超声波强化剩余污泥缺氧/好氧消化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用超声波破解城市污水厂的剩余污泥,可以改变污泥特性,并使污泥胞内外物质溶出进入水相,不但有利于溶出物作为微生物的底质实现隐性生长,促进后续污泥消化速率,减少污泥固体量,而且会影响污泥的脱水性能。本文利用低频(28kHz)槽式超声波清洗反应器,破解广州市某城市污水厂的剩余污泥,研究超声波破解污泥沥出液的溶出机制,并探索将剩余污泥破解后通过缺氧/好氧消化工艺进行隐性生长对污泥稳定化和减量化的促进作用。
     试验结果表明,超声波对污泥起到显著的溶胞作用,污泥经超声破解后,沥出液中SCOD、TN、TP在短时间内等基本上呈线性增加趋势,提高了污泥的可降解性能。从超声波促进污泥胞内外物质进入液相来看,在相对较低的声能密度范围内,采用0.05w/mL的声能密度较为理想,从超声波在一定辐照时间内污泥状态及生物相来看,辐照20min不但可以起到较好的溶胞作用,而且可以避免产生丝状菌膨胀,因此,采用0.05w/mL的声能密度辐照20min将在经济性及破解效果方面取得较佳的平衡。
     为了验证超声波的作用对污泥消化效果的影响,进行了三组污泥的US(超声波)—A/AD(缺氧/好氧消化)工艺20天消化的对照试验,结果表明,在相同的室内温度、相同的初始污泥条件、相同的缺氧/好氧消化条件下,每天对其中13.3%的污泥输入一次频率为28kHz、声能密度为0.05w/mL、辐照时间为20min的2#池子污泥的消化稳定化效果最好,经过16天的消化后,其VSS去除率达到45.2%,20天的消化后去除率达到50.35%;而每天输入两次相当于2#池子一次能量输入的3#池子次之,其16天后的VSS去除率为38.69%,20天后的VSS去除率为44.44%:对比组1#池子最低,16天消化的VSS去除率为38.4%,20天消化的VSS去除率为40.53%。
     为了进一步考察在低剂量超声波作用下US—A/AD工艺的消化效果,通过在较佳的工艺条件下进行US—A/AD污泥消化工艺的扩大试验,每三天辐照(常温下,频率28kHz,声能密度0.05w/mL,20min)5%的污泥量,经过16天的消化,污泥中VSS的平均去除率达到40.95%,已经能够满足《城镇污水处理厂污染物排放标准》(GB18918-2002)中污泥稳定化的要求。污泥经过20天的消化之后,TSS和VSS的平均去除率分别为30.4%和47.53%。通过对US—A/AD污泥消化系统一个消化周期的考察,超声波的作用使得污泥中有机物迅速溶出,使得污泥的迅速减量成为可能;而对污泥中有机物的去除减量作用主要发生在好氧段,在好氧微生物的作用下,有机物不断被作为底物利用消化,使污泥中的VSS不断减少,从而实现了污泥的稳定化和减量化;而缺氧段则为污泥提供了脱氮作用及稳定系统pH值,保持系统稳定运行的作用,缺氧段的反硝化作用,使污泥上清液中的TN不至于不断累积。
Use of ultrasound disintegration the waste activated sludge (WAS) of urban sewage plant, can change the characteristics of sludge, and the substances inside and outside of the sludge cells dissolution into the liquid phase, is conductive not only the dissolution of micro-organisms as of the end of the realization of hidden growth, promote follow-up sludge digestion rate, reduce the amount of solid sludge, but will affect the dewaterability of sludge. In this paper, the low-frequency (28 kHz) trough ultrasonic cleaning reactor is applied to disintegrate the WAS from Guangzhou Lijiao urban sewage plant. The solution mechanism of released liquid from ultrasonic WAS disintegration is studied, and the promotion action of ultrasonic disintegration to sludge stabilization and reduction in WAS anoxic/aerobic digestion technology of hidden growth is researched.
     The results showed that the ultrasound played signigicant role in the sludge cell lysis, the SCOD, TN, TP of supernatant after a short period of time of ultrasonic radiation is basically a linear trend of increase, and the sludge biodegradable properties is improved. Ultrasonic promote sludge from the cellular material into the liquid inside and outside, in the relatively low density of the sound energy, a 0.05 w/mL of sound energy density is more ideal. Seeing from the state of particles and biota in the sludge in a certain time of ultrasonic radiation, 20 minutes of irradiation not only can play a better role in the dissolution cell, but avoid a filamentous expansion. Therefore, a 0.05 w/mL of sound energy density and 20 minutes radiation in the economy and disintegration results achieved strike a better balance.
     In order to verify the role of ultrasound on the effects of sludge digestion, the three controlled groups of sludge ultrasonic-anoxic/aerobic digestion (US-A/AD) process was designed to digest for 20 days. The results showed that in the same room temperature, the same as the initial conditions of sludge, the same anoxic/aerobic digestion conditions, sludge digestion stability of No. 2 digestive tank(a frequency of 28 kHz, 0.05 w/mL of sound energy density, 20 minutes of irradiation time and 13.3 % of the sludge) was the best. After 16 days of digestion, its volatile suspend solid (VSS) removal rate reached 45.2 percent, after 20 days of digestion, the VSS removal rate reached 50.35 percent. No.3 digestive tank was followed by No.2. It was entered twice daily equivalent energy of No.2 digestive tank. After 16 days of digestion the removal rate of the VSS was 38.69 percent. After 20 days the removal rate of the VSS was 44.44 percent. The comparison group No.1 tank was the minimum. After 16 days of digestion the VSS removal rate was 38.4%, 20 days the VSS removal rate was 40.53 percent.
     To further study the digestive effects of low-dose ultrasound under US-A/AD digestion process, through better technical conditions under extension test of the US-A/AD sludge digestion process , every three days irradiation (at room temperature, Frequency of 28 kHz, 0.05 w/mL of sound energy density, 20minutes) 5% of the sludge, after 16 days of digestion, the average removal rate of VSS in the sludge reached 40.95 percent, has been able to meet the request on the sludge stabilization of "Urban Sewage Treatment Plant Emissions Standards "(GB18918-2002) . After 20 days of sludge digestion, the average removal rate of TSS and VSS, were respectively 30.4 percent and 47.53 percent. In an inspection of a cycle (24hours) digestive period in the US-A/AD process, ultrasonic sludge makes the role of organic matter in the rapid dissolution, which makes sludge quickly reduction possible. And the removal and reduction of organic compounds in the sludge mainly happened in the aerobic period. Through aerobic microbes, organic matter has continually been used as a substrate to digest, so that VSS in the sludge decline, thus achieving the stability and minimization of the sludge. And anoxic digestion of the sludge is to provide the system stable nitrogen and pH value, and maintain the system stable operation. The denitrification in the anoxic period, makes the TN in the supernatant of the sludge system inaccumulate.
引文
[1]杨顺生,高晓勇.超声波技术在污泥处理利用中的应用现状及前景预测[J].四川环境,2006,25(1):61-64
    [2]田宁宁,王凯军,杨丽萍,等.污水处理厂污泥处置及利用途径研究[J].工程与技术,2002,(2):18-20
    [3]H.C.Flemming and J.Wingender,Relevance of microbial extracellular polymeric substances(EPS).Part Ⅰ.Structural and ecological aspects [J],Water Science and Technology,2001,43(6):1-8
    [4]鹿雯.胞外聚合物EPS对污泥理化性质影响研究[J].环境科学与管理,2007,32(5):27-29
    [5]Antonio Domingues Benetti.Composition,fate and transformation of extracellular polymers in wastewater and sludge treatment processes[D].A Dissertation presented to the Faculty of the Graduate School of Comell University for theDegree of Doctor of Philosophy,2000
    [6]Urbainetal V,Bioflocculation in activated sludge,an analystic approach [J],Water Research,1993,27(5):829-838
    [7]Magara Y,Namaba S.,Utasawa K.,Biochemical and physical properties of an activated sludge on settling characteristics[J],Water Research,1996,10(15):71-77
    [8]B.Frolund,R.Palmgren,K.Keiding,PH.Nielsen,Extraction of extracellular polymers from activated sludge using a cation exchange resin[J].Water Research,1996,30(8):1749-1758
    [9]刘燕,王越兴,莫华娟.有机底物对活性污泥胞外聚合物的影响[J].环境化学,2004,23(3):252-258
    [10]Shen C F,Kosaric N,Blaszczyk R.The effect of selected heavy metals(Ni,Co and Fe)on anaerobic granules and their extracellular polymeric substance(EPS)[J].Wat Res,1993,27(1):25-33
    [11]Zhang,Xiaoqi,Bishop,Paul L.Biodegradability of biofilm extracellular polymeric substances[J].Chemosphere,v 50,n 1,January,2003,63-69
    [12]Wingender J.,New T.R.,Flemming H.C..Microbial extracell"lar polymeric substances:characterization,structure and function.Berlin:Springer,1999
    [13]Liao B Q,Allen D G,Droppo I G,et al.Surface properties of sludge and their role in biofloceulation and settleability[J].Wat Res,2001,35(2):339-350
    [14]Wang Hongwu(王红武),Li Xiaoyan(李晓岩),Zhao Qingxiang(赵庆祥).Effect of extracellular polymeric substances(EPS)on bioflocculation and settlement of activated sludge[J].China Safety Science Journal(中国安全科学学报),2003,13(9):31-34
    [15]李金红,何群彪.欧洲污泥处理处置概况[J].中国给水排水,21(1):101-103
    [16]张峥嵘,黄少斌.污水处理中污泥减量化技术的研究与应用概况[J].广州环境科学,2006,21(3):5-8
    [17]叶芬霞,陈英旭,冯孝善.化学解耦联剂对活性污泥工艺中剩余污泥的减量作用[J].环境科学学报,2004,24(3):394-399
    [18]朱开金,张郃,谭俊华等.污泥处理新技术方法[J].环境与可持续发展,2006,(4):2-13
    [19]冯权,刑新会,刘则华.以剩余污泥减量化为目标的废水生物处理技术研究进展[J].化工进展,2004,23(8):832-836
    [20]Low E W,Chase H A.Reducing production of excess biomass during wastewater treatmen[J]t.Wat Res,1999,33(5):1119-1132
    [21]刘红叶,程晓如.污水生化处理中污泥减量技术的应用[J].广州环境科学,2005,20(4):6-8
    [22]Yasui H,Nakamura K,Sakuma S,et al.A full-scale operation of a novel activated sludge process without excess sludge production[J].Water Science & Technology,1996,34(3-4):395-404
    [23]郑雪松,李道棠,杨虹.不同破壁方法对活性污泥总DNA提取效果的影响[J].上海交通大学学报,2004,28(5):815-818
    [24]史彦伟,钟琼,李小明.S-TE污泥好氧减量技术的研究与应用[J].中国给水排水,2006,22(18):16-20
    [25]翟小蔚,潘涛,W.Ghyoot,等.利用原生动物削减剩余活性污泥产量[J].中国给水排水,2000,16(11):6-9
    [26]周可新,许木启,曹宏等.利用微型动物削减剩余污泥量的研究[J].环境污染治理技术与设备,2003,4(1):1-5
    [27]梁鹏,黄霞,钱易.利用红斑颡体虫减少剩余污泥产量的研究[J].中国给水排水,2004,20(1):13-17
    [28]杨健,陆雍森,王树乾.绿色生态滤池处理城镇污水的中试研究[J].江苏环境科技,2000,13(4):1-3
    [29]魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究[J].环境科学学报,2005,25(6):803-808
    [30]白春节.低繁殖量蚯蚓养殖法处理剩余污泥的可行性研究[J].安全与环境学报,2006,6(6):7-12
    [31]向迎洪,张清东等.污水厂剩余污泥的生物小循环多级处理研究[J].西南科技大学学报,2004,9(19):71-74
    [32]吴敏,杨健.蚯蚓生态床处理剩余污泥[J].中国给水排水,2003,5(19):59-60
    [33]牛奕娜,彭永臻.污泥缺氧好氧消化的减量研究[J].环境工程,2006,24(3):62-64
    [34]许国强,曾光明,殷志伟,等.氨氮废水处理技术现状及发展[J].湖南有色金属,2002,18(2):29-33
    [35]叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社,2006
    [36]薛嘉韵.污泥缺氧/好氧消化效果的研究.广东工业大学,硕士学位论文,2006年
    [37]赵之平,陈澄华.超声传质过程机理[J].化工设计,1997,6:30-33
    [38]Tiehm A.Nekle K.and Neis.Ultrasonic waste activated disintegration for improving anaerobic stabilization[J].Water Research.2001,35(8):2003-2009
    [39]薛玉伟,季民.污泥超声破解的最佳超声频率选择[J].天津大学学报,2007,40(6):747-751
    [40]韩萍芳,殷徇,吕效平.超声波处理石化厂剩余活性污泥[J].化工环保, 2003,23(3):133-137
    [41]白小惠.超声波技术与污水污泥及难降解废水处理[J].工业水处理,2000,20(12):8-14
    [42]杨艳,冯晓西.简析超声波声能密度对污泥减量的影响[J].能源环境保护,2007,21(4):43-44
    [43]薛向东,金奇庭,朱文芳,等.超声对污泥流变性及絮凝脱水性的影响[J].环境科学学报,2006,26(6):897-902
    [44]S.Okouchi,et.al.,Wat.Sci.Tech,26,2053(1992)
    [45]杨虹,王芬,季民,等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备,2006,7(5):78-81
    [46]薛玉伟,季民,李文彬.超声破解污泥影响因素分析.环境工程学报,2007,1(6):118-122
    [47]A.Bhatnagar,H.M.Cheung,Environ.Sci.Technol.,28:1481(1994)
    [48]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究.环境科学,2006,27(2):319-323
    [49]李欢,金宜英,张光明,等.污泥超声预处理的影响因素分析[J].中国给水排水,2006,22(3):96-100
    [50]王芬,季民.剩余污泥超声破解性能研究[J].农业环境科学学报,2004,23(3):584-587
    [51]王芬,季民,汪泳,等.剩余污泥的超声破解与影响因素程度分析[J].环境保护科学,2004,30(126):16-18
    [52]王芬,季民.污泥超声破解预处理的影响因素分析[J].天津大学学报,2005,38(7):649-653
    [53]张光明,吴敏生,张维吴,等.城市污泥超声波处理技术[J].城市环境与城市生态,2003,16(6):258-259
    [54]Klaus Nickel,Uwe Neis.Ultrasonic disintegration of biosolids for improved biodegradation[J].Ultrasonics Sonochemistry,2007,(14):450-455
    [55]殷绚,阙子龙,吕效平,等.超声波声强及处理时间对污泥结合水的影响[J].化工进展,2005,24(3):307-314
    [56]殷绚,胡正猛,吕效平.超声辅助污泥脱水的研究[J].南京工业大学学 报,2006,28(1):58-61
    [57]H.C.Flemming,J.Wingender,C.Mayer,W.Borchard,V.Korstgens,Cohesiin biofilm matrix polymers,H.M.Lappin-Scott,P.Gilbert,M.D.Allison(Editors),Community Structure and Cooperation in Biofilms,Symposium 59,London,Cambridge University Press,2000:87-105
    [58]J.Schmitt,U.P.Fringeli,H.C.Flemming,Strubiofilms investigated by FTIR-ATR spectro Conference on Fourier Transform[J].Spectroscop,1997:91-99
    [59]H.C.Flemming.The forces that keep biofilmBiodeterioration and Biodegration[J].Dechem Verlagsgesellschaft,1996,133:311-316
    [60]Fen Wang,Shan Lu,Min Ji.Components of released liquid from ultrasonic waste activated sludge disintegration[J].Ultrasonics Sonochemistry,2006,13:334-338
    [61]曹秀芹,陈瑁,唐臣,等.超声处理后剩余污泥性质变化及分析[J].环境工程,2005,10(23):84-86
    [62]杨虹,王芬,季民,等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备,2006,7(5):78-81
    [63]Seungmin Na,Young-Uk Kim,Jeehyeong Khim(Korea).Physiochemical properties of digested sewage sludge with ultrasonic treatment[J].Ultrasonics Sonochemistry,2007(14):281-285
    [64]Raf Dewil,Jan Baeyens.The use of ultrasonics in the treatment of waste activated sludge[J].Chinese J.Chem.Eng.,2006,14(1):105-113
    [65]Panyue Zhang,Guangming Zhang,Wei Wang.Ultrasonic treatment of biological sludge:Floc disintegration,cell lysis and inactivation[J].Bioresource Technology,2007,98:207-210
    [66]C.Bougrier,H Carrere,J.P.Delgenes(France).Solubilisation of waste-activated sludge by ultrasonic treatment[J].Chemical Engineering Journal,2005(106):163-169
    [67]O.Schlafer,M.Sievers,H.Klotzbucher,T.I.Onyeche(Germany).Improvement of biological activity by low energy ultrasound assisted bioreactors[J].Ultrasonics,2000(38):711-716
    [68]C.Bougrier,C.Albasi,J.P.Delgenes,H.Carrere.Effect of tiltrasonic,thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J].Chemical Engineering and Processing,2006(45):711-718
    [69]沈劲锋,殷绚,谷和平,等.超声波处理剩余活性污泥促进厌氧消化[J].化工环保,2006,26(4):306-309
    [70]Ding Wen-chuan,Li Dong-xue,et.Enhancing excess sludge aerobic disgestion with low intensity ultrasound[J].J.Cent.South Univ.Technol,2006,13(4):408-411
    [71]刘春红.超声波处理的污泥中温厌氧消化能量效率研究.西安交通大学硕士学位论文,2007年
    [72]杨少强,谢倍,珍刘红.低强度超声波强化剩余活性污泥好氧消化的研究[J].环境污染与防治,2007,29(7):498-501
    [73]李晖.超声波强化液-固传质的机理研究[J].沈阳化工学院学报,1994,8(3):175-180
    [74]曾晓岚,龙腾锐,丁文川,等.低能量超声波辐射提高好氧污泥活性研究[J].中国给水排水,2006,22(5):88-91
    [75]Seong-Hoon Yoon,Hyung-Soo Kim,Sangho Lee.Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production[J].Process Biochemistry,2004(39):1923-1929
    [76]王芬.超声破解对污泥特性的影响机制与零剩余污泥排放工艺研究.天津大学博士学位论文,2006年
    [77]闫怡新,刘红.低强度超声波强化污水生物处理中超声辐照污泥比例的优化选择[J].环境科学,2006,27(5):903-908
    [78]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700