纳米TiO_2掺杂对聚苯乙烯性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高纳米TiO2的分散性能和与聚苯乙烯的相容性,本文采用钛酸酯偶联剂LICA38对纳米TiO2表面进行预处理,运用正交试验确定最佳的预处理工艺参数,并采用原位聚合工艺制备掺杂纳米TiO2的聚苯乙烯。采用DCA、XRD、FTIR、TEM、XPS、DSC、EDX、GPC等分析手段,对纳米TiO2预处理效果和掺杂材料的形貌、成分及性能进行分析,同时研究掺杂材料的拉伸性能和热性能。
    结果表明,预处理后纳米TiO2的动态接触角明显增大,偶联处理后的纳米粒子表面附着有机官能团使其极性减弱与水的润湿性下降,亲油性增强,粒子的分散性提高,表明钛酸酯偶联剂在纳米TiO2的表面发生化学吸附。正交试验结果显示较高的反应温度、较长的反应时间、适当的偶联剂用量有利于得到较好的偶联效果。
    采用80℃下预聚合6h,160℃后聚合10h, 0.25wt%的引发剂得到的纯PS不仅分子量较高,而且拉伸性能好。经过偶联剂预处理的纳米TiO2在PS基体中可以以纳米尺寸存在,且分散比较均匀,使纳米TiO2掺杂PS的拉伸强度有一定的提高,而且纳米TiO2只有在一定含量下掺杂才有助于提高PS的拉伸性能。
    热性能分析结果表明PS/ TiO2掺杂材料的热分解温度高于纯PS的热分解温度,并且玻璃化温度也得到提高。
    纳米TiO2不仅没有阻碍聚合,而且不断增大的PS自由基连接到纳米TiO2表面后反而具有更大的活性,从而聚合物的分子量增高。
To enhance the dispersity and the consistency of nano-TiO2, the surface organic modification of nano-TiO2 particles with LICA38 was studied in this paper, a cross-cut test was employed to optimize the process of pretreatment in order to confirm the best craft parameter. And the technology of doping nano-TiO2 in polystyrene with free-radical polymerization was also studied. DCA, XRD, FTIR, TEM, XPS, TG, DSC, EDX and GPC measurements were used to analyze the effect of pretreatment, the surface morphology, elements and performance of the specimen. The tensile tests for the PS doped nano-TiO2 were also discussed.
    Results showed that the dynamic contact angle of nano-TiO2 treated with LICA38 was bigger than nano-TiO2 untreated, which indicated that chemical adsorption was occurred between LICA38 and the surface of nano-TiO2. The oil-solubility of nano-TiO2 was enhanced and the dispersion of nano-TiO2 was improved. The results of cross-cut test indicated that the higher reaction temperature, the longer reaction time and proper coupling agent consumption were favorable to obtain better coupling effect.
    The pure PS that polymerized at 80℃ for 6 hours, then polymerized at 160℃ for 10 hours, with 0.25 wt % coupling agent, has not only higher molecular weight but also better tensile performance.Nano-TiO2 treated with LICA38 could exist with the size of nanometer in PS matrix, and the dispersion of nano-TiO2 was homogeneous, which improved the tensile strength of PS doped with nano-TiO2 obviously, and nano-TiO2 could contribute to improve the tensile performance of PS when only a certain content nano-TiO2 was doped in PS.
    Thermal performance test indicated that the thermal decomposition temperature of PS doped with nano-TiO2 was higher than that of pure PS, and the glass transition temperature of PS doped with nano-TiO2 was improved.
    Nano-TiO2 did not hindered polymerization, and the increasing free-radicals of PS had greater activation after they adsorbed to nano-TiO2 surface, so the molecular
    weight of polymer was heightened.
引文
[1] 王乃彦,聚变能及其未来,北京:清华大学出版社,2001.10~15
    [2] 张家泰,胡北来,刘松芬,快点火与惯性聚变能,激光与光电子学进展,2002,39(9):4~7
    [3] 王淦昌,人造小太阳,受控惯性约束聚变,北京: 清华大学出版社, 广州: 暨南大学出版社,2000.5~11
    [4] 王淦昌,王乃彦,惯性约束聚变的进展和展望(1) ,核科学与工程,1989,9(3): 193~194
    [5] 贺贤土,惯性约束聚变研究进展及展望,核科学与工程,2000,20(3): 248~251
    [6] 范滇元,贺贤土,惯性约束聚变能源与激光驱动器,大自然探索,1999,18(67):31~33
    [7] Yamanaka C, Inertial fusion research over the past 30 years, Fusion Engineering and Design, 1999, 44:1~12
    [8] 杜凯,游丹,李秀琴等,微球表面聚乙烯醇气体阻渗层的研制,功能高分子学报,1999,3(1):28~30
    [9] Chatain D, Nikolay V. S. et al. Using magnetic levitation to produce cryogenic targets for inertial fusion energy: experiment and theory, Cryogenics,2002, 42:253~261
    [10] Cook R, Creating microsphere targets for inertial confinement fusion experiment targets by optimized density-matched emulsion technique and characterization, E & TR,1995.4:1~8
    [11] Steven H L, Howard A S, Christopher J K, et al. Yield and Emission Line Ratios From ICF Target Implosions With Multi-Mode Rayleigh-Taylor Perturbations, J. Quant. Spectrosc. Radiat. Transfer, 1997, 58(4-6):709~720
    [12] 陈晓军,傅依备,李波,激光 ICF 靶用阻氢聚合物材料, 材料导报, 2001,15(3):44~45
    [13] Krolhin O N, Koresheva E R, Merkul Y A, et al. Original Design of ICF Targets and New Target Fabrication Technology, 28th EPS Conference on Contr. Fusion and Plasma Phys. Funchal., June 2001,18~22
    [14] 魏芸,李波,林波等,干凝胶炉法制备聚苯乙烯空心微球,强激光与粒子束,2000,12 (6):711~714
    [15] Powell, R F,Recent contributions to the use of polyimide in the fabrication of ICF and IFE targets, Fusion Sci. Technol., 2004, 45(2):197~201
    [16] 刘才林,张林,唐永健,惯性约束聚变靶材料的聚苯乙烯掺杂技术,材料导报,1995,(2):58~61
    [17] Cook R, OverturfⅢ G E, Buchley S R, Production and characterization of doped mandrels for inertial-confinement fusion experiments, J. Vac. Sci. Technol., 1994, A 12(4):1275~1280
    [18] 张林,杜凯,李波,涂海燕,高分子材料在 ICF 靶中的应用及其制备技术,材料导报,1995,(5):57~60
    [19] Hoppe M L, Harding D, Stephens R B, Characterization of chemical dopants in icf targets , Fusion Technology, 1997,31:504~511
    [20] 刘才林,王朝阳,聚苯乙烯掺溴塑料靶材料的研制,原子能科学技术,1996,30(1):31~34
    [21] Cook R C, Overturf G E, Buckly S R, Preparation and Properties of Halogenerated Polystyrenes,UCRL-105821-91,CA:LLNL,1991
    [22] 蔡佩君,冯长根,张林等,掺杂聚苯乙烯制备研究, 强激光与粒子束,2003,15(2):159~163
    [23] Kubo U, Tsubakihara H., Development of a coating technique for inertial confinement fusion plastic targets. Journal of Vacuum Science and Technology , 1986, A 4(3):1134~1137
    [24] Takagi M, Norimatsu T, Yamanaka T, et al. Development of deuterated polystyrene shells for laser fusion by means of a density-matcher emulsion method . Journal of Vacuum Science and Technology, 1991, A9(4):2145~2148
    [25] 张林,游丹,高党忠等,ICF 氘代固体靶的研制, 强激光与粒子束,1999,11(5):605~608
    [26] Hauer A, Cowan R D, Absorption Spectroscopy Diagnosis of Pusber Conditions in Laser-Driven Implosions. Pbys. Rev, 1986, A34:411~412
    [27] Cook R C, Iron-Doped Polymers for Capsule Implosion Diagnstics: UCRL-105821-91-. CA: LLNL, 199l
    [28] Hauer A, Cowan R D, Absorption spectroscopy diagnosis of pusher conditions in laser-driven implosion, Physical Reviews, 1986, A34:411~415
    [29] Cook R, Iron-doped polystyrene for capsule implosion diagnostics, ICF Quarterly Report, 1991, 1(2):47~50
    [30] 刘才林,唐永健,李怀曾,惯性约束聚变靶材料掺杂技术综述, 原子能科学技术,1996,30(1):90~96
    [31] Branham K E, Byrd H, Preparation of soluble, linear titanium-containing copolymers by the free-radical copolymerization of vinyl titanate monomers with styrene, J. Appl. Polym. Sci., 2000, 78:190~199
    [32] Nobile A, Gobby P, Schwendt A M, Steckle W P, et al. Concepts for fabrication of inertial fusion energy targets,Fusion Technol., 2001,39(2): 684~691
    [33] 冯长根,蔡佩君,张林等,氧化铝表面有机改性及其在聚苯乙烯中分散性能的研究,北京理工大学学报,2003,23(5):645~648
    [34] Cai P J, Tang Y J, Zhang L, et al. Fabrication of iron III. oxide doped polystyrene shells, J. Vac. Sci. Technol., 2004, A 22(2):419~421
    [35] Sang X M, Yang X J, Cui Z D, et al. Preparation and Characterization of Nano-TiO2 Doped Polystyrene Materials by Melt Blending for Inertial Confinement Fusion, Journal of Macromolecular Science. Physics B , 2004,43 (4):871~882
    [36] Suzhu Y, Peter H, Xiao H, Thermal expansion behavior of polystyrene-aluminum nitride composites. Journal Physics D: Applied Physics, 2000, (33):1606~1610
    [37] Suzhu Y, Peter H, Xiao H, Dynamic mechanical properties of polystyrene-aluminum nitride composites. Journal of Applied Polymer Science , 2000, (78):1348~1353
    [38] Elodie B L, Jacques L, Encapsulation of inorganic particles by dispersion polymerization in polar media. Journal of Colloid and Inter face Science, 1998, (197):293~308
    [39] 井新利,于洁,有机硅烷偶联剂在新材料中的一些特殊用途,化学通报,1996,(2):26~28
    [40] 施卫贤,杨俊,王亭杰等,磁性微粒表面有机改性,物理化学学报,2001,17(6):507~510
    [41] Mishra K K, Khardekar R K, Singh R, et al. Fabrication of polystyrene hollow microspheres as laser fusion targets by optimized density-matched emulsion technique and characterization, Pramana-J. Phys., 2002,59:113~131
    [42] Masato T , Kenji H , Preparation of polymer particles covered with ferrite powder by suspension polymerization: effect of wettability of powder on composite size distribution.J. of Materials Science, 1990,(25):987~911
    [43] Cook R C, OverturfⅢ G E, Buckly S R, Preparation of Halogenated Polystyrene: UCRL-105821-91.CA: LLNL, 1991
    [44] 张立德,牟季美,纳米材料学,沈阳:辽宁科学技术出版社,1994.72~75
    [45] 张玉龙,李长德,纳米技术与纳米塑料,北京:中国轻工业出版社,2002.28~30
    [46] 董发勤,万朴,彭同江等,异形矿物的超细效应研究,非金属矿,1998(1):9~13
    [47] 郭薇,贾丽萍,超细粉的分散及粒度分布测量研究,材料科学进展,1992,6(4):320~325
    [48] 曹茂盛,曹传宝,徐甲强,纳米材料学,哈尔滨:哈尔滨工程大学出版社,2002.54~57
    [49] 罗中富,黄锐, 无机纳米粒子填充聚合物的研究进展,纳米塑料,北京:中国轻工业出版社,2002. 24~29
    [50] 刘洪波,微波诱导等离子体合成有机膜包裹的 TiO2 纳米粉体,化学通报,1997(4):44~46
    [51] 林尚安,陆耘,梁兆熙等,高分子化学,北京:科学出版社,1998.50~62
    [52] 芬娜技术有限公司,用循环流处理的连续法制备高强度聚苯乙烯,中国专利,CN1036211,1989
    [53] 叶跃升,王嘉骏,顾雪萍等,苯乙烯连续搅拌釜式本体聚合工业过程模拟, 高校化学工程学报, 2002,16(6) :643~649
    [54] 姜利祥,何世禹,陈平,盛磊,聚合物纳米复合材料的制备、性能及其应用展望,宇航材料工艺,2002,32(2):1~7
    [55] Shang S W, Willians J W, Scoderholm K J, How the work of adhersion affects the mechanical properties of Silica-filled polymer composites. J. Mater. Sci., 1994(29):2406~2408
    [56] 汪信,张金柱,纳米 TiO2 填充改性 HIPS 废料的研究,工程塑料应用,2000(9):4~9
    [57] 郭卫红,唐颂超,纳米 SiO2 在 MMA 单体中在位分散聚合的研究,材料导报,2000,14(10):71~72
    [58] 吴培熙,张留城,聚合物共混改性,北京:中国轻工业出版社,1996.265~266
    [59] 张金柱,汪信,陆路德,纳米 TiO2 对 HIPS 高性能化的改性研究,南京理工大学学报:自然科学版,2001, 25(6): 634~637
    [60] 李莹,于建,郭朝霞,原位聚合制备尼龙 6/纳米 SiO2 复合材料研究,工程塑料应用,2002,30(9):7~11
    [61] 姜辉,惯性约束聚变靶材料掺杂工艺的研究,[本科生毕业论文],天津:天津大学,2003
    [62] Matsushige K, Radcliffe S V, Baer E, Polymers modifled by nanoparticles. J. Appl. Polym Sci., 1986, (20):1853~1859
    [63] 漆宗能,李东明,聚合物增韧的研究进展,高分子通报,l 989,(3):32~38
    [64] 朱冠生,夏范武,钛酸酯偶联剂在涂料中的应用,涂料工业,2003,33(8):46~49
    [65] 叶秀娇,聚苯乙烯生产工艺及其产品性能的改善,现代塑料加工应用, 2002,14(4): 12~15
    [66] 金日光,华幼卿,高分子物理,北京:化学工业出版社,1991.1~5
    [67] 张毅,马秀清,金日光等,纳米 CaCO3 的表面改性及其与聚合物基的复合,塑料,2003,32 (3):59~64
    [68] 张乃技,孙振亚,重质碳酸钙矿物表面改性研究及应用,湖北化工,1999,(4) :25~27
    [69] 姜同川,正交试验设计,济南:山东科学技术出版社,1985.8~30
    [70] 王晓东,彭晓峰,王补宣,动态湿润与动态接触角研究进展,应用基础与工程科学学报,2003,11(4) :396~404
    [71] 户村知之,高桥绅矢,多成分系高分子的动态接触角及润湿张力的松弛现象,粘接,1996:1~7
    [72] 凌志达,雷云,钛酸酯偶联剂及其处理工艺对 CaCO3/UP 复合体系力学性能影响,复合材料,2001(11):11~13
    [73] 施卫贤,杨俊,王亭杰等,磁性微粒表面有机改性,物理化学学报,2001,17(6):507~510
    [74] Chuah A W, Leong Y C, Gan S N, Effects of titanate coupling agent on rheological behaviour , dispersion characteristics and mechanicalproperties of talc filled polypropylene, European Polymer Journal, 2000,36:789~801
    [75] 钱逢麟,竺玉书,涂料助剂——品种和性能手册,北京:化学工业出版社,1990.112~115
    [76] Teipel U, Leisinger K, Mikonsaari I, Comminution of crystalline material by ultrasonics, International Journal of Mineral Processing, 2004,74, Supplement: 183-190
    [77] 王凯,工业聚合反应装置,合成橡胶工业,1994,17(3): 172~176
    [78] 余木火,唐建国,孙元等,高分子化学,北京:中国纺织出版社,1999.108~142
    [79] 陈朝阳,引发剂引发与热引发在苯乙烯本体聚合中的比较,广东化工,2003,2:65~67
    [80] 高重辉,唐闻群,徐玲,高分子化学,北京:中国石化出版社,1997.112~118
    [81] 潘祖仁,于在璋,自由基聚合,北京:化学工业出版社,1983.273~274
    [82] 尚金山,郑菊英,高分子化学及物理学,北京:兵器工业出版社,1996.174~180
    [83] 何平笙,高分子物理实验,合肥:中国科学技术大学出版社,2002.95~101
    [84] 王俊中,胡源,陈祖耀,超声化学制备纳米材料的研究进展,稀有金属材料与工程,2003,32(8):585~590
    [85] Peters D, Ultrasonic sensors for chemical analysis J. Mater. Chem., 1996, 6(10):1605~1618
    [86] 李春喜,王子镐,超声技术在纳米材料制备中的应用,化学通报,2001(5):268~271
    [87] Luche J L, Synthetic Organic Sonochemistry, New York: Plenum Press, 1998:205~212
    [88] Suslick K S, Choe S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron, Nature,1991, 353(6343):414~414
    [89] Gedanken A, Using sonochemistry for the fabrication of nanomaterials, Ultrasonics Sonochemistry, 2004, 11(2):47~55
    [90] Katoh R, Tasaka Y, Sekreta E, et al. Sonochemical production of a carbon nanotube, Ultrason Sonochem.,1999, 6(4): 185~187
    [91] Kruus P, Beutel L, Aranda R, et al. Formation of complex organochlorine species in water due to cavitation, Chemosphere,1998,36(8):1811~1824
    [92] Nishikawa K, Hirose Y, Urakawa O, et al. Ultrasonic absorption and relaxations in ABS composite polymers, Polymer, 2002, 43(4): 1483~1490
    [93] Qian D, Dickey E C, Andrews R, et a1. Load transfer and deformation mechanisms in carbon nanotube-Polystyrene composites, Appl. Phys. Letters,2000,76(20):2868~2870
    [94] 朱军,李毕中,聚合物/无机纳米符合材科研究进展,化工新型材料,2000,28(10):3~8
    [95] 朱曾惠,纳米技术在复合材料中的应用,化工新型材料,1999,27(10):28~32
    [96] 王立新,袁金风,蹇锡高等,聚合物基纳米复合材料的研究进展,塑料工业,2000,28(6):1~6
    [97] Wong E W, Sheehan P E, Lieber C M, Nanobeam mechanics: elasticity strength, and toughness of nanotubes, Science,1997,277(5334):1971~1976
    [98] Ebbesen T W, Carbon nanotubes, Phys. Today, 1996 (6):26~35
    [99] Jia Z J, Wang Z Y, Liang J, et al. Production of short multi-walled carbon nanotubes,Carbon,1999,37:903~910
    [100] Jia Z J, Wang Z Y, Xu C L, et al. Study on poly(methyl methacrylate)/carbon nanotube composites, Materials Sci. Eng. A, 1999, 271:395~401
    [101] 欧玉春,刚性粒子填充聚合物的增强增韧与界面相结构,高分子材料科学与工程,1998,14(2),12~15
    [102] 汪信,张金柱,张江润等,高性能纳米 TiO2/HIPS 复合材料的研制,工程塑料应用,2001,29(2):1~4
    [103] 徐锐,李炎,张永水等,含有纳米蒙脱土的 HIPS 的制备与性能研究,工程塑料应用,2004,32(2):8~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700