木素过氧化物酶的生产、固定化及其在染料降解中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了利用鼓泡塔间歇培养固定化黄孢原毛平革菌合成木素过氧化物酶,通过初步分离纯化后,采用两种不同的材料进行酶的固定化,研究了固定化条件、固定化酶性质、固定化酶对染料的降解脱色。
     研究发现,使用鼓泡式反应器进行固定化黄孢原毛平革菌培养合成木素过氧化物酶,更有利于产酶。考察了通气量对鼓泡式反应器合成木素过氧化物酶的影响,通气量在1.2vvm对产酶比较有利,酶活达到了234U/L,与在相同的培养基和相同的固定化载体用量下的摇瓶培养产酶相比,酶活提高了近50%。
     发酵液经过冷冻除杂多糖、超滤、硫酸铵沉淀、透析等步骤进行初步分离纯化,比酶活提高1.85倍,酶活得率52.7%,酶活达到了1167U/L。
     筛选出固定化效果较好的XAD7HP大孔树脂,研究了其固定化条件。结果表明,吸附4h,吸附温度25℃,酶液pH 4.5,戊二醛浓度0.2%、戊二醛处理时间120min、获得的效果最好,固定化酶活力可达16U/g(载体)。研究了木素过氧化物酶和葡萄糖过氧化物酶双酶的共固定化条件,最佳酶比为1:5。考察了固定化酶的最适pH值、最适温度和操作的稳定性。表明固定化酶具有更广的使用范围和稳定性。
     利用聚氨酯泡沫共价交联法制备固定化酶,固定化木素过氧酶活力达到12.6U/g;共固定化双酶活为7.84U/g。探讨了固定化木素过氧酶和共固定化双酶最适反应温度、最适反应pH和操作的稳定性。多次的重复使用表明,木素过氧化物酶和共固定化酶都有良好的稳定性。
     研究了固定化木素过氧化物酶对染料的降解条件。以酸性红37为研究对象,大孔树脂固定化酶降解染料pH值为4.0,聚氨酯固定化酶pH值为4.5,其他条件相同,H_2O_2的浓度为200μmol/L,最适温度为40℃,染料25mg/L,脱色率80%以上。共固定化木素过氧化物酶和葡萄糖氧化酶对染料的脱色,染料中葡萄糖浓度只要5g/L即可达到最佳降解效果,脱色率在80%左右。这两种载体固定化木素过氧化物酶经过分批重复降解实验,都表现出了良好的可持续降解能力。
In this thesis, Firstly, we studied lignin peroxidase(Lip) production in the air-bubble bioreactor by the immobilized white-rot fungus Phanerochaete chrysosporium on polyurethane foam. Secondly, Lip was simply purified, and then immobilized on two different carriers. Finally, we studied the conditions of Lip immobilization and properties of immobilized Lip, and its application in decoloring dyes .
     We found it is more suitable for Lip production in the air-bubble bioreactor than in the shake-flask cultures. The influence of air-flux on Lip production was researched. In the optimal air flux of 1.2wm, the maximum enzyme activity reached 234U/L in the bioreactor which was increased approximately 50% than that in the shake-flask cultures in the same medium and the amount of porous polyurethane foams carriers.
     Lip was simply purified by freeze, ultrafiltration, salting out, dialysis. The activity of Lip reached 1167U/L after purification, and was 1.85 times than the original one. Recovery of Lip was 52.7%.
     Lip was immobilized on three kinds of microporous absorbent resins. Among them, XAD7HP resin showed the best result for Lip immobilization. The optimal conditions for Lip immobilization were as follow : the time and temperature for the absorption,4h and 25℃; pH4.5 of the enzyme solution; glutaraldehyde concentration, 0.2%; the cross-linked time with glutaraldehyde, 120min; Under the optimal conditions, the activity of immobilized enzyme was 16 U/g carrier. The conditions of Lip immobilization coupling with glucose oxidase was studied; the enzyme activity ratio was 1:5; we also investigated the properties of co-immobilized enzymes. It was showed that the immobilized enzymes were more stable.
     We also immobilized enzymes on polyurethane foam. The activity of immobilized Lip was 12.6U/L, and the co-immobilized Lip coupling with glucose oxidase reached 7.84U/L. The properties of them were researched. After immobilization, Lip was more stable, and the range of pH and temperature were expanded.
     Using immobilized Lip to degrade dyes was investigated. Acid 37 was chosen as the substrate. The optimal degrading conditions were follows: pH was 4.5 for the Lip immobilized on the resin, but pH was 4.5 for the Lip immobilized on polyurethane foam, the other conditions were the same: H_2O_2 200μmol/L, temperature 40℃, the dye concentration 25mg/L. The percentage of decoloriztion was more than 80%.When the dye was degraded by the co-immobilized enzyme, 5.0g/L glucose can be suitable concentration, and the percentage of dye decolorization was approximately 80%. The immobilized Lip on two differet kinds of carrier can degrade the dye efficiently in many batchs.
引文
[1].安银岭.植物化学[M].东北林业大学出版社,1994
    [2].化工百科全书(13)[M]北京:化学工业出版社,1997.
    [3].Chang H-m,Chen C-L,and Kirk TIC Lignin Biodegadation:Microbiology,Chemistry,and Potential Applications.1980,CRC Press,Boca Raton,FL
    [4].张建军,罗勒慧.木质素酶及其化学模拟的研究进展[J].化学通报,2001.8:47047
    [5].Karuppan Boominathan and C.Adinarayana Reddy.CAMT-mediated diferential regulation of lignin peroxidase and manganese peroxidase production in the White-rot basidiomycete Phanetochaete chrysosporium[J].Proc.Natl.Acad.Sci.USA.1992,89:586-590
    [6].Brendlyn D.Fasion,T.K.Kirk and Robertal.Farrel[J].Appl.Environ.Microbiol.1986,52:251-254
    [7].Klaus P,Tuomo G,KasPar W.Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaetech chrysosporium at 2.5 A resolution[J].FEB S Letters,1993,2(4):119-123
    [8].Adinarayana R,Trevor M.Physiology and molecular biology of the lignin peroxidases of Phanerochaetech chrysosporium[J].FEMS Microbiology Reviews,1994,13(2B3):137-152
    [9].唐振兴,王素娟,葛立军等.黄孢原毛平革菌的降解机制及其应用[J].染料与染色,2003,40(5):93-95
    [10].Ming Tien,T.K.Kirk,Optimization of Lip production from Phanetochaete chrysosporium using response surface methodology[J].Bioprocess.Eng.1999,21,465-468
    [11].Stewart P,Kersten P,Wymelenberg A V,et al.The lignin peroxidase gene family of Phanerochaete chrysosporium:Complex regulation by carbon and nitrogen limitation,and the identification of a second dimorphic chromosome[J].J Bacterial,1992,174:5036-5042.
    [12].Bernard J,Janse H,Gaskell J,et al.Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases and glyoxaloxidase in wood[J].Appl Environ Microbiol,1998,64:3536-3538.
    [13].Jager A,Croan Sand Kirk TK.Production of Ligninases and Degradation of Lignin in Agitated Submerged Cultures of Phanerochaete Chrysosporium[J],Appl.Environ.Microbiol.1985,50:1274-1278
    [14].黄丹莲,曾光明,黄国和,等.白腐菌固态发酵条件最优化及其降解植物生物质的研究[J].环境科学学报,2005,25(2):232-237
    [15].Kirk TK,Croan S and Tien M.Production of Multiple Ligninases by Phanerochaete chrysosporium and Use of a Mutant Strain[J],Enzyme Microb.Technol.1986,8:27-32
    [16].Dosoretz C G,Chen A H C,Grethlein H E.Effect of oxygenation conditions on submerged cultures of Phanerochaete chrysosporium[J].Appl.Microbiol.Biotechnol,1990,34:131-137
    [17].柯世省,夏黎明,张朝晖,等.氧浓度对固定化黄孢平革菌合成木素过氧化物酶的影响[J].林产化学与工业,2000,20(3):40-47
    [18].Asther M,Cecile C,Georges C.Control of lignin peroxidase production Phanerochaete chrysosporium INA-12 by temperature shifting[J].Applied and Environmental Microbiology,1988:3194-3196
    [19].Pascal B,Asther M.Influence of primary and secondary proteases produced by free or immobilized cells of the white-rot fungus Phanerochaete chrysosporium on lignin peroxidase activity[J].Journal of Biotechnology,1993,30(3):271-282
    [20].Janskekar H,Fiechter A.Cultivation of Phanerochaete chrysosporium and production of ligninase in submerged stirred tank reactors[J],Biotechnol,1988,8:97-112
    [21].Susana Rodriguez Couto,Marjaana Ratto,Alberto Dominguez and Angeles Sanroman,Strategies for improving ligninolytic enzyme activities in semi-solid-state bioreactors[J],Process Biochemistry,200136(10):995-999
    [22].Kirk T K,Croan S,Tien M,et al.Production pf multile ligninase by Phanerochaete chrysosporium:Effect of selected growth conditions and use of a mutant strain[J].Enzyme Microb.Technol,1986,8:27-32
    [23].Bonnarme P,Jeffries T.Selective production of extracellular peroxidase from Phanerochaete chrysosporium in an air-lift bioreactor[J],Ferm Bioenging,1990:158-163
    [24].张朝晖,邵红,周晓云等.三相鼓泡塔生物反应器培养黄孢原毛平革菌合成木素过氧化物酶系[J].应用与环境生物学报,2003,9(3):288-292
    [25].陈燕春.利用白腐真菌Phanerochaete chrysosporium ATCC 24725分解染料色素之研究[J].中国农业化学会志,1991,29(4):439-447.
    [26].OLLIKKA P,ALHONMAKI K,LEPPANEN V M,et al.Decolorization of azo,triphenyl methane,heterocyclic,and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium[J].Appl.Environ.Microbiol.,1993,59(12):4010-4016
    [27].李慧蓉,罗丽娟,罗光坤.黄孢原毛平革菌对代表性染料的生物降解及降解途径的初探[J]环境化学,2001,20(4):378-385
    [28].BUMPUS J A,BROCK B J.Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium[J].Appl.Environ.Microbiol.,1988,54(5):1143-115
    [29].GOSZCZYNSKI S,PASZCZYNSKI A,PASTI M B,et al.New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromafuseus[J].Journal of Bacteriology,1994,176(5):1339-1347
    [30].KNAPP J S,NEWBY P S,REECE L P.Decolorization of dyes by wood-roting basidiomycete fungi[J].Enzyme and Microbial Technology,1995,17:664-668.
    [31].CRIPPS C,BUMPUS J A,AUST S D.Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium[J].Appl.Environ.Microbiol.1990,56:1114-1118.
    [32].MATTHEW TATARKO.et al.Biodegradationof congo red by Phanerochaete chrysosporium[J]Wat.Res.1998,32(5):1713-1717.
    [33].张朝晖.应用黄抱原毛平革菌合成木质素过氧化物酶及对染料和印染废水降解脱色的研究[D],浙江大学博士学位论文,1999
    [34].PASTI M B,PASZCZYNSKI A,GOSZCZYNSKI S,et al.Influence of aromatic substitution patems on azo dye degradability by Strptomyces spp.and P.Chrysosporium[J].Applied and Environmental Microbiology.1992,58(11):3605-3613
    [35].戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展,1996,4(6):1-9.
    [36].GLENN J K,GOLD M H.Decolorizatoin of several polymeric dyes by the liguin-degrading basidiomycete Phanerochaete chrysosporium[J].Appl.Environ.Microbiol.1983,45:1741-1747.
    [37].OLLIKKA P,ALHONMAKI K,LEPPANEN V M,et al.Decolorization of azo,triphenyl methane,heterocyclic,and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium[J].Appl.Environ.Microbiol.1993,59(12):4010-4016
    [38].PASZCZYNSKI A,CRAWFORD R L.Degradation of azo compounds by ligninase from P.chrysosporium:involvement of veratryl alcohol[J].Biochem.Biophys.Res.Comm.1991, 178:1056-1063
    [39].E.Lang,G.,Eller et al.LignocellpLose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms[J].Microbial Ecology,1997;34:1-10
    [40].刘玉焕,钟英长.甲胺磷降解真菌的研究[M]中国环境学.1999,19(2):172-175.
    [41].B.E.Andersson,T.Henrysson,et al.AccunytLation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi[J].Appl.Envir.Microbiol.1996,46(5):647-65
    [42].林鹿,王双飞等.腐菌对蔗渣浆CEH漂白废水毒性的消除[J].水处理技术,1996,22(4):240-244.
    [43].黄俊,周申范.白腐真菌生物降解TNT炸药废水的研究[J].环境科学与技术,1999,3,17-19
    [44].李家珍.染料、染色工业废水处理[M]..北京:化学工业出版社1997.
    [45].陈勇,沈日华.染料废水的微生物处理法[J].应用基础与工程科学学报,1998,6(4):353-359
    [46].黄霞.膜生物反应器废水处理工艺的研究进展[J].环境科学研究,1998,11(1):40-44
    [47].吴志超,王士芬,高廷耀.膜生物工艺和活性污泥法处理巴西基酸生产废水的对比试验[J].中国给水排水,2000,16(3):57-60
    [48].韩怀芬,等.膜生物反应器处理难降解有机废水研究[J].中国给水排水,2002,18(3):40-48
    [49].何义亮等.厌氧超滤膜反应器截留分子量研究[J].中国给水排水,1999,15(9):10-1
    [50].李伟,孙建中,周其云.适于酶包埋的高分子载体材料研究进展[J].功能高分子学报,2001.14(3):365
    [51].MACMILLAN,J,D.and SHEIMM,M.I.Food Related Enzymes[J].American Chemical Society,1974,101-130.
    [52].郭勇.酶的生产与应用[M].北京:化学工业出版社,2003
    [53].张立武,徐嘻.固定化酶技术进展[J],成都科技人学学报,1989,47:109-12
    [54].李树本.生物催化剂的固定化[J].分子催化,1987,1(2):120-130
    [55].Woodward J.Immobilized Cells and Enzymes[M].Oxford:IRL Press,1985
    [56].陈宁.酶工程[M].北京:中国轻工出版社,2005,148]
    [57].Min D J,Andrade J D.Specific immobilization of in vivo biotinylated bacterial Luciferase and FMN:NAD(P)H oxidoreductase[J].Analytical biochemistry,1999,270:133-139.
    [58].Hengsakul M,Cass AEG.Alkaline phosphatase Streptag fusion protein binding to streptavidin:resonant mirror studies[J].J Mol Biol,1997,266:621-632.
    [59].周记宇,江体乾.甲壳素/壳聚糖及其衍生物在固定化酶中的应用[J].化工新型材料,1998.5:19-22.
    [60].Paul W,Sharma C P.Chitosan,a drug cartier for the 21 "centurv.a review[J].STP Pharmaceut Sci.2000.10:5
    [61].安小宁,苏致兴.高磁性壳聚糖微粒的制备与应用[J]兰州大学学报(自然科学版),2001,37(2):100
    [62].王斌,谢苗,曾竞华等.磁性壳聚糖微球固定化褐藻酸酶的研究学[J].中国水产科学,2004,11(3):253
    [63].Prashanth S J,Mulimani V H,Soymilk oligosaccharide hydrolysis by Aspergillus oryzae galactosidase immobilized in calcium alginate[J].ProcessBiochem,2005,40(3-4):1199
    [64].Patel S.Stabilization of a haloophilic α-amlyase by callium alginate immobilization[J].Biocatalysis and Biotransformation,1996,14(2);147
    [65].Ding Liang,Yao Zihua.Synthesis of macroporous palmer carrier and immobilization of papain[J].Iranian J(English Edition).2003,12(6):491
    [66].Li Songjun.Use of chemically modified PMMA microsphere for enzyme immobilization[J].Biosystems,2004,77(1-3):25
    [67].薛屏,卢冠忠,郭杨龙等.青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[J].化学通报,2003,10;681
    [68].谢钢,张秋禹,李铁虎.磁性高分子微球[J].高分子通报,2001,6:38
    [69].Cieck H,Tuncel A.Immohilizaiton of alpha-chymotrypsin in thermmally reversible isopropylacrylamide hydroxyethylmethacrylate copolymer gel[J].Polym Sci Part A:Polym Chem,1998,36(4):543
    [70].周小华、任绍光.蔗糖酶葡萄糖氧化酶的共固定化研究[J].生物技术1994,4(2):10-13.
    [71].管文军,龚兴国,李荣宇.葡萄糖氧化酶-过氧化物酶膜共固定化的研究[J].浙江大学学报(工学版),2002,36(2):209-211
    [72].Pal P,Datta S,Bhattacharya P.Multi-enzyme immobilization in Eco-friendly emulsion liquid membrane reactor-a new approach to membrane formulation[J].Separation and Purification Technology,2002,27:145-154.
    [73].Atia K S.Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyet hylenimine-porous agarose polymeric composite using γ-irradiation to use in biotechnological processes[J].Radiation Physics and Chemistry,2005,73:912-918
    [74].Tien M,Kirk TK.Lignin Peroxidase of Phanerochaete chrysosporium[J].Methods in Enzymolagy,1988,161:238-249
    [75].Tien M and Kirk TK.(1984)Lignin-degrading enzyme firm Phanerochaete chrysosporium:purification,characterization and catalytic properties of a unique H_2O_2-requiring oxygenase[J],Proc.Natl.Acad.Sci.USA.,81:2280-4
    [76].朱俭等.生物化学实验[M].上海,上海科学技术出版社,1981
    [77].芦国营.固定化木素过氧化物酶对染料的脱色降解研究[D].浙江工业大学硕士学位论文,2005,40
    [78].Glenn JF,Morgan MA,Mayfield MB,Kuwahara M et al.An extracellular H_2O_2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium[J].Biochem Biophys ResCommun.1983,114(3):1077-1083
    [79].桑亚新,孙纪录,于宏伟等.离子交换树脂固定化果胶酶的研究[J].中国食品学报,2006,6(1),71-74
    [80].陈姗姗,仇农学.离子交换树脂固定化果胶酶条件的优化研究[J].云南农业大学学报,2007,22(1),109-112
    [81].虞英,蒋惠亮.离子交换树脂吸附法固定化脂肪酶的研究[J].食品与生物技术学报,2007,26(4),97-100
    [82].Alic M,Gold MH.Genetic recombination in the Lignin-Degrading Basidiomycete Phanerochaete chrysosprium[J].Applied and Environmental Microbiology,1985,50(1):27-30.
    [83].Martin Bakker,Fred van de Velde,Fred van Rantwijk,et al.Highly efficient immobilization of glycosylated enzymes into polyurethane Foams[J].Biotechnology and Bioengineering,2000,70(3):342-348.
    [84].王侃,陈英旭,叶芬霞.SiO_2负载的TiO_2光催化剂可见光催化降解染料污染物[J].催化学报,2004,25(12):931-936.
    [85].U Rott,R Minke.Overview of waste water treatment and recycling in the textile processing industry[J].Wat.Sci.Tech,1999,40(1):137-144.
    [86].梁宏,曾抗美.染色废水处理方法的研究进展[J]四川轻化工学院学报,2003,16(2):20-24
    [87].黄玉.偶氮染料废水的处理方法及研究进展[J]宜宾学院学报,2007,6(6)54-57
    [88].曾丽璇,张秋云,黄育新.印染废水处理工艺的试验研究[J].安全与环境工程,2004,11(2):48-50
    [89].侯文俊,余健.印染废水处理技术的研究新进展[J]北工环保;2004,24:105-107
    [90].Peralta-zamora p,Gomes de Moraes S.;Esposita E,et al.Decolorization of pulp mill effluents with immobilized lignin and manganese peroxides from Phanerochaete chrysosporium[J],Environmental Technology,1998,19(5):521-528
    [91].世界染料品种—2000年编写组,《世界染料品种—2000年》,2000.10
    [92].章燕芳.木素过氧化物酶和锰过氧化物酶对染料脱色性能的比较[J].环境科学研究,2002,15(5):17-21
    [93].李华钟.黄孢原毛平革菌合成的木质素过氧化物酶、锰过氧化物酶及其菌球在染料脱色过程中的作用[J].过程工程学报.2002,2(3):246-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700