitrogen metabolism in different maize genotypes[J].Revista Gbrasileira de Fisiologia Vegetal,1992,4(1):45-47.
    [22] Cacco G.Saccomani M.Ferrari G.Changes in the uptake and assimilation efficiency for sulfate and nitrate in maize hybrids selected during the period 1930 through 1975[J].Physiol.Plant,1983,58:171-174.
    [23] Tanksley S.D.,Ganal M.W.,Prince J.P.,et al. High dentity molecular linkage map of the tomato and potato genomes.Gennetics,1992,132:1141-1160.
    [24] Keim p.,Diers B.W.,Olson T.C.,Shomaker R.C.RFLP mapping in soybean:Association Between maker loci and variation in quantitative traits.Genetics,1991,126:735-742.
    [25]向道权,曹海河,曹永国等.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报[J],2001,28(8):778-784.
    [26] Nelson J.C.,Sorrells M.E.,Van Deynze A.E.,Lu Y.H..Molecular mappling of wheat:major genes and rerrangements in homoeologous group 4,5 and 7.Genome,1995,141:721-731.
    [27] Kurata N.,Nagamura Y.,Yamamoto K.,et al. 300 kilobase interval genetic map of rice including 883 expressed sequences.Nature Genet,1994,8:365-376.
    [28] Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231.
    [29] Causse M.A., Fulton T.M., Cho Y.G.,et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics,1994,138: 1251-1274.
    [30] Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995,140:745-754.
    [31] Chen B Y, Janes H W. Multiple forms of ADP-glucose pyrophosorylase from tomato fruit. Plant physiol,1997,113:235-241.
    [32] Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang QF.Genetic dissection of an elite rice Hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162: 1885-1895.
    [33] Hua J P, Xing Y Z, Wu W R, Xu C G, Yu S B, Sun X L, Zhang Q F.Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.Proc.PNAS,2003, 100:2574-2579.
    [34] Paterson A.H., Landere S., Hewitt J .D., et al. Resolution of quantitative traits into Mendelian factors using complete linkage map of restriction fragment length polymorphisms.Nature,1988,335:721-726.
    [35] Tanksley S. D., Medina-Filho H., Rick G. M., Use of naturally occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity,1982,49:11-25.
    [36] Weller J.I., Soller M., Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato by means of genetic markers.Genetics,1988, 118:329-339.
    [37] Lander E.S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    [38] Yano M.,Sasaki T. Genetic and molecular dissection of quantitative traits in rice.Plant Mol Bio,1997,35:145-153.
    [39] Zeng Z.B.Theoretical basis of separation of multiple linked gene effects on mappingquantitative trait loci. Natl. Acad. Sci.USA,1993,90:10972-10976.
    [40] Zeng Z.B.Precision mapping of quantitative trait loci.Genetics,1994,136: 1457-1468.
    [41] Kao C.H., Zeng Z.B., Toasdale R.D. Multiple interval mapping for quantitative trait loci.Genetics,1999,152:1203-1216.
    [42]朱军.复合数量性状基因定位的混合线性模型方法.见:王连铮,戴景瑞主编.全国作物育种学术讨论会论文集.北京,中国农业科技出版社,1998:1-10.
    [43] Ribaud J.M., Hoisington D.Marker assisted selection:new tools and strategies. Trends Plant Sci,1998,3:236-239.
    [44] Paterson A H, Landere S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors using complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726
    [45]谭震波,沈利爽,袁柞廉等,水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析作物学报,1997,23(3):289-295
    [46] Ottaviano E , Gorla M S , Frova Pe E1 Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize. Theor Appl Genet , 1991 , 81 :713-719
    [47] Reiter R S , Coors J G, Sussman M R , Gableman W H. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theor Appl Genet, 1991, 82 :561-568
    [48] Beavis WD , Grant D , Albertsen D, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor Appl Genet, 1991, 83:141-145
    [49] Edwards MD , Helentjaris T, Wright S , Stuber C W. Molecular-marker-facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet, 1992, 83:765-774
    [50] Stuber CW1 Biochemical and molecular markers in plant breeding , Plant Breeding Rev, 1992, 9:37-61
    [51] Zehr B E , Dudley J W, Chojecki J , Saghai Maroof M A , Mowers R P. Use of RFLP markers to search or alleles in a maize population for improvement of an elite hybrid. Theor Appl Genet, 1992, 83:903–911
    [52] Veldboom L R , Lee M, Woodman W L1 Molecular marker-acilitated studies in an elite maize population.Ⅰ. Linkage analysis and determination of QTL for morphological traits1 Theor Appl Genet, 1994, 88 :7-16
    [53] VeldboomL R , Lee M. Molecular-marker-facilitated studies of morphological trait in maize.Ⅱ. Determination of QTLs for grain yield and yield omponents。Theor Appl Genet, 1994, 89:451-458
    [54] Ajmone-Marsan P , Monfredini G, Ludwig W F , Melchinger A E ,Franceschini P , Pagnotto G, Motto M1 In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet , 1995, 90:415-424
    [55] Berke T G, Rocheford T R. Quantitative trait loci for flowering plant and ear height and kernel traits in maize Crop Sci,1995,35:1542-1549
    [56] Ragot M, Sisco P H, Hoisington D A, Stuber C W Molecular-marker mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci, 1995, 35:1306-1315
    [57] Austin D F , Lee M. Comparative mapping in F2∶3 and F6∶7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92:817-826
    [58] Lubberstedt T, Melchinger A E , Schon C C , Friedrich Utz H, Klein D K. QTL mapping in testcrosses of European flint lines of maize.Ⅰ.Comparison of different testers for forage yield traits. Crop Sci, 1997,37:921-931
    [59] Schon C C, Lee M, Melchinger A E, Guthrie W D, Woodman W. Mapping and characterization of quantitative trait loci infecting resistance against second generation European corn borer in maize with the aid of RFLPs1 Heredity , 1993 , 70:648-659
    [60] Frova C , Sari2Gorla M1 Quantitative expression of maize HSPs : genetic dissection and association with thermo tolerance. Theor Appl Genet,1993, 86:213-220
    [61] Lebreton C , Lazic-Jancic V , Steed A , Pekic S , Quarrie S A, Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Botany, 1995, 46:853-865
    [62] Freymark P J , Lee M, Woodman W L , Martinson C A1 Quantitative and qualitative trait loci affecting host-plant response to Exserohil umtureieum in maize ( Zea mays L.) . Theor Appl Genet,1993,87:537-544
    [63] Goldman I L , Rocheford T R , Dudley J W1 Quantitative trait loci influencing protein and starch concentration in the illinois long-term selection maize strains. Theor Appl Genet, 1993, 87:217-224
    [64] Sughroue J R , Rocheford T R. Restriction fragment length polymorphism differences among Illinois long-term selection oil strain. Theor Appl Genet , 1994 , 87 :916 - 924
    [65] Goldman IL , Rocheford T R , Dudley J W. Molecular markers associated with maize kernel oil concentration in an Illinois high protein Illinois low protein cross. Crop Sci , 1994 , 34 :908 - 915
    [66] Tadmor Y, Azanza F , Han T, Rocheford T R , Juvik J A. RFLP mapping of the sugary enhancer gene in maize. Theor Appl Genet , 1995,91 :489 - 494
    [67] Azanza F , Tadmor Y, Klein B P , Rocheford T R , Juvik J A. Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn. Genome , 1995 , 39 :40 - 50
    [68] Cao Y-G(曹永国) . Construction of a genetic map and location of quantitative trait loci for dwarf trait in maize by RFLP marker. Dissertation of China Agricultural University , 1998 (in Chinese with English abstract)
    [69] Sari-Gorla M, PèM E , Rossini L. Detection of QTLs controlling pollen germination and growth in maize. Heredity , 1994 , 72 :332 - 335
    [70] Khavkin E , Eh Coe. Mapping genomic location for developmental functions and QTLs reflect concerted groups in maize ( Zea mays L.) .Theor Appl Genet , 1997 , 95 :343 -352
    [71] Agrama H A S, Zakaria A G, Said F B, Tuinstra M, 1999.Identification of quantitative trait loci for nitrogen use efficiency in maize. Molecular breeding,5: 187-195
    [72] Bertin P,A Gallais, 2001.Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines II-QTL detection and coincidences. Maydica ,46:53-68
    [73] Loudet O,S Chaillou,P Merigout,J Talbotec,and F Daniel-Vedele,2003.Quantitative trait loci analysis of nitrogen use efficiency in arabidopsis. Plant Physiology,131:345-358
    [74] M.Coque·A.Gallais, 2006.Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize.Theor Appl Genet,112:1205-1220
    [75]牛瑞明,吕爱枝,郭宝艾,闫贵龙,岳春旺,冀西北高原旱地追氮梯度对饲用青玉米产量及品质的影响,玉米科学,2005 13(2):116-118
    [76]张吉旺,王空军,胡昌浩,董树亭,玉米饲用营养价值的氮素调控,草业科学,20卷2期27-30
    [77]王永军,王空军,董树亭,胡昌浩,张吉旺,刘鹏,氮肥用量、时期对墨西哥玉米产量及饲用营养品质的影响,中国农业科学2005,38(3):492-497
    [78]阮培均,马俊,梅艳,杨远平,不同密度与施氮量对玉米品质的影响,中国农学通报,2004年,第20卷第6期:147-149
    [79] Pan W L.Camberato J J,Mol1 R HJ Kamprath E J,Jackson w A. A1tering source—sink re1ationships in prolific maize hybrids : Consequences for nitrogen uptake and remobilization. Crop Science, 1995,35:836-845
    [80] Raja V.Effect of nitrogen and plant population on yield and quality of super sweet corn.Indian Journal of Agronomy, 2001.46(2):246-249.
    [81] Villareal C P, Dela Cruz N M, Juliano B O. Rice amylose analysis by near-infrared transmittance spectroscopy. Cereal Chemistry,1994,71(3): 292-296.
    [82] Delwiche S R, Bean M M, Miller R E, Webb B D, Williams P C. Apparent amylose content of milled rice by nearinfrared reflectance spectrophotometry. Cereal Chemistry,1995,72(2): 182-187.
    [83] Delwiche S R, Hruschka W R. Protein content of bulk wheat from near-infrared reflectance of individual kernels Cereal Chemistry, 2000,77(1): 86-89.
    [84] Kim H O, Williams P C. Determination of starch and energy in feed grains by near-infrared reflectance spectroscopy. Journal of Agricultural Food Chemistry,1990, 38: 682-688.
    [85] Orman B A,Schumann Jr R A. Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. Journal of Agricultural Food Chemistry,1991,39: 883-888.
    [86] Campbell M R, Brumm T J,Glover D V. Whole grain amylose analysis in maize using near-infrared transmittance spectroscopy. Cereal Chemistry,1997,74 (3):300-303.
    [87]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,20(2):134-142.
    [88]高文淑,张录达,王万军.应用付里叶变换近红外反射光谱法测定几种谷物籽粒中蛋白质的含量.北京农业大学学报,1990,16(增刊):72-79.
    [89]李庆春,王文真,张玉良,贺微仙,杨金华,林澄菲,李宗智.近红外漫反射光谱分析法(NIRDRSA)在作物品质育种中的应用.作物学报,1992,18(3):235-240.
    [90]舒庆尧,吴殿星,夏英武,高明尉,Anna Mc Clung.用近红外反射光谱测定小样本糙米粉的品质性状.中国农业科学,1999,32(4):92-97.
    [91]吴建国,石春海,张海珍,樊龙江.应用近红外反射光谱法整粒测定小样品油菜籽含油量的研究.作物学报,2002,28(3):421-425.
    [92]曹干,谭中文,梁计南,龙永惠,周学秋.蔗汁品质成分的傅里叶变换近红外分析数学模型.中国农业科学,2003,36(3) :254-258.
    [93]宋同明.脉冲核磁共振仪对作物种子含油量的快速测定,作物学报,1989, 15(2): 160-166.
    [94]魏良明,姜海鹰,李军会,严衍禄,戴景瑞.玉米杂交种品质性状的近红外光谱分析技术研究,光谱学与光谱分析,2005,25( 9 ):1404-1407
    [95] Zimmer E,Gurrath P A,Buxton D R.Euphytica.1990,48:73.
    [96] Jung H G,Mertens D R,et a1 Forage quality variation among maize inbreds: in vitro fiberdigestion kinetics and prediction with NIRS Crop Sci.1998,38:205.
    [97] De Boever J L , Vanacker J M, De Brabander D L. Rumen degradation characteristics of nutrients in corn silages and evaluation of laboratory measurements and NIRS as predictors.[J] . Anim Feed Sci Technol , 2002 , 101 : 73-86.
    [98] Albandl E,Phixats J,Ferret A.J.Sci.Food Agric.,1995,69:269.
    [99] Cnzzolino D,Fassio A,Gimenez A.J.Sci.Food Agric.,2001,81:14
    [100]白棋林,陈绍江,董晓玲,孟庆祥,严衍禄,戴景瑞. 2004近红外漫反射光谱法测定玉米秸秆NDF与ADF含量,光谱与光谱分析24 (11):1345–1347
    [101]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污辱的调查[J].植物营养与肥料学报,1995 ,1 (2) :80-87.
    [102]孙彭力,王慧君.氮素化肥的环境污染[J].环境污染与防治,1995,17 (1):38-41.
    [103]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J] .作物学报,2000 ,26 (6) :806-812.
    [104]黄高宝,张恩和,胡恒觉.不同玉米品种氮素营养效率差异的生态生理机制[J].植物营养与肥料学报,2001,7(3):293-297.
    [105] Machado A T ,Magalhaes J R ,Magnavaca R , et al . Activity of enzymes involved in the nitrogen metabolism in different maize genotypes[J] . Revista Gbrasileira de Fisiologia Vegetal ,1992 ,4 (1) :45-47.
    [106] Bacon PE (1995) Nitrogen fertilization in the environment. Marcel Dekker, New York Lawlor DW, Gastal F, Lemaire G (2001) Nitrogen, plant growth and crop yield. In P J Lea,
    [107] J-F Morot-Gaudry, eds, Plant Nitrogen. Springer-Verlag, Berlin, pp 343-367
    [108]向春阳,常强,马兴林,关义新,凌碧莹,张宝石.玉米不同基因型对氮营养胁迫的反应.黑龙江八一农垦大学学报.2002年14(4):5-7
    [109]陈范骏,米国华,张福锁,王艳,刘向生,春亮.华北区部分主栽玉米杂交种的氮效率分析.玉米科学.2003.11 (2):78-82
    [110]汤继华,谢惠玲,黄绍敏等.缺氮条件下玉米自交系叶绿素含量与光合效率的关系.华北农学报,2005,20(5):10-12.
    [111]鲍士旦.土壤农化分析,中国农业出版社,2000.
    [112] Arnold J Bendick, Ellis T Bolton. Relatedness among plants as measured by the DNA-Agartechnique.Plant Physiol,1967,42:959.
    [113] Lincoln S.,Daly M. , Lander E.Mapping genetic mapping with MAPMAKER/EXP 3.0.Cambridge:Whitehead institute Technical Report,1992.
    [114] Wang S.,Basten C.J.Zeng Z B (2001-2004).Windows QTL Cartographer 2.0.Department of Statistics,North Carolina State University,Raleigh,NC.
    [115] Raja V.Effect of nitrogen and plant population on yield and quality of super sweet corn.Indian Journal of Agronomy,2001,46(2):246-249.
    [116] Zeng Z.B.Precision mapping of quantitative trait loci .Genetics,1994,136(4):1457-1468.
    [117] Churchill G.A.,Doerge R.W.Empirical threshold values for quantitative trait mapping.Genetics,1994,138(3):963-971.
    [118] Doerge R.W., Churchill G.A.Permutation tests for multiple loci affecting a quantitative character. Genetics,1996,142(1):285-294.
    [119] Lander E.S.,Botstein S.Mpping mendelian factors underlying quantitative traits using RFLP lingkage maps.Genetics,1989,(2):185-199.
    [120] Groh S.,Gonzalez-Leon D.,Khairallah M.M.,et al.QTL Mapping in tropical maize:III.Genomic regions for resistance to Diatraea spp.and associated traits in two RIL polulation.Crop sci,1998,38:1062-1072.
    [121] Flint-Garcia S.A.,Jampatong C.,Darrah L.L., McMullen M.D.Quantitative Trait Locus Analysis of Stalk Strength in four Maize populations.Crop sci,2003,43:13-22.
    [122] Stuber C.W.,Edwards M.D.,Wendel J.F. Molecular marker-facilitated investigation of quantitative trait loci in maize II. Factors influencing yield and its component traits.Crop Science,1987,27:639-648.
    [123]严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析[J].遗传学报,2003,30 (10): 913-918.
    [124] Cao Y G, Wang G Y, Wang S C, et al. Construction of a genetic map and location of quantitative trait loci for dwarf trait in maize by RFLP markers [J].Chinese Sci Bull.2000,45: 247-250.
    [125]兰进好,李新海,高树人,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析.作物学报,2005,31(10):1253-1259.
    [126] Tubersa R,Salvi S,Sanguineti M C,Landi P,Maccaferri M,Conti S. Mapping QTL regulating morpho-physiological traits and yield:case studies shortcomings and perspective in drought-stressed maize. Ann Bot,2002b,89:941-963.
    [127] M. J. Asins . Review Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding, 2002, 121: 281-291.
    [128] Olivier L, Sylvain C, Patricia M, et al. Quantitative Trait Loci Analysis of Nitrogen Use Efficiency in Arabidopsis. Plant Physiology, January 2003, Vol. 131:.345-358.
    [129] Agrama HAS, Zacharia AG, Said M, Tuinstra M (1999) Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed 5: 187-195
    [130] Bertin P, Gallais A (2000a) Physiological and genetic basis of nitrogen use efficiency in maize: I. Agrophysiological results. Maydica 45: 53-66
    [131] Bertin P, Gallais A (2000b) Physiological and genetic basis of nitrogen use efficiency in maize: II. QTL detection and coincidences. Maydica 45:67-80
    [132] A. Gallais, and B. Hirel. An approach to the genetics of nitrogen use efficiency in maize .Journal of Experimental Botany, Vol. 55, No. 396: 295-306, February 2004.
    [133] Hirel B, Bertin P, Quillere I, et al. 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology 125, 1258-1270.
    [134] Bertin P, Gallais A. 2001. Physiological and genetic basis of nitrogen use efficiency in maize. II. QTL detection and coincidences. Maydica 46:53-68.
    [135] Long DM, Oaks A, Rothstein SJ. 1992. Regulation of maize root nitrate reductase mRNA levels. Physiologia Plantarum 85, 561-566.
    [136] Lahners C, Kramer V, Back E, Privalle L, Rothstein S. 1988. Molecular cloning of a complementary DNA encoding maize nitrite reductase. Plant Physiology 88, 741-746.
    [137] Sakakibara H, Kawabata S, Takahashi H, HaseT, Sugiyama T.1992a. Molecular cloning of the family of glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and non-photosynthetic tissues. Plant Cell Physiology 33, 49-58.
    [138] Li MG, Villemur R, Hussey PJ, Sil-ow CD, Gantt JS, Snustad DP. 1993. Differential expression of six glutamine synthetase genes in Zea mays. Plant Molecular Biology 23, 401-407.
    [139] Agrama HAS, Moussa ME. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89-97.
    [140] Tanksley S D , Ahn N , Causse M. RFLP mapping of the rice genome. In : Rice GeneticsⅡ. Los Banos, Laguna : IRRI , 1991. 435 -442
    [141] Chen J-G(陈建国), Zhu J (朱军). Genetic effects and genotype×environment interactions for appearance quality traits in indica-japonica crosses of rice ( Oryza sativa L. ) . Scientia Agricultura Sinica (中国农业科学), 1998 , 31 (4) : 1-7 (in Chinese with English abstract)
    [142] Shi C-H(石春海), He C-X(何慈信), Zhu J (朱军), Chen J-G(陈建国) . Analysis of genetic effects and genotype×environment interactions for apparent quality traits of indica rice. Chinese J Rice Sci (中国水稻科学), 1999 ,13(3):179-182
    [143] Teng S(滕胜), Zeng D-L (曾大力), Qian Q(钱前), Kunihiro Y(国广泰史), Fujimoto K(藤本宽), Huang D-N(黄大年), Zhu L-H(朱立煌). Genetic analysis of root vitality in rice ( Oryza sativa L. ) . Chinese J Rice Sci (中国水稻科学) , 2002 , 16 (2):119-123(in Chinese with English abstract)
    [144] Cao L-Y(曹立勇), Zhu J (朱军),Yan Q-C(颜启传) , He L-B(何立斌) , Wei X-H(魏兴华) , Cheng S-H(程式华) . Mapping QTLs with epistasis for mesocoty length in a DH population from indica2japonica cross of rice (Oryza sativa L. ) . Chinese J Rice Sci (中国水稻科学),2002, 16(3) :221-224 (in Chinese with English abstract)
    [145] Zhuang J Y, Lin H X, Lu J. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet , 1997 , 95 :799-808
    [146] Bertin P, Gallais A , 2000.Genetic variation for nitrogen use efficiency in a set of recombinant maize inbred lines. I. Agrophysiological results. Maydica ,45: 53-66.
    [147] Alonso Ferro R, Brichette I, Evgenidis G, Karamaligkas Ch, Moreno-González J ,2006.Variability in European maize (Zea mays L.) landraces under high and low nitrogen inputs. Genetic Resources and Crop Evolution DOI 10.1007/s10722-005-4500-x.
    [148] Feil B, S B Moser, S Jampatong, and P Stamp, 2005, Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci., 45: 516-523.
    [149] Aildson P. Duarte, Stephen C. Mason, David S. Jackson and Jorge de C. Kiehl. Grain Quality of Brazilian Maize Genotypes as Influenced by Nitrogen Level.Crop Sci.2005; 45: 1958-1964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700