SA对ClQ_4~-胁迫下喜旱莲子草生理的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探讨外源水杨酸(SA)对高氯酸盐(ClO4-)胁迫下水生植物影响的调节作用,本文以喜旱莲子草为试材,在水培及可控条件下,研究不同浓度(0.05、0.1、0.2、0.4 mmol/L)的SA对高氯酸盐胁迫下喜旱莲子草生长生理及结构的影响。结果表明:
     (1)SA处理不同程度的缓解了ClO4-胁迫对喜旱莲子草生长的抑制作用。与同期ClO4-胁迫组相比,SA处理的喜旱莲子草植株的相对生长量、相对株高、相对根长和根茎叶鲜重相对较高,外观形态观察的结果也表明了SA的缓解作用,其中以0.2mmol/L的SA处理效果最好。
     (2)与同期ClO4-胁迫组相比,SA处理的喜旱莲子草叶片细胞结构相对完整,其保护酶活性(SOD、POD和CAT)、可溶性蛋白含量(Pr)、脯氨酸含量(Pro)和相对叶绿素含量都得到不同程度提高,丙二醛的含量(MDA)得到不同程度的降低。其中0.2mmol/L的SA处理的效果最好。
     (3)喜旱莲子草叶片不同时期的叶绿素荧光参数、叶绿素荧光诱导曲线、ETR-PAR响应曲线和非光化学猝灭三组分的测定结果表明,在整个试验期间,各浓度的SA处理能不同程度地缓解ClO4-胁迫引起的各荧光指标的变化幅度,提高受迫植株利用光能和适应强光的能力。其中0.2mmol/L的SA处理的效果较明显。
     (4)SA处理不同程度地缓解了ClO4-胁迫对喜旱莲子草根系细胞结构的伤害程度,其根系活力、保护酶活性(SOD、POD和CAT)和Pr含量均不同程度的得到提高,MDA含量得到不同程度的降低,对ClO4-的吸收有一定的抑制作用。其中0.2mmol/L的SA处理的效果较明显。
In order to explore the regulatory effects of salicylic acid(SA) on the response of aquatic plant under perchlorate stress(ClO4-), a water culture experiment was conducted with the experimental materials of Alternanthera philoxeroides to study the effects of different concentrations of exogenous salicylic acid(0.05、0.1、0.2、0.4mmol/L)on growth and physiological characteristics and ultra-structure under the condition of perchlorate stress. The results showed as follows:
     (1) The SA treated groups could alleviate the growth inhibition effects of Alternanthera philoxeroides under ClO4- stress. Compared with the ClO4- stress group, the relative growth yield, relative stem length, relative root length, leaf fresh weight, stem fresh weight and root fresh weight of the SA treated groups were increased in different degrees,the observation of appearance shape also showed the regulatory effects of SA. It was considered that the optimal concentration of SA in alleviating perchlorate stress was 0.2mmol/L.
     (2) Compared with the ClO4- stress group, the SA treated groups alleviated the damage degree of the cell structure of Alternanthera philoxeroides leaves, increased the protective enzyme activities(SOD,POD,CAT), soluble protein content(Pr), proline content(Pro) and chlorophyll relative content, decreased malondialdehyde content(MDA) to some extent. The treatment of 0.2mmol/L of SA was the optimal concentration.
     (3) Through analyzing the chlorophyll fluorescence parameters of different periods, the chlorophyll fluorescence induction kinetics, ETR-PAR curve and the dark relaxations of non-photochemical quenching, the results showed that SA treatments reduced the change range of chlorophyll fluorescence parameters of Alternanthera philoxeroides, improved the ability of Alternanthera philoxeroides to use of light energy and adapt to high light. The treatment of 0.2 mmol/L of SA was the optimal concentration.
     (4) Compared with the ClO4- stress group, the SA treated groups alleviated the damage degree of the cell structure of Alternanthera philoxeroides roots, increased the root activity, the protective enzyme activities(SOD,POD,CAT) and the Pr content, decreased the MDA content to some extent, inhibited the ClO4- absorption in root.The treatment of 0.2 mmol/L of SA was the optimal concentration.
引文
[1]Andrea B K.Environmental perchlorate: why it matters[J]. Analytica Chimica Acta, 2006,567(3):4-12.
    [2]Asada K.The water-water cycle in chloroplasts: Scavenging ofactive oxygens and dissipation of excess photons[J]. Annu Rev Plant Physiol Plant Mol Biol ,1999,50: 601-639.
    [3]Ashraf M, Iris F, Manfred G, et al. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings[J]. Plant physiology,2003,132:272-281.
    [4]Bi YM, Kenton P, Murr L, et al. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression[J]. Plant J, 1995, 8: 234-245.
    [5]Bj?rkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta,1987,170:489-504.
    [6]Blackman P G ,Davis W J . Root to shoot communication in maize plant s of t he effects of soil drying[J]. J Exp.Bot .1985 , 36:39-48 .
    [7]Bowler C,Alliote T,Deloose M. The induction of manganese superoxide dismutase in response to stress in Nicotiana plumba ginifoliz[J].EMBOJ,1989,8:31-38.
    [8]Bowler C. Superoxide dismutase and stess tolerance[J]. Annu Rev Plant Physiol Plant Mol Biology, 1992 , 43: 83 - 116.
    [9]Bradford C.M.,Park J W,Rinchard J,et al.Uptake and elimination of perchlorate in eastern mosquitofish[J].Chemosphere, 2006,63(9):1591-1597.
    [12]Carrasco R M, Rodriguez J S, Perez P. Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia forst[J]. Photosythetica, 2002, 40(3): 363-368.
    [11]Chasan R.Eliciting phosphorylation[J].The Plant Cell,1995,7:589-598.
    [12]Chen Z,Silva H,Klessig D F.Active oxygen species in the induction of plant systemic acquired resistance by SA[J].Science, 1993,262:1883-1886.
    [13]Conrath U,Silva H,Klessing D F.Protein dephsphorylation mediates salicylica acid-induced expression of PR-1 genes tobacco[J].Plant J,1997,11:747-757.
    [14]Dat J F,Foyer C H,Cott I M.Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedings[J]. Plant Physiol,1998,118:1455-1461.
    [15]Demmig A B, Adams W W. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiol Plant, 1996, 98: 253-264 .
    [16]Dhindsa R S,Dhindsa P P,Thorpe T A.Leaf senescence sorrelated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase[J].J Exp Bot,1981,32:93-101.
    [17]Ding B Z,Shi G X,Xu Y,et al. Physiological responses of Alternanthera philoxeroideas(Mart.) Griseb leaves to cadmium stress [J].Environment Pollution,2007,147:800-803.
    [18]Edward T U, Matthew L M, Kelty C A, et al. Perchlorate uptake by salt cedar (Tamarix ramosissima) in the Las Vegas Wash riparian ecosystem[J]. The Science of The Total Environment, 2000,256( 2-3):227-232.
    [19]Fracheboud Y,Leipner J. The application of chlorophyll fluorescence to study light, temperature, and drought stress. In Practical Applications of Chlorophyll Fluorescence in Plant Biology (eds J.R. DeEll & P.M.A. Toivonen), Chapter 4. Dordrecht: KAP Press, 2003.
    [20]Gilmore A M, Ball M C. Protection and storage of chlorophyll in overwintering evergreens[J]. Proc Natl Acad Sci USA, 2000, 97: 11098–11101.
    [21]Goldbrough A P,Albrecht H,Strayford R.Salicylic acid inducible binding of a tobacco nuclear protein to a bp sequence which is highly conserved amongst stress inducible genes[J].Plant J,1993,3:563-571.
    [22]Hakimi A,Hamada M.Counteraction of salinity stress on wheat plants by grain soking in ascorbic acid ,thiamin or sodium salicylate[J].Biologic Plant,2001,44:253-261.
    [23]Helbing C C, Bailey C M, Ji L, et al. Identification of gene expression indicators for thyroid axis disruption in a Xenopus laevis metamorphosis screening assay: Part 1. Effects on the brain[J]. Aquatic Toxicology, 2007,82(4): 227-241.
    [24]Herbert P W, Pepich B V, Pohl C, et al. Selective method for the analysis of perchlorate in drinking waters at nanogram perliter levels, using two dimensional ion chromatography with suppressed conductivity detection[J]. Journal of Chromatography A, 2007,1155(1):15-21.
    [25]Holt N E, Fleming G R, Niyogi K K. Toward an understanding of the mechanism of nonphotochemical quenching in green plants[J]. Biochemistry, 2004, 43: 8281–8289.
    [26]Hosokawa D,Ohashi Y.Immunochemical localization of pathogenesis related proteins secteted into the intercellular spaces of salicylated treated tobacco leaves[J]. Plant Cell Physiol,1998,29(6):1035-1040.
    [27]Jackson W.A., Joseph P., Laxman P.,et al.Perchlorate accumulation in forage and edible vegetation [J].Journal of Agricultural & Food Chemistry,2005,53(2):369-373.
    [28]John G,Scandalios J G.Oxygen stress and superoxide dismutase[J].Plant Physiol.,1993,101:7.
    [29]Kang G Z,Wang C H,Sun G C,et al.Salicylic acid changes activities of H2O2-metabolizing enzymes and increase the chilling tolerance of banana seedings[J].Environ Exp Bot.2003,50:9-15.
    [30]Kawano T,Nobuya S,Takahashi S,et al.Salicylic acid induces ectracellar superoxide generation followed by an increase in cytosolic calcinm ion in tobacco suspension culture:the earliest events in salicylic acid signal transduction[J].Plant Cell Physiol,1998,39(7):721-730.
    [31]Klessig D F. Nitric oxide and salicylic acid signaling in plant defense [J]. Proceedings of the National Academy of Sciences of the USA,2000,97:8849-8855.
    [32]Koblizek M,Rodriguez J S,Perez P.Changes in chlorophyll fluorescence during the couse of photoperiod and in response to drought in Casuarina equisetifolia forst[J].Photosynthetica, 2002, 40(3): 363-368.
    [33]Koghba J,Lavee S,Spiegel-Roy P.Differeces in peroxidase activity and isoenzymes in enbryogenic and nonembryogenic and nonembryogenic‘Shamouti’orange ovular callus lines[J].Plant&Cell Physiol,1977,18:463-467.
    [34]Kosaka K,Asami M,Matsuoka Y,et al.Occurrence of perchlorate in drinking water sources of metropolitan area in Japan[J]. Water Research,2007,41(15):3474-3482.
    [35]Krause G H, Neis E. Chlorophyll fluorescence and photosynthesis[J]. Ann. Rev. Plant. Physiol. Plant. Mol. Biol. , 1991, 42 : 313-349 .
    [36]Kui T, Jones M W, Smith P N, et al. 2004. Accumulation of perchlorate in aquatic and terrestrial plants at a field scale [J]. Journal of Environmental Quality, 33(5):1638-1646.
    [37]Lichtenthaler H K,Buschmann C,Knapp M.How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio PFd of leaves with the PAMfluorometer[J].Photosynthetica,2005,43(3):379-393.
    [38]Lichtenthaler H K, Rinderle U. The role of chlorophyll. were modeled showing a double peak in the red-edge. fluorescence in the detection of stress conditions in plants[J]. CRC. Crit. Rev. Anal. Chem. 1988, 19(Suppl. 1):529–585.
    [39]Liu F J,Cobb G P,Anderson T A,et al.Uptake accumulation and depuration of sodium perchlorate and sodium arsenate in zebrafish (Danio rerio)[J].Chemosphere,2006,65(10):1679-1689.
    [40]Lopez D H,Dat J F,Foyer C H. et al.Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2[J].J Exp Bot,1998,49(321):713-720.
    [41]Maria W T.Development of a drinking water regulation for perchloratein California[J].Analytica Chimica Acta,2006,567 (1):20-25.
    [42]Maxwell K, Johnson GN. Chlorophyll fluoresence–A practical guide[J]. Journal of Experimental Botany , 2000, 51: 659 -668.
    [43]Mishra A,Choudhuri M A.Effects of salicylic acid on heavy metal- induced membrane deterioration med iated by lipoxygenase in rice [J].Biologia Plant arum,1999,42:409 -415.
    [44]Motzer W E. Perchlorate:Problems,Detection and Solutions[J].Environmental Forensics, 2001,(2):301-311.
    [45]Mukhi S, Torres L, Pati?o R. Effects of larval–juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios[J]. General and Comparative Endocrinology, 2007,150(3):486-494.
    [46]Müller P, Li X P, Niyogi K K. Non-photochemical quenching. A. response to excess light energy[J]. Plant Physiology, 2001, 125:1558–1566.
    [47]Naqiv S M,Rizvi S A. Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides[J].Bull. Environ. Contam. Toxicol., 2000,65:55-61.
    [48]Naqiv S M,Rizvi S A.Accumulation of chromium and copper in three different soils and bioaccumulation in an aquatic plant, Alternanthera philoxeroides[J].Bull. Environ. Contam. Toxicol.,2000,65:55-61.
    [49]Niyogi K K. Photop rotection revisited:Genetic and molecular app roaches[J]. Annu Rev Plant Physiol Plant Mol Biol , 1999, 50 : 333-359.
    [50]Ohashi Y,Matsuoka M.Localization of pathogenesis related proteins in the epidermis and intercellur spaces of tobacco leaves after their induction by potassium salicylate or tobacco mosaic virus infection[J].Plant Cell Physiol,1997,28(7):1227-1235.
    [51]Philip N S, Lu Y, Scott T M, et al. Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA[J]. Environmental Pollution, 2004, 132(1):121-127.
    [52]Platt T,Gallegos C L,Harrison W G.Photoinhibition of photosynthesis in natural assemblages of marine phrtoplankton[J]. J.Mar.Res.,1980,38,687-701.
    [53]Prasad T K,Anderson M D,Martin B A,ea tl.Evidence for chilling-induced oxidative stress in maize seedings and a regulatory role for hydrogen peroxide[J].Plant Cell.1994,6:65-74.
    [54]Prasad T K,Anderson M D,Martin B A,et al.Evidence for chilling-induced oxidative stress in maize seedings and regulatory role for hydrogen peroxide[J].Plant Cell,1994,6:65-74.
    [55]Ralph P J,Gademann R.Rapid light curves:Apowerful tool toassess photosynthetic activity[J].Aquatic Botany, 2005,82: 222-237.
    [56]Raskin I. Role of salicylic acid in plants[J]. Plant Mol. Biol., 1992 ,43 : 439-463.
    [57]Raz V,Fluhr R. Calcium requirement for ethylene-dependent response[J].Plant Cell,1998,4:1123-1130.
    [58]Rhoads D M,Mcintosh L.The salicylic acid inducible alternative oxidase gene asol and genes encoding pathogenesis related proteins share regions of sequence similarity in their promoters[J].Plant Mol Biol,1993,21:615-624.
    [59]Richard B P, Evelyn A H.The multiphasic nature of nonphotochemical quenching: implications for assessment of photosynthetic electron transport based on chlorophyll fluorescence[J]. Photosynthesis Research, 2004 ,82: 95–107.
    [60]Sanchez C A, Krieger R I, Khandaker N,et al. Accumulation and perchlorate exposure potential of lettuce produced in the lower Colorado Riverregions[J]. Agric Food Chem, 2005, 53:5479-5486.
    [61]Sanchez C.A.,Krieger R.I.,Khandaker N.R.,et al.Potential perchlorate exposure from Citrus sp. irrigated with contaminated water[J].Analytica Chimica Acta,2006,567(1):33-38.
    [62]Sanchez C.A.,Krieger R.I.,Khandaker N.R.,et al.Accumulation and perchlorate exposure potential of lettuce produced in the Lower Colorado River region [J].Journal of Agricultural & Food Chemistry,2005,53(13):5479-5486.
    [63]Scandalios J G.Oxygen stress and superoxide dismutases[J]. Plant Physiol,1993,101:7-12.
    [64]Schreck R,Rieber P,Bauerle P A.Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-I[J].EMBO J,1991,10:2247-2258.
    [65]Shi Y L, Zhang P,Wang Y W,et al.Perchlorate in sewage sludge, rice, bottled water and milk collected from different areas in China[J].Environment International,2007,33:955-962.
    [66]Smith P.N.,Yu L,McMurry S.T.,et al.Perchlorate in water, soil, vegetation and rodents collected from the Las Vegas Wash, Nevada, USA[J].Environmental Pollution,2004,132(1):121-127.
    [67]Snyder S.A.,Pleus R.C.,Vanderford B.J.,et al.Perchlorate and chlorate in dietary supplements and flavor enhancing ingredients [J].Analytica Chimica Acta,2006,567(1):26-32.
    [68]Standfuss J, Terwisscha A C, Lamborghini M, et al. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 ? resolution[J]. EMBO J,2005, 24: 919-928.
    [69]Susarla S,Collette T W,Garrison A W,et al.Perchlorate identification in fertilizers[J].Environ Sci Technol,1999,33:3469-3472.
    [70]Tan K,Jones M.W.,Smith P.N.,et al.Accumulation of perchlorate in aquatic and terrestrial plants at a field scale [J]. Journal of Environmental Quality,2004,33(5):1638-1646.
    [71]Theodorakis C.,Rinchard J.,Anderson T.,et al. Perchlorate in fish from a contaminated site in east-central Texas[J]. Environmental Pollution,2006,139(1):59-69.
    [72]Tikkanen M W.Development of a drinking water regulation for perchlorate in California[J].Analytica Chimica Acta, 2006,567(1):20-25.
    [73]Urbansky E T,Brown S K,Magnuson M L,et al.Perchlorate levels in samples of sodiumnitrate fertilizer derived from Chilean caliche [J]. Environmental Pollution,2001,112(3):299-302.
    [74]Urbansky E.T.,Magnuson M.L.,Kelty C.A.,et al.Perchlorate uptake by salt cedar (Tamarix ramosissima) in the Las Vegas Wash riparian ecosystem[J].The Science of The Total Environment,2000,256( 2-3):227-232.
    [75]Wang D M, Huang C P, Chen J G, et al. Reduction of perchlorate in dilute aqueous solutions over monometallic nano-catalysts: Exemplified by tin[J]. Separation and Purification Technology,2007,58(1):129-137.
    [76]Ward E R,Uknes S J,Willians S C,et al.Coordinate gene activity in response to agents that induce systemic acquired resistance [J].The Plant Cell,1991,3:1085-1094.
    [77]Whiter F A cetylsalicylic acid(aspirin) induces resistance to tobacco mosaic virus in tobacco[J].Virology,1979,99(2):410-412.
    [78]Yamane Y, Kashino Y, Satoh K, et al. Increase of fluorescence F0 level and reversible inhibition of photosystem II reaction center by high temperature treatments in higher plants[J]. Photosyn. Res.,1997,52:57-64.
    [79]Yu L,Ca?as J E.,Cobb G.P.,et al.Uptake of perchlorate in terrestrial plants[J].Ecotoxicology and Environmental Safety,2004,58(1):44-49.
    [80]Zhong X,Zhao D Y,Pan G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles[J]. Water Research, 2007,41(15):3497-3505.
    [81]蔡新忠,郑重.水杨酸诱导水稻幼苗抗病性的生化机制[J].植物病理学报,1997,27(3):231-236.
    [82]蔡亚岐,张萍,史亚利,等.高氯酸盐的环境污染问题[J].化学进展,2006,18(11):1554-1564.
    [83]蔡永萍,聂凡,张鹤英,等.水杨酸对月季切花的保鲜效果和生理作用[J].园艺学报,2000,35(3):228-230.
    [84]蔡新忠,郑重,宋凤铭.水杨酸对水稻幼苗抗瘟性的诱导作用[J].植物病理学报,1996,26(1):7-12.
    [85]蔡贤雷.高氯酸盐对喜旱莲子草的影响及镧的调控作用[D].南京:南京林业大学.2009,10-39;23-24.
    [86]蔡贤雷,谢寅峰,刘伟龙,等.高氯酸盐污染及修复的研究进展[J].生态学报,2008,28(11):5592-5600.
    [87]曹翠玲,刘林丽,田强兵.水杨酸对玉米幼苗抗旱性的影响[J].玉米科学,2004,12(增刊):103-104.
    [88]常云霞,李青芝,杜红阳,等.水杨酸对盐胁迫下小麦幼苗生长抑制的缓解效应[J].安徽农业科学,2009,37(4):1428-1431.
    [89]陈家辉.菠菜铅毒害生理机制及水杨酸缓解效应的研究[D].山东:山东农业大学,2007:36.
    [90]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [91]陈秋明,尹慧,李晓艳,等.高温胁迫下外源水杨酸对百合抗氧化系统的影响[J].中国农业大学学报,2008,13(2):44-48.
    [92]陈珍.水杨酸对镉胁迫下花椰菜种子萌发及幼苗生长的影响[J].种子,2009,28(2):39-44.
    [93]代其林.水杨酸对低温下水稻幼苗生理生化特性的影响[D].成都:四川大学,2004:13.
    [94]代其林,万怀龙,王劲,等.干旱胁迫下水杨酸对水稻幼苗抗氧化酶活性的影响[J].绵阳师范学院学报,2008,27(2):73-76.
    [95]代其林,王劲,万怀龙,等.水杨酸对干旱胁迫下豇豆幼苗抗氧化酶活性的影响[J].四川大学学报(自然科学版),2008,45 (5):9520-9525.
    [96]杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22.
    [97]高乃云,李富生,汤浅晶,等.去除饮用水中高氯酸盐的研究进展[J].中国给水排水,2003,19(7):47-49.
    [98]高媛,齐晓花,杨景华,等.高等植物对低温胁迫的响应研究[J].高等园艺,2007,(10):58-61.
    [99]郭彬.外源水杨酸缓解镉对水稻毒害的生理机制[D].南京:南京农业大学,69.
    [100]何亚丽,刘友良,陈权,等.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系[J].植物生理与分子生物学学报,2002,28(2):89-95.
    [101]洪涛,许大全.珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭[J].植物生理学报,1999,25(1):15-21.
    [102]黄爱霞,佘小平.水杨酸对黄瓜幼苗抗冷性的影响[J].陕西师范大学学报(自然科学版),2003,31(3):107–109.
    [103]黄清泉,孙歆,张年辉,等.水杨酸对水分胁迫黄瓜幼苗叶片生理过程的影响[J].西北植物学报,2004,24(12):2202-2207.
    [104]胡晓琼.水杨酸对蚕豆重金属镉毒害的影响[D].成都:四川师范大学生命科学学院,2007:48-49.
    [105]贾凤芝,谢平,陈俊玲.喜旱莲子草对城市污水净化能力的研究[J].水处理技术,1998,24(5):308-310.
    [106]蒋小满,柏新富,赵建萍,等.水杨酸对盐胁迫下三角滨藜种子萌发及幼苗生长的影响[J].中国种业,2007,3:39-40.
    [107]康国章,段中岗,王正询等.水杨酸提高香蕉幼苗抗冷性初探[J].植物生理学通讯,2003,39(2):122-124.
    [108]康国章,欧志英,王正询,等.水杨酸诱导提高香蕉幼苗耐寒性的机制研究[J].园艺学报.2003, 30(2):141-146.
    [109]康琅,汪良驹. ALA对西瓜叶片叶绿素荧光光响应曲线的影响[J].南京农业大学学报,2008,31(1):31-36.
    [110]李彩霞,李鹏,苏永发,等.水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响[J].植物生理学通讯,2006,42 (5):882-884.
    [111]李长军,李淑平,杨瑞红,等.外源水杨酸对草莓耐盐性的影响[J].黑龙江农业科学,2008(6):77-80.
    [112]李德红,潘瑞炽.水杨酸在植物体内的作用[J].植物生理学通讯,1995,31(2):144-149.
    [113]李玲.植物生理学模块实验指导[M].北京:科学出版社,2009:95-97;86-88.
    [114]李鹏民,高辉远.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理学与分子生物学学报,2005,31 (6):559-566.
    [115]李忠光,龚明.抗氧化系统在热激诱导的玉米幼苗耐热性形成中的作用[J].云南植物研究,2007,29(2):231-236.
    [116]刘娥娥,汪沛洪,郭振飞.植物的干旱诱导蛋白[J].植物生理学通讯,2001,37(2);155-160.
    [117]刘惠芬,高玉葆,张强.不同种群羊草幼苗对土壤干旱胁迫的生理生态响应[J].南开大学学报版,2004,37(4):105-110.
    [118]刘建武,林逢凯,王郁.水生植物净化萘污水净化能力研究[J].上海环境科学,2002,21(7):412-415.
    [119]刘林德,姚敦义.植物激素的概念及其新成员[J].生物学通报,2002,37(8):18-20.
    [120]刘素纯,萧浪涛,廖柏寒,等.水杨酸对铅胁迫下黄瓜幼苗叶片膜脂过氧化的影响[J].生态环境,2006,15(1):45–49.
    [121]刘伟,艾希珍,梁文娟,等.低温弱光下水杨酸对黄瓜幼苗光合作用及抗氧化酶活性的影响[J].应用生态学报,2009,20(2):441-445.
    [122]刘招龙,张绍铃,孙益林.水杨酸对梨叶感染轮纹菌后脂肪酸、叶绿素荧光参数和叶绿体超微结构的影响[J].应用与环境生物学报,2008,14(1):43-47.
    [123]陆云梅.水杨酸对干旱胁迫下柑橘生理生化特性的影响[D].武汉:华中农业大学.2007:36.
    [124]吕军芬,郁继华.水杨酸对西瓜抗冷性生理指标的影响[J].甘肃农业大学学报,2004,39(1):62-65.
    [125]马德华,庞金安,李淑菊,等.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J].园艺学报,1998,25(4):350-355.
    [126]马培芳,李利红,杨亚军,等.水杨酸对高温强光胁迫下小麦叶绿体D1蛋白磷酸化及光系统Ⅱ功能的影响[J].应用生态学报,2008,19(12):2632-2636.
    [127]马树华,王庆成,李亚藏.汽车尾气对四种北方阔叶树叶绿素荧光特性的影响[J].生态学杂志,2005,24(1):15-20.
    [128]潘瑞炽.植物生理学(第三版)[M].北京:高等教育出版社,1995:319.
    [129]钱春花,唐伟,刘超.环境内分泌干扰物与甲状腺疾病关系的研究进展[J].国外医学卫生学分册,2006,33(2):106-109.
    [130]邱念伟,马宗琪,王凤德,等.一种测定植物相对生长量的方法[J].山东科学,2007,20(2):24-28.
    [131]史亚利,刘肖,张萍,等.离子色谱-质谱联用技术测定饮用水及环境水样中的痕量高氯酸盐[J]分析试验室,2007,26(4): 34-37.
    [132]宋士清,郭世荣,尚庆茂,等.外源SA对盐胁迫下黄瓜幼苗的生理效应[J].园艺学报,2006,33(1):68-72.
    [133]孙丽娜.水杨酸对盐胁迫下黄瓜生长发育及超微结构影响的研究[D].黑龙江:东北农业大学,2005:18.
    [134]孙艳,樊爱丽,徐伟君.水杨酸和草酸对光氧化胁迫下黄瓜叶片光合机构及叶黄素循环的影响[J].园艺学报,2005,32(6): 1034-1038.
    [135]孙艳,徐伟君,范爱丽.高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响[J].应用生态学报,2006,17(3): 399-402.
    [136]孙歆,郭云梅,雷韬,等.水杨酸对水分胁迫下菜豆若干生理指标的影响[J].四川大学学报(自然科学版),2005,42(3):575 -579.
    [137]孙立荣,崔香环,廖立冰,等.外源水杨酸对Cu2+胁迫下小麦幼苗中活性氧和抗氧化酶的影响[J].河南大学学报(自然科学版),2008,38(2):176-159.
    [138]苏行,胡迪琴,林植芳,等.广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J].植物生态学报,2002,26(5):599-604.
    [139]唐国章,孙谷,王正询.水杨酸在植物抗逆境胁迫中的作用[J].广西植物,2004,24(20):178-183.
    [140]王利军.高温锻炼和水杨酸对葡萄抗热性的诱导及信号传导研究[D].北京:中国农业大学,2001.
    [141]王利军,战吉成,王卫东.水杨酸与植物抗逆性[J].植物生理学通讯,2002,38(6):0619-0624.
    [142]王淑芳,杨雪清,田桂香,等.水杨酸对NaCl胁迫下黄芩幼苗生长的影响[J].西南师范大学学报,2006,31(5):159-162.
    [143]王松华,储卫红,周正义,等.水杨酸对小麦镉毒害的缓解效应[J].种子,2005,24(10):15-17.
    [144]王诤,付学起.饮用水中的高氯酸盐[J].净水技术,2001,20 (4):3-4,35.
    [145]王开冻,颜志明,马卫军,等.水杨酸对高温胁迫下南瓜幼苗生理生化的影响[J].浙江农业科学,2009,1:42-44.
    [146]吴楚.冰冻条件下外源SA对水曲柳幼苗叶片内抗氧化酶的影响[J].林业科学,2002,38(5) :55-59.
    [147]吴能表.外源水杨酸对萝卜低温胁迫的缓解作用[J].西南农业大学学报,2006,28(5):782-785.
    [148]吴旭红.水杨酸对杜松幼苗水分胁迫的缓解效应[J].辽宁林业科技,2008,1:16-18.
    [149]吴伦忠,韩瑞红,莫亿伟,等.水杨酸提高水稻幼苗对镉胁迫的抗性[J].华北农学报,2008,23(增刊):135-139.
    [150]夏汉平,刘世忠,敖惠修.香根草等3种植物的抗盐性比较[J].应用与环境生物学报,2000,6(1):7-17.
    [151]夏汉平.香根草和喜旱莲子草对垃圾污水中N、P、Cl的吸收效果[J].植物生态学报,2000,24(5):613-616.
    [152]夏武海.乙酰水杨酸对甘蓝试管苗生根的影响[J].植物生理通讯,2002,38(3):305-306.
    [153]谢寅峰,蔡贤雷,刘伟龙,等.高氯酸盐对空心莲子草生长及叶绿素荧光参数的影响[J].环境科学,2009,30(8):2425-2431.
    [154]许大全.光合作用效率[M].上海:上海科学技术出版社,2002:29-36.
    [155]薛建平,王兴,张爱民,等.水杨酸对高温胁迫下半夏叶片光合作用及叶绿素荧光的影响[J].中国药学杂志,2008,43(24): 1855-1858.
    [156]许耀照.高温和水杨酸对黄瓜种子萌发和幼苗的影响[D].兰州:甘肃农业大学,2005.
    [157]许耀照,曾秀存,郁继华,等.水杨酸对高温胁迫下黄瓜幼苗叶绿素荧光参数的影响[J].西北植物学报,2007,27(2):0267-0271.
    [158]徐志防,罗广华,柯德森,等.超阳阴离子诱导的叶绿素荧光猝灭[J].生物化学与生物物理进展,2002,29(1):139-144.
    [159]杨晓杰,张洪伟.水杨酸对盐胁迫下管花蒲公英的保护作用植物研究[J].植物研究,2006,26:222-224.
    [160]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2000,18(3):286-288.
    [161]于佳,唐玄乐,宋建平,等.高氯酸盐的急性毒性和遗传毒性研究[J].毒理学杂志,2007,21(4):267-269.
    [162]原永兵,曹宗.水杨酸在植物体内的作用[J].植物学通报,1994,11(3):1-9.
    [163]张彩芳.水杨酸和沙引发对糯玉米种子在盐逆境下发芽及生理特性的影响[D].杭州:浙江大学,2007:37.
    [164]张蕊.低温下外源水杨酸对水稻幼苗生理生化特性的影响研究[D].重庆:西南大学,2006:20;24.
    [165]张雷明,上官周平,毛明策,等.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,2003,14(5):695-698.
    [166]张萍,史亚利,蔡亚岐,等.改进的离子色谱法测定环境水样中的高氯酸盐[J].高等学校化学学报,2007,28(7):1246-1250.
    [167]张萍,史亚利,蔡亚岐,等.大体积进样离子色谱法测定环境水样中高氯酸根[J].分析化学,2006,34(11):1575-1578.
    [168]张萍,史亚利,王亚韡,等.离子色谱-质谱联用技术测定污泥样品中的痕量高氯酸盐[J].分析化学,2007,35(1):131-134.
    [169]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [170]张玉星,陈昆松,张上隆.乙酰水杨酸处理对猕猴桃果实成熟衰老的影响及其作用机理[J].植物生理与分子生物学学报, 2002,28(6):425-432.
    [171]张士功,高吉寅,宋景芝.NaCl胁迫下水杨酸和阿司匹林对小麦幼苗体内ATP含量的影响[J].植物学报,1999,41(6):675-676.
    [172]张士功,高吉寅,宋景芝.水杨酸和阿司匹林对小麦盐害的缓解作用[J].植物生理学报,1999,25(2):159-164.
    [173]张士功,高吉寅,宋景芝.水杨酸和阿司匹林对盐胁迫下小麦种了萌发的作用[J].植物生理学通讯,1999,35:29-32.
    [174]张玉秀,柴团耀.菜豆病程相关蛋白在重金属胁迫下的表达分析[J].中国化学与分子生物学报,2000,16(1):446-450.
    [175]张志良,翟伟菁.植物生理学实验指导(第三版)[M].北京:高等教育出版社.2003:159-160.
    [176]赵腊梅.水杨酸浸种对木槿种子萌发及幼苗抗低温影响[J].中国农学通报2009,25(04):93-96.
    [177]赵世杰,许长城,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [178]周红卫,施国新,陈景耀,等.6-BA对喜旱莲子草抗氧化酶系Hg2+毒害的缓解作用[J].生态学报,2003,23(2):387-392.
    [179]周红卫,施国新,徐勤松.Cd2+污染水质对喜旱莲子草根系抗氧化酶活性和超微结构的影响[J].植物生理学通讯,2003,39(3): 211-214.
    [180]周红卫,施国新,陈景耀,等.6-BA对喜旱莲子草抗氧化酶系Hg2+毒害的缓解作用[J],生态学报,2003,23(2):387-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700