水氮互作对小麦生理特性及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以春小麦宁春4号为试验材料,试验在甘肃省农业科学研究院旱地农业研究所的抗旱棚中进行。采用随机区组设计的方法,两因素三水平,三个氮素水平分别为:无氮(CK),不施纯氮;中氮(MN),施纯氮0.06g/kg;高氮(HN),施纯氮0.23g/kg。三个水分处理水平分别为:严重干旱,维持田间持水量的40%;中度干旱,维持田间持水量的60%;正常供水,维持田间持水量的80%。实验共设9个处理组合,每处理重复10次。主要试验结果如下:
     1、施氮可提高小麦功能叶的叶绿素含量、净光合速率(Pn)、瞬时水分利用效率(IWUE)、气孔导度(Gs)、电子传递速率(ETR)、PSⅡ总的光量子产量(Yield)、光化学猝灭系数(qP),同时胞间CO2浓度(Ci)减小。干旱和正常供水条件下,高氮处理的Pn、IWUE、Gs和ETR均大于其它氮素水平。在拔节期和灌浆期,干旱条件下高氮叶片Yield显著低于中氮和对照处理;在抽穗期和灌浆期,正常供水和中等干旱的高氮叶片qP较对照以及丰水和严重干旱的中氮叶片高。在三种氮素营养水平下,随着水分胁迫的加重,小麦叶片叶绿素含量、类胡罗卜含量、IWUE以及Pn均表现出增大的趋势。在不施氮条件下,随着水分胁迫的加重,小麦叶片Gs、ETR和qP降低,Ci增大。而高氮和中氮水平下,小麦叶片Gs增加、ETR和qP升高,Ci减小。小麦叶片IWUE与Pn呈线性正相关,与蒸腾速率(Tr)、Ci、Gs呈线性负相关。小麦叶片Pn与Yield、qP、ETR表现为显著线性正相关,而且其相关性在中等氮素水平达到最高;Pn与Gs、IWUE之间的相关性因处理不同而异,证明施氮能够显著提高光合机构开放比例、捕捉光量子的能力和电子传递速率,从而改善光合机构效能;氮素对气体交换的影响受水分条件的显著作用,从而影响叶片水分利用效率,但由于干旱导致Pn和IWUE的降低可以通过增施氮肥得到部分补偿。
     2、施氮可提高小麦功能叶片的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性而丙二醛(MDA)含量降低。丰水条件下,拔节期不施氮肥和中氮处理的小麦叶片MDA含量均高于高氮处理的小麦叶片MDA含量,其它表现为随着施氮量的增加而降低。在三个水分条件下,小麦叶片SOD活性表现为从拔节期-扬花期逐渐升高而灌浆期降低,并且随着施氮量的增加而升高。在丰水条件下,小麦叶片CAT活性表现为随着施氮量的增加而升高。在中度干旱条件下,拔节期和扬花期的小麦叶片CAT活性表现为随着施氮量的增加而升高,抽穗期和灌浆期中氮处理的小麦叶片CAT活性表现为最高。严重干旱条件拔节期和灌浆期的小麦叶片CAT活性表现为最高。3种氮素营养水平下,随着水分胁迫的加重,小麦叶片MDA含量,SOD活性升高;在无氮条件下,小麦叶片CAT活性降低,而施氮条件下,小麦叶片CAT活性升高。
     3、在丰水和干旱条件下,从拔节期—抽穗期,小麦叶片的全N含量均表现为HNW>MNW>CK1。但在严重干旱条件下,总的趋势是从拔节期—灌浆期表现为逐渐降低。从拔节期-灌浆期均表现为MND处理的最高。在拔节期和灌浆期,HND处理的却最低。丰水条件下,扬花期中氮处理的小麦含磷量表现为最高,中度干旱条件下对照和中氮处理的小麦叶片含磷量表现为最高。三个水分条件下,小麦叶片含钾量无明显差异。小麦叶片硝酸还原酶活性(NRA)表现为随着施氮量的增加而增大。NRA与小麦植株含氮量的相关分析表明,NRA与小麦植株含氮量表现为负二次相关的趋势,即随小麦植株含氮量的增高,NRA先表现为降低的趋势,达到最低点,随着小麦植株含氮量的增高,NRA升高。
     4、在丰水和中度干旱条件下,拔节期的小麦植株高度表现为中氮处理的最高,其它均是高氮处理的最高。在三个水分条件下,千粒重、穗粒数和平均每盆穗粒重均是高氮处理的最大。3种氮素营养水平下,小麦千粒重和每盆穗粒重均表现为中度干旱的为最高;随着水分胁迫的加重,小麦株高、干物重、穗粒数降低。
The experiment was conducted in the Institute of Dryland Agriculture, Gansu Academy of Agriculture Sciences. Random block design method was adopted, two factors three levels, the three nitrogen levels were: no nitrogen (CK), didn’t apply pure nitrogen; middle nitrogen (MN), applied pure nitrogen 0.4g per pot; high nitrogen (HN), applied pure nitrogen 1.5g per pot. the three water levels were: Serious dry, maintain 40 percent of saturated water content; Middle dry, maintain 60 percent of saturated water content; Normal Water, maintain 80 percent of saturated water content. There were totally nine treatments, repeated three times. The main conclusions of the study are summarized as follows:
     1、Nitrogen application could enhance the foliar photosynthetic rate(Pn), instantaneous water use efficiency (IWUE), stomatal conductance (Gs), the apparent photosynthetic electronic transport rate (ETR), overall photochemical quantum yield of PSⅡ(Yield) and photo-chemical quenching coefficient (qP), and decrease intracellular concentration of CO2(Ci). Under drought and well water conditions, the Pn, IWUE, Gs and ETR of high-nitrogen leaf was higher than the other nitrogen level. During Jointing and Ripening periods, the total PSⅡphoto Yield of high-nitrogen leaf which under drought condition were lower than the middle-nitrogen leaf and controls; During Heading and Ripening periods, the qP of high-nitrogen leaf that under middle middle-dry and well water condition were higher than middle-nitrogen leaf in wet and driest treatments. Under the condition of three nitrogen level, with the aggravated of water stress, the Chlorophyll content、carotenoid content、IWUE and Pn demonstrated a trend of increasing。Under the no nitrogen condition, with the aggravated of water stress, Gs、ETR and qP decreased, Ci increased. however, Under the middle and high nitrogen condition, the result was opposite.Correlation analysis showed that there were a significantly linear positive correlation between IWUE and Pn ,but negative with Tr、Ci、Gs. wheat leaves of Pn was positive correlation with Yield、qP、ETR, and reach highest point on the middle nitrogen level; The relationship between Pn and Gs, IWUE were different in different treatments, the results indicated that nitrogen application could improve the opening proportion of photosynthetic instruments, photos-catching ability and electronic transport rate, and then amended the efficiency of photosynthetic instruments; The effects of nitrogen application on gas exchange were different under different moisture condition, and then affected the water use efficiency, but the reduction of Pn and IWUE caused by drought could be compensated by supplying nitrogen fertilizer.
     2、nitrogen application could enhance the SOD、CAT of Function Leaf, decrease MDA. Under well water conditions, both the MDA of CK and MN treatment were higher than HN treatment during jointing stage, the others showed decrease with the increase of nitrogen application. Under three water conditions, the SOD of wheat leaf gradually increased from jointing stage to flowering stage, and increased with the inhance of nitrogen application. Under well water conditions, the CAT inhanced with the nitrogen increase. Under middle dry conditions, the CAT was increase during Jointing and flowering stage, MN treatment the CAT presented highest during Heading and Ripening stage. Under Serious dry conditions, CAT presented highest duringjointing and ripening stage. Under the condition of three nitrogen level, the more water, the higher MDA and SOD content in the wheat leaves. under the condition of no nitrogen, however, the CAT of the wheat leaves increased in low nitrogen, and it increased while applying nitrogen.
     3、Under well water and dry conditions ,from jointing stage to heading stage, the content of total nitrogen were HNW>MNW>CK1. Under serious dry conditions, the total tendency was gradually decrease from jointing to ripening stage. And the MND treatment was highest, however, the treatment HND was lowest .under well water conditions, the phosphorus content of nitrogen treatment was highest during flowering stage, middle dry and ck conditions were also highest. Under three water conditions the potassium content has had no significant difference. Correlation analysis showed that there was a twice negative correlation trend between NRA and wheat nitrogen content.
     4、The trial indicated that, under well and middle dry conditions, wheat height was highest in the middle nitrogen treatment during jointing stage, the others were highest in high nitrogen treatment, as well as 1000-grain weight、grain number per spike and grain weight per spike under three water conditions. Under the condition of three nitrogen level, the more water, the lower height、dry weight and spike number of wheat. Both 1000-grain weight and Spike grain weight per pot of wheat were highest under middle drought treatment.
引文
[1]李生秀.我国土壤植物营养研究的进展现状及展望[M].李生秀主编.土壤植物营养研究文集.西安:陕西科学技术出版社. 1999, 1~36
    [2]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报, 2005, 16(7): 1261~1264
    [3]李玉山.渭北旱原土壤水分动态规律及其对冬小麦的生长关系[J].陕西农业科学, 1992, (2): 1~5
    [4]赵立新,荆家海.旱地冬小麦施肥效应研究[J].干旱地区农业研究. 1991, 4(3): 46~50
    [5] Hanks, R.J. Yield and water-use relationship: an overview in Taylor, H.W.and Jordan, W.R. (eds) Limitation to efficient water use in crop production[J]. American Society of Agronomy, Inc.1983, 393~410
    [6] Austin, R.B.Ford.M.A.Edrich, J.A.and Blackwell.R.D. The nitrogen economy of winter wheat[J]. J.Agric.Sci.1977, 88: 159~167
    [7] Ellen, J.and spiertz, J.H.J. Effects of rate and timing of nitrogen dressings on grain yield formation of winter wheat[J]. Fert, Res.1980, 1: 177~190
    [8]汪德水主编.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社, 1995, 195~315
    [9]吕殿青,刘军,李瑛.旱地水肥交互效应与耦合模型研究[J].西北农业学报, 1995, 4(3): 72~76
    [10]金轲,汪德水,蔡典雄.旱地农田水肥耦合效应及其模式研究[J].中国农业科学, 1999, 32(5): 104~106
    [11] James R.Frederick and James J.Camberato. Water and nitrogen effects on winter wheat in the southeastern coastal plain I grain yield and kernel traits[M]. Agron.J. 1995, 87: 521 ~526
    [12] Garabet S, Wood M, Ryan J.Nitrogen and water effects on wheat yield in a Mediterranean type climate .I.Growth, water-use and nitrogen ccumulation[J]. Field Crops Research. 1998, 57: 309 ~318
    [13] Viets, F.G. Water deficits and nutrient availability.In: koz1owski.TT, (ed) water defictits and plant growth[J]. Acad. press. 1972, (3): 217~247
    [14] Arnon.I. Physiological principles of dry land crop production. In: Gopta u.s. (ed). Physiologicala spects of dryland farming. New. Dehil: Oxford IBH publishing Co.1975, 3~145
    [15]山仑,陈培元主编.旱地农业生理生态基础[M].北京:科学出版社, 1998
    [16]汪德水,程宪国,张美荣.旱地土壤中的肥水激励机制[M].北京:中国农业科技出版社, 1995, 195~203
    [17]山仑,陈培元主编.旱地农业生理生态基础[M].北京:科学出版社, 1998, 1~17
    [18]发展旱地农业的战略设想[J].干旱地区农业研究, 1984, 1(3). 10~18
    [19]万建中,罗永莹,罗志成.中国干旱半干旱地区的分布与开发集[M]. 1987, 1~8
    [20] Hall.A.E. Agriculture in semiarid environments[J]. New York: Springer-verlag Berlian Heidelberg. 1979, 5~35
    [21] Levitt J. Responses of plants to environmental stress[J]. New York: Academic Press. 1972, 325~358
    [22]黄卓辉,余志新,王兆德.小麦光合作用的初步研究[A].小麦丰产研究论文集[C].上海:上海科学技术出版社, 1996, 161~172
    [23] Shangguan Z P. Effect of water stress on photosynthesis of crop[J]. In: ShanL, Chen P-Y eds. The Physiological and Ecological Basis of Dryland farming. Beijing: Science Press. 1998, 68~77
    [24] Sage R F , Rearcy R W.1987. The nitrogen use feeiciency of C3 and C4 plantsⅡ. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and A maranthus retroflexus (L.)[J]. Plant Physiol, 84: 959~963
    [25]吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响[J].中国农业科学, 1995, 28(增刊): 104~107
    [26] Von Caemmerer S, Evans J R. Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plant[J]. Plant Physiol, 1991, 85: 287~305
    [27]陈锦强,李明启.不同氮素营养对黄麻叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原的关系[J].植物生理学报, 1983, 9(3): 251~259
    [28]薛青武,陈培元.灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响[J].干旱地区农业研究, 1989, 3: 86~93
    [29] Oaks A, Aslam M, Boesel Z. Ammonium and amino acid as regulation of nitrate reductase in corn roots[J]. Plant Physiol, 1977, 59: 391~394
    [30]孙进东,高煜珠.氮素营养对冬小麦光合与光呼吸的调节[J].江苏农学院学报, 1989, 10(4): 13~16
    [31] Shangguan Z P, Shao M A. Effect of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Plant Physiol, 2000, 56: 46~51
    [32] Kouki Hikosaka. Interspeci in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance[J]. Journal of Plant Research, 2004, 117: 481~494
    [33] Rhiel E, Krupinska K, W. Effects of nitrogen starvation on the function and organization of the photosynthetic membranes in Cryptamonas maculate (Cryptophyceae)[J]. Planta, 1986, 169: 361~369
    [34] Berges J A , Charlebois D O, Mauzerall D C, er al . Differential Effects of nitrogen limitation on photosynthetic efficiency of photosystem SⅠandⅡin microalgae[J]. Plant Physiol, 1996, 110: 689~696
    [35] Kolber Z, Falkow ski P G. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion photosystemⅡLinnol Oceanogr, 1993, 38: 16~46
    [36]董彩霞,赵世杰,等.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响[J].作物学报, 2002, 28(1): 59~64
    [37] Evans J R, Terashima I. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach[J]. Aust J Plant Physiol, 1987, 14: 281~292
    [38] Cimopi S, Gentili E, Guidi L, et al. The effect of nitrogen deticiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower[J]. Plant Sci, 1996, 118: 177~18
    [39]张绪成,上官周平.施氮对旱地不同抗旱性小麦叶片光合色素含量与荧光特性的影响[J].核农学报, 2007, 21(3): 299~304
    [40]张雷明,上官周平,毛明策,等.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报, 2003, 14(5): 695~698
    [41]高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节的研究[J].西北植物学报, 1991, 11(1):58~64
    [42]上官周平,陈培元.不同抗旱性小麦品种渗透调节的研究[J].干旱地区农业研究, 1991, 9(4): 60~63
    [43]周桂莲,杨慧霞.小麦抗旱性鉴定的生理生化指标及其分析评价[J].干旱地区农业研究, 1996, 14(2): 65~71
    [44]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报, 2005, 23(2): 134~147
    [45]张永强,姜杰.水分胁迫对冬小麦叶片水分水分生理生态过程的影响[J].干旱区研究, 2001, 18(1): 57~61
    [46]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报, 2000, 29(1): 35~39
    [47]肖颖.水分胁迫对小麦旗叶光合特性的影响[J].河北农业大学学报, 2002, 25(4):7~10
    [48]张秋英,李发东,刘孟雨,等.水分胁迫对小麦旗叶叶绿素a荧光参数和光合速率的影响[J].干旱地区农业研究, 2002, 20(3): 80~84
    [49]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学报, 1999, 16(4): 444~481
    [50]赵慧杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报, 2000, 34(3): 248~251
    [51] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis[J]. The Basics Ann Rev Plant Physiol Plant Mol, 1991, 42: 313~349
    [52] Genty B E, Briantais M J and Baker N R. The relationship between the quantum yield of photosyntheticelectron transport and quenching of chlorophyll fluorescence[J]. Biochim Bophys Acta, 1989, 990: 87~92
    [53] Van Kooten O, Snel J T H. The use of chlorophyll nomenclature in plant stress physiology[J]. Photosyn Res, 1990, 25: 147~150
    [54]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社, 1992: 121~127
    [55] Dorothea Bartels, Ramanjulu Sunkar. Drought and salt tolerance in plants[J]. Critical Reviews in plant sciences, 2005, 24: 23~58
    [56]谭雪莲,张绪成,郭天文,等.氮素对小麦幼苗叶片气体交换和能量转化特性的调控[J].核农学报, 2007, 21(3): 305~310
    [57]李世清,田宵鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报, 200, 20(1): 22~28
    [58]张岁歧,山仑.氮素营养对春小麦抗旱性及水分利用的影响[J].水土保持研究, 1995, 2(1): 33~38
    [59]张岁歧,李秧秧.施肥促进作物水分利用机理及产量影响的研究[J].水土保持研究, 1996, 3(1): 185~191
    [60]马淑芬,尹桂花,马勇.水稻需水特性及各生育期的水分管理技术[J].黑龙江水利科技, 1999, 1: 62~64
    [61]卢从明,张其德,匡廷云,等.水分胁迫抑制下氮素营养对水稻光合作用及水分利用效率的影响[J].中国科学院研究生学报, 1993, 10(2): 196~202
    [62] Mahler RL, Koehler FE, Lutcher LK. Nitrogen source, timing of application and placement feeects on winter wheat production[J]. Agron J. 1994, 86: 637~642
    [63]陈晓远,罗远培.作物对水分胁迫的反应[J].生态农业研究, 1998, 6(4): 12~15
    [64] Onken A B, Wendt CW, Halorson AD. Soil fertility and water use efficiency. Proceedings of international Conference on Dryland Farming[J]. Challenge in Dry Agriculture-A Global Perspective.Texas: Amarillo/Bushland. 1998, 441~444
    [65] Angus JF,AF van Hanwarden. Increase water use and water use effiency in dryland wheat[J]. Agron J. 2001, 93: 290~298
    [66]李世请,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究, 1994, 12(1): 47~53
    [67]卢从明,张其德,匡廷云,等.水分胁迫抑制下氮素营养对水稻光合作用及水分利用效率的影响[J].中国科学院研究生学报, 1993, 10(2): 196~202
    [68]张岁歧,山仑,薛青武.氮磷营养对小麦水分关系的影响[J]. 2000, 6(2): 147~151
    [69]王洪预,李秋祝,赵宏伟,等.不同生育期干旱处理对春玉米保护酶活性及产量的影响[J].东北农业大学农学报, 2007, 38(1): 13~17
    [70]葛体达,隋方功,白莉萍,等.长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响[J].干旱地区农业研究, 2005, 23(3):18~24
    [71]张国盛,张仁陟.水分亏缺下氮磷营养对小麦幼苗保护酶活力的影响[J].甘肃农业大学学报, 2002, 3(7): 285~289
    [72]陈由强,朱锦愈,叶冰莹.水分胁迫对芒果幼苗细胞活性氧伤害的影响[J].生命科学研究, 2000, 4(1): 60~64
    [73] Zhang J, Kirkham M B. Antioxidant responses to drought in sunflower and sorghum seedings. NEW Phtol, 1996, 132(3): 361~373
    [74]王俊儒,李生秀,李剀丽.冬小麦不同生育时期水分亏缺胁迫对叶片保护酶系统的影响[J].西北植物学报, 2001, 21(1): 47~52
    [75]战秀梅,韩哓日,杨劲峰,等.不同施肥处理对玉米生育后期叶片保护酶活性及膜脂过氧化作用的影响[J].玉米科学, 2007, 15(1): 123~127
    [76]潘庆民,于振文,田奇卓,等.追氮时期对超高产冬小麦旗叶和根系衰老的影响[J].作物学报, 1998, 24(6): 924~929
    [77] DECKARD E L, LANBER T R J. Nitrate reductase activity in corn leaves as related to yields of grain protein [J]. Crop Sci, 1973, 13(4): 343~350
    [78]王小纯,熊淑萍,马新明,等.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报, 2005, 25(6): 802~807
    [79]康玲玲,魏义长,张景略.水肥条件对冬小麦生理特性及产量影响的试验研究[J].干旱地区农业研究, 1998, 16(4): 21~28
    [80]魏道智,宁书菊.拔节期追施氮肥对小麦根、叶衰老生理特性的影响[J].河北农业大学学报, 2001, 24(5): 124~128
    [81]李东方,李紫燕,李世清,等.施氮对不同品种冬小麦植株销态氮和硝酸还原酶活性的影响[J].西北植物学报, 2006, 26(1): 0104~0109
    [82]汪沛洪,王保莉,张林生,等.干旱逆境下药剂处理小麦种子对灌浆某些生理影响与产量形成的关系[J].干旱地区农业研究, 1995, 3(4): 124~128
    [83] Yadav R S, Shar wa R L, Pandey U K, et al. Effect of various water po tential treatment on nitrate reductase activity in wheat geno types[J]. A gricultural Science D igest, 1998, 18(2): 73~ 75
    [84] NeeruM unjal, Sawhney S K, V eena Sawhney. Ferricyanide resto res nitrate reductase activity in leaf extracts of water stressed wheat seedling[J]. Journal of P lant Physio logy, 1998, 52(4):577~579
    [85]冯绍元,詹卫华,黄冠华.喷灌条件下冬小麦水肥调控技术田间试验研究[J].农业工程学报, 1999,15(4): 112~115
    [86] Preez C C du, Bennie A T P, Du Preez C C. Concentration accumulation and uptake rate of macronutrients by winter wheat under irrigation[J]. South African Journal of Plant and Soil, 1991, 8(1): 31~37
    [87] Gajri P R, Prigar S S, Arora V K. Interdependence of nitrogen and irrigation effects on growth and input use efficiencies in wheat[J]. Field Crop Reseach, 1993, (31): 71~86
    [88]介晓磊,韩燕来,谭金芳,等.不同肥力麦田水氮交互效应与耦合模式研究[J].作物学报, 1998, 24(6): 963~970
    [89]康玲玲,魏义长,张景略.水肥条件对冬小麦生理特性及产量影响的试验研究[J].干旱地区农业研究, 1998, 16(4):21~28
    [90]上官周平,刘文兆,徐宣宾,等.旱作农田冬小麦水肥耦合增产效应[J].水土保持研究, 1999, 6(1): 103~106
    [91]申云霞,唐栓虎.冬小麦水肥产量交互效应模拟研究[J].西北植物学报, 1995, 15(2): 138~141
    [92]吕殿青,刘军,李瑛,等.旱地水肥交互效应与偶合模型研究[J].西北农业学报, 1995, 4(3): 72~76
    [93]李向民,许春霞,李开元.黄土高原沟壑区水肥因子对冬小麦经济性状的影响[J].应用生态学报, 1999, 10(3): 309~311
    [94]徐学选,陈国良,穆兴民.水肥对春小麦产量的效应研究[J].干旱地区农业研究, 1995, 13(2): 35~38
    [95]王俊儒,李生秀.不同生育时期水分有限亏缺对冬小麦产量及其构成因素的影响[J].西北植物学报, 2000, 20(2): 193~200
    [96]贾树龙,孟春香,唐玉霞.水分胁迫条件下小麦的产量反应及对养分的吸收特征[J].土壤通报, 1995, 26(1): 6~8
    [97]王璞,王启现,鲁来清,等.灌水运筹对冬小麦粒重和产量的影响[J].华北农学报, 2001, 16(3): 80~85
    [98]郑仁塘,刘云发.水肥综合作用对作物产量的影响及其定额的拟定[J].灌溉排水, 1995, 14(2): 8~13
    [99]王立秋,烬占忠,曹敬山,等.水肥因子对小麦籽粒及面包品质的影响[J].中国农业科学, 1997, 30(3):67~73
    [100]李世娟,周殿玺,李建民.限水灌溉下不同氮肥用量对小麦产量及氮素分配利用的影响[J].华北农学报, 2001, 16(3): 86~91
    [101]郭天财,贺德先,王志和.小麦穗粒重研究进展[M].北京:中国农业出版社, 1995
    [102]李春喜,姜丽娜,李秀明,等.不同氮肥运筹对超高产小麦NR活性和产量的影响[J].作物学报,1998, 24(6): 847~853
    [103]王凤新,冯绍元,黄冠华.喷灌条件下冬小麦水肥耦合效应的田间试验研究[J].灌溉排水, 1999, 18(1): 10~13
    [104]朱云集,崔金梅,郭天财,等.温麦6号生育规律及超高产栽培关键技术[J].作物学报, 1998, 26(6): 947~951
    [105]田纪春,陈建省,王延训,等.氮肥追肥后移对小麦籽粒产量和旗叶光合特性的影响[J].中国农业科学, 2001, 34(1):101~103
    [106]齐田峰,于振文,钱维朴.精播高产小麦吸氮和土壤供氮特点及施肥效益的研究[J].山东农业大学学报, 1994(4): 406~412
    [107]申云霞.冬小麦水肥产量交互效应模拟研究[J].西北植物学报, 1995, 15(2): 138~141
    [108]中国科学院上海植物生理研究所编.现代植物生理学试验指南[M]. 1999, 305~306
    [109]李合生主编.植物生理生化实验原理与技术[M].高等教育出版社, 2000: 134~137
    [110]张志良主编.植物生理学实验指导[M].北京:高等教育出版社, 2003: 145~148
    [111]鲍士旦主编.土壤农化分析[M].中国农业出版社, 1999:
    [112]薛青武,陈培元.灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响[J].干旱地区农业研究, 1989(3): 86 ~93
    [113]李卫民,周凌云,徐梦雄.土壤水分胁迫下氮素营养对春小麦光合生理和环境的关系的影响[J].土壤学报, 2002, 39(3): 397~403
    [114]张福锁.缺水条件下植物氮素生理研究现状[A].环境胁迫与植物营养[C].北京:北京农业大学出版社, 1993, 127~141
    [115]李卫民,周凌云,徐梦雄.土壤水分胁迫下氮素营养对春小麦光合生理和环境的关系的影响[J].土壤学报, 2002, 39(3): 397~403
    [116]赵丽英,邓西平,山仑.不同水分处理下冬小麦灌浆期叶绿素荧光参数的变化研究[J].中国生态农业学报, 2007, 15(1): 63~66
    [117]惠红霞,许兴,李树华,等.几个春小麦新品系的光合生理特性及其宁春4号的比较[J].西北农业学报, 2001, 10(4): 25~29
    [118]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报, 1997, 13(2):273~278
    [119]范雪梅,姜东,戴延波,等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学, 2005, 24(6):149~155
    [120]曹宏鑫,王世敬,戴晓华.土壤基础肥力和肥水运筹对春小麦产量和品质及植株氮素状况的影响[J].麦类作物学报. 2003, 23(2):52~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700