钢筋锈蚀的临界氯离子浓度与混凝土的剩余寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的寿命预测在近些年是一个研究热点,多数学者都是以Fick第二定律为基础,研究氯离子渗透进入混凝土后的分布情况,预测混凝土结构的寿命,然而Fick第二定律的边界条件不符合混凝土的实际情况,并且由于混凝土自身组成特点和化学结合能力等的影响,通过Fick第二定律预测混凝土的寿命不准确。
     本文主要通过变电压的加速氯离子渗透试验来预测混凝土的寿命,根据不同电压下混凝土中氯离子含量的变化规律,找到加速电压与达到氯离子临界浓度的时间之间的关系,最终预测海水中混凝土自然渗透情况下的寿命。
     本文中以混凝土中钢筋锈蚀的临界氯离子浓度为寿命预测的边界条件,认为混凝土中氯离子浓度达到临界浓度时,混凝土的寿命终止。在混凝土中预埋钢筋和参比电极,进行20V、12V、6V和3V直流电压下的钢筋快速锈蚀试验,对试验结果分析后得到了C30空白混凝土、复掺掺合料和引气剂C30混凝土、C60空白混凝土、复掺掺合料和引气剂C60混凝土的临界氯离子浓度。
     对以上四个不同配合比的混凝土进行变电压的加速氯离子渗透试验,加速电压分别为20V、12V、6V和3V,研究发现3d后混凝土中氯离子含量随时间呈线性增加,通过建立加速电压与达到临界氯离子浓度的时间之间的关系,得到了寿命预测的方程,并预测混凝土在海水中自然渗透情况下的寿命。
     预测已使用14年的青岛某处防波堤混凝土的剩余寿命,对现场取样混凝土进行变电压的氯离子渗透试验,预测其剩余寿命为18.72年,按照该混凝土的配合比在试验室条件下还原出全新的混凝土,预测其寿命为35.01年,两个寿命之差为16.29年,与混凝土已经使用的年限相差2.29年,因此通过变电压的快速氯离子渗透试验可以较准确的预测混凝土的剩余寿命。
     对C30空白混凝土、复掺掺合料和引气剂C30混凝土、C60空白混凝土、复掺掺合料和引气剂C60混凝土进行了100次和150次的盐冻试验,研究发现C30空白混凝土无法抵抗100次盐冻循环,盐冻后完全破坏,对盐冻后的复掺掺合料和引气剂C30混凝土、C60空白混凝土、复掺掺合料和引气剂C60混凝土进行剩余寿命预测,C30复掺掺合料和引气剂混凝土盐冻100次后寿命为29.62年,盐冻150次后为24.9年,C60空白混凝土盐冻100次和150次后寿命为35.51年和32.17年,C60复掺掺合料和引气剂的混凝土盐冻100次和150次后寿命为50.85年和45.66年。引入盐冻损伤系数k_(yd),得到了k_(yd)与盐冻次数之间的关系,建立了盐冻前后混凝土的寿命预测方程。
     对混凝土施加20%和40%极限荷载的压应力,重复加荷200次后预测混凝土的剩余寿命。试验结果表明C30空白混凝土加载20%和40%压应力后寿命为21.61年和16.66年。C30复掺掺合料和引气剂的混凝土加载20%和40%压应力后寿命为33.3年和32.97年。C60空白混凝土加载20%和40%压应力后寿命为38.24年和34.82年。C60复掺掺合料和引气剂的混凝土加载20%和40%压应力后寿命为49.8年和44.84年。引入重复压应力损伤系数k_(yl),得到了k_(yl)与加载程度之间的关系,建立了重复压应力前后混凝土的寿命预测方程。
Service life prediction of concrete has been a hot topic in recent years. Based on Fick’s second law, most of the researchers studied chloride ion distribution in concrete and predicted service life of concrete structures. But the boundary conditions of Fick’s second law were not coincident with the field conditions. In addition, the predicted service life of concrete structures was not accurate because of the influence of concrete compositions and chemical binding effect.
     In this thesis, the service life of concrete structure was predicted through accelerated chlorid ion penetration test under various voltages. According to change rule of chloride ion content in concrete under various voltages, the relationship between critical concentration time and voltage was obtained. Based on the obtained results, the service life of concrete structures in natural marine environment was predicted.
     In this study, the critical chloride ion concentration leading to steel corrosion was considered as boundary condition of service life prediction. That meaned service life of concrete structures terminated when chloride ion concentation reached critical value. With steel bar and reference electrode casted in concrete specimens, the rapid steel corrosion test was done under 20V, 12V, 6V and 3V voltage. Through the analysis of the experimental results, the critical chloride ion concentrations of C30 control specimen, C30 specimen with mineral admixture and air-inducing agent, C60 control specimen and C60 specimen with mineral admixture and air-inducing agent were obtained.
     For the concrete specimens mentioned above, the accelerated chloride ion penetation test was done under 20V, 12V, 6V and 3V voltage. The research results indicated that chloride ion content increased linearly with time after 3 days. Through the establishment of relationship between critical concentration time and voltage, the service life prediction equation was obtained. Based on the obtained results, the service life of concrete structures in natural marine environment was predicted.
     For the breakwater concrete structure with service time of 14 years in Qingdao, the specimens were distrilled and the residual life was predicted through chloride ion penetration test under various voltages. The predicted result was 18.72 years. For the new concrete specimens with the same mixing proportions, the predicted service life was 35.01 years. The difference between the two predicted results mentioned above was 16.29 years, which was 2.29 years shorter than the actual service life. So through the rapid chloride ion penetration test, the residual service life of concrete structures could be prediced precisely.
     For C30 control specimen, C30 specimen with mineral admixture and air-inducing agent, C60 control specimen and C60 specimen with mineral admixture and air-inducing agent, salt frost test were done with 100 and 150 freezing and thawing cycles. The results showed that C30 control specimen can not resist the 100-cycle salt frost damage and was fully destroyed. After salt forst test, the residual service life of C30 specimen with mineral admixture and air-inducing agent, C60 control specimen and C60 specimen with mineral admixture and air-inducing agent were predicted. For C30 specimen with mineral admixture and air-inducing agent, the predicted residual life were 29.62 years and 24.9 years afer 100 and 150 cycles. For C60 control specimen, the predicted residual life were 35.51 years and 32.17 years afer 100 and 150 cycles. For C60 specimen with mineral admixture and air-inducing agent, the predicted residual life were 50.85 years and 45.66 years afer 100 and 150 cycles. Through the introduction of salt frost damage coefficient k_(yd), the relationship between k_(yd) and freezing-thawing cycles was obtained and service life prediction model before and after salt frost test were established.
     Compressive pressure with value of 20% and 40% ultimate load was applied to concrete specimens. After 200-cycle repeated-load test, the residual service life of specimens mentioned above was predicted. The experimental results showed that the predicted results were 21.61 and 16.66 years after repeated-load test with pressure of 20% and 40% ultimate load for C30 control specimen. For C30 specimen with mineral admixture and air-inducing agent, the predicted results were 33.3 and 32.97 years after repeated-load test with pressure of 20% and 40% ultimate load. For C60 control specimen, the predicted results were 38.24 and 34.82 years after repeated-load test with pressure of 20% and 40% ultimate load. For C60 specimen with mineral admixture and air-inducing agent, the predicted results were 49.8 and 44.84 years after repeated-load test with pressure of 20% and 40% ultimate load. Through the introduction of repeated-load damage coefficient k_(yl), the relationship between k_(yl) and peak load value was obtained and service life prediction model before and after repeated-load test were established.
引文
1 M. N. S. Hadi, J. Li. External Reinforcement of High Strength Concrete Columns. Composite Structures. 2004, 65:279-287
    2 M. A. Pech-Canul, P. Castro. Corrosion Measurements of Steel Reinforcement in Concrete Exposed to a Tropical Marine Atmosphere. Cement and Concrete Research. 2006, 32:491-498
    3 T. U. Mohammed, N. Otsuki and H. Hamada. Corrosion of Steel Bars in Cracked Concrete under Marine Environment. Journal of Materials in Civil Engineering. 2008, 15(5):460-469
    4 R. Kumara, B. Bhattacharjee. Assessment of Permeation Quality of Concrete through Mercury Intrusion Porosimetry. Cement and Concrete Research. 2009, 34:321-328
    5 P. C. A?tcin. The Durability Characteristics of High Performance Concrete. Cement & Concrete Composites. 2003, 25:409-420
    6 S. Jacobsen. Calculating Liquid Transport into High-performance Concrete during Wet Freeze/thaw. Cement and Concrete Research. 2008, 35:213-21
    7赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究.哈尔滨工业大学博士学位论文. 2001:32-37
    8 M. I. Khana, C. J. Lynsdale. Strength, Permeability and Carbonation of High-performance Concrete. Cement and Concrete Research. 2002, 32:123-131
    9 N. Banthiat, A. Biparva and S. Mindess. Permeability of Concrete under Stress. Cement and Concrete Research. 2009, 35:1651-1655
    10李淑进,赵铁军.混凝土的渗透性与寿命.海岸工程. 2001, 20(2):68-72
    11巴恒静,苏安双,叶金蕊.水压法评价混凝土渗透性的适用性研究.混凝土. 2005, 188(6):3-6
    12 J. P. Monlouis-Bonnaire, J. Verdier and B. Perrin. Prediction of the Relative Permeability to Gas Flow of Cement-based Materials. Cement and Concrete Research. 2007, 34:737-744
    13王中平,吴科如,张青云.混凝土气体渗透系数测试方法的研究.建筑材料学报. 2001, 4(4):317-321
    14 C. Y. Lee, H. K. Lee and K. M. Lee. Strength and Microstructural Characteristics of Chemically Activated Fly Ash–cement Systems. Cement and Concrete Research.2006, 33(3):425-431
    15 A. David. Lockheed Matins Touts JSF Stealth Improvements. Aviation & Space Technology Week. 2008,38(8):27-30
    16 F. C. Jiang, R. T. Liu. Evaluation of Dynamic Fracture Toughness Kld by Hopkinson Pressure Bar Loaded in Strumented Charpy Impact Test. Engineering Fracture Mechanics. 2009, 71: 279-287
    17 Z. Li, C. K. Chau and X. Zhou. Accelerated assessment and fuzzy evaluation of concrete durability. Journal of Materials in Civil Engineering. 2005,(5):257-263
    18卢木.混凝土耐久性研究现状和研究方向.工业建筑. 1997, 27(5):1-4
    19 P. Sukontastlkkul, P. Nimityongskul and S. Mindess. Effect of Loading Rate on Damage of Concrete. Cement and Concrete Researeh. 2007, 34: 2127-2134
    20 S. Yoon, K. Wang and W. Jason. Weiss International between Loading Corrosion and Serviceability of Reinforced Concrete. ACI Material Journal. 2000, 97(6):637-644
    21 B. Elsener. Half-cell Potential Measurements—potential Mapping on Rreinforced Concrete Structures. Materials and Structures. 2003, 36:328-331
    22 D. Trejo, R.G. Pillai. Accelerated Chloride Threshold Testing—part 2: Corrosion Resistance Reinforcement. ACI Materials Journal. 2004,101(1):57-64
    23 M. Stern, A. L. Geary. Electrochemical Polarization: a Theoretical Analysis of the Shape of Polarization Cures. Journal Electrochemical Society. 1957,104(1):56-63
    24 S. Feliu, J. Agonzalez and M. Candrade. Polarization Resistance Measurements in Large Concrete Specimens: Mathematical Solution for a Unidirectional Current Distribution. Material and Structure. 1989,22:19-29
    25 S. Feliu, J. Agonzalez and M. Candrade. Determining polarization resistance in reinforced concrete slabs. Corrosion Science. 1989,29(1):105-107
    26 S. Feliu, J. Agonzalez and M. Candrade. Confinement of the Electrical Signal for Insite Measurement of Polarization Resistance in Reinforced Concrete. ACI Material Journal. 1990,87(5):457-460
    27 H. Wojtas. Determination of Corrosion Rate of Reinforcement with a Modulated Guard Ring Electrode. Corrosion Science. 2008,46:1611-1632
    28 F. Wenger. Study of the Corrosion of the Mild Steel in Concrete by Electrochemical Methods. Metaus Corrosion Industrie. 1987,62(7):307-343
    29 S. Erdogdu, T. W Bremner and I. L. Kondratova. Accelerated Testing of Plain and Epoxy-coated Reinforcement in Simulated Seawater and Chloride Solutions. Cement and Concrete Research. 2007,31:861-867
    30 D. Trejo, J. Gonzalez and C. Andrande. On-site Determination of the Polarization Resistance in a Reinforced Concrete Beam. Corrosion. 1988,44(10):761-765
    31 S. Feliu, J. Gonzalez and C. Andrande. Determination Polarization Resistance in a Reinforced Concrete Slabs. Corrosion Science. 1989,29(1):108-113
    32朱雅仙.混凝土中钢筋锈蚀速度的检测.水利水运科学研究. 1996, (2):172-177
    33万小山.海洋金属锈蚀检测电化学传感器的研制.锈蚀科学与防护. 2004, 16(1):52-54
    34惠云玲.混凝土中钢筋锈蚀程度的评估和预测试验研究.工业建筑. 1997, 27(6):7-9
    35刘西拉,苗澎柯.混凝土结构中的钢筋锈蚀及其耐久性计算.土木工程学报. 1990, (11):6-9
    36王巧平,吴胜兴.无损检测技术在锈蚀钢筋混凝土结构中的应用探讨.混凝土. 2003, (6):23-25
    37牛荻涛.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型.工业建筑. 1996, 26(4):8-
    10
    38刘亚芹.混凝土碳化引起的钢筋锈蚀实用计算模型.同济大学硕士学位论文. 1997:15-18
    39张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验.水运工程. 1999, (3): 6-13
    40 T. S. Lok, A. M. Zhao. Impact Response of Steel Fiber-reinforced Concrete Using a Split Hopkinson Pressure Bar. Journal of Material in Civil Engineering. 2006, 16(1): 54-59
    41 F. V. Donze, S. A. Magnier and L. Daudeville. Numerical Study of Comperssive Behavior of Concrete at High Strain Rates. Journal of Engineering Mechanics. 1999, 125(10): 1154-1163
    42 V. B. Bregar. Advantages of Ferromagnetic Nanoparticle Composites in Microwave Absorbers. IEEE Transactions on Magnetics. 2008, 40(3):1679-1684.
    43刘斯凤.氯离子扩散测试方法演变和理论研究背景.混凝土. 2002, (10):21-24
    44 G. K. Glass, N. R. Buenfeld. The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete. Corrosion Science. 1997, 39(5): 1001-1013
    45 D. A. Hausmann. Steel Corrosion in Concrete. Materials Protection. 1967, 6(11):19-23
    46 D. Izquierdo, C. Alonso and C. Andrade. Potential Static Determination of Chloride Threshold Values for Rebar Deactivation: Experiment and Statistical Study. Electrochimica Acta. 2009, 49(33):2731-2739
    47 J. M. Frederiksen. Testing and Modeling the Chloride Ingress into Concrete. Electrochimica Acta. 2006, 59(28):1271-1279
    48 C. Alonso, M. Castellote and C. Andrade. Chloride Threshold Dependence of Pitting Potential of Reinforcements. Electrochimica Acta. 2007, 47(21):3469-3481
    49 S. E. Hussain, S. Ahmad. Chloride Threshold for Corrosion of Reinforcement in Concrete. ACI Materials Journal. 1996, 94(6):534-538
    50刘志勇.基于氯离子渗透的海工混凝土寿命预测模型进展.工业建筑. 2004, 6(36):61-64
    51杨英姿,赵亚丁,巴恒静.关于混凝土抗冻性试验方法的讨论.低温建筑技术. 2006,(5):1-3
    52 S. Chatterji. On the Application of Fick’s Second Law to Chloride Migration through Portland Cement Concrete. Cement and Concrete Research. 1995, 25: 299-303
    53 M. Nagesh, Bishwajit. Modeling of Chloride Diffusion in Concrete and Determination of Diffusion Coefficients. American Concrete Institute Materials Journal. 1998, 25(2):113-120
    54 V. Pavlik. Water Extraction of Chloride Hydroxide and other Ions from Hardened Cement Pastes. Cement and Concrete Research. 2008,30(14):895-906
    55 A. M. Simpoes, M. G. Ferreira. Montemor Chloride induced Corrosion on Reinforcing Steel: from the Fundamentals to the Monitoring Techniques. Cement and Concrete Composites. 2003,25:491-502
    56余红发,孙伟,麻海燕等.盐湖地区钢筋混凝土结构使用寿命的预测模型及其应用.东南大学学报. 2002, 32(4): 638-642
    57 DuraCrete. Statistical Quantification of the Variables in the Limit State Functions. Cement and Concrete Research. 2009, 52: 459-467
    58 P. Roelfstra, J. Bijin and T. Salet. Modeling Chloride Penetration into Ageing Concrete. Rehabilitation and Protection. 1996, 11: 245-255
    59 A. Seatta, R. Scotta and R. Vitaliani. Analysis of Chloride Diffusion into Partially Saturated Concrete. American Concrete Institute Materials Journal. 1993, 90(5): 441-451
    60 E. Bentz, C. Evans and M. Thomas. Choloride Diffusion Modeling for Marine Exposed Concretes. Cement and Concrete Research. 1996, 38: 243-250
    61 O. Onyejekwe, N. Reddy. A Numerical Approach to the Study of Chloride Ion Penetration into Concrete. Magazine of Concrete Research. 2008, 52(4): 243-250
    62 S. Chatterji. On the Application of Fick’s Second Law to Chloride Migration throughPortland Cement Concrete. Cement and Concrete Research. 1995, 25: 299-303
    63 K. C. Clear. Time to Corrosion of Reinforcing Steel in Concrete Slabs. American Concrete Institute Materials Journal. 1991, 86(2): 241-251
    64 P. J. Tumidajski. Boltzmann-matano Analysis of Chloride Diffusion into Blended Cement Concrete. Journal of Materials in Civil Engineering. 1996, 8(4):195-200
    65 R. K. Dhir, M. R. Jones. Prediction of Total Chloride Content Profile and Concentration/time Dependent Diffusion Coefficients for Concrete. Magazine of Concrete Research. 1998, 50(1):37-48
    66施养杭. Monte-Carlo法氯离子侵蚀下混凝土构件寿命预测.华侨大学学报. 2005, 26(4):369-372
    67 P. B. Bamforth. The Derivation of Input Data for Modeling Chloride in Gress from Eight Year UK Coastal Exposure Trials. Magazine of Concrete Research. 1999, 51(2):89-96
    68 L. Z. Wu, J. Ding and H. B. Jiang. Particle Size Influence to the Microwave Properties of Iron Based Magnetic Particulate Composites. Magnetic Materials. 2009,285(2):233-239
    69 M. B. Robert, C. Atkins. A Proposed Empirical Corrosion Model for Reinforced Concrete. Structures and Buildings. 2000,140(1):1-11
    70 M. B. Anoop, K. B. Rao. Application of Fuzzy Sets for Estimating Sevice Life of Reinforced Concrete Structural Members in Corrosive Environments. Engineering Structures. 2004,(24):1229-1242
    71赵铁军,万小梅.一种预测混凝土氯离子扩散系数的方法.工业建筑. 2001, 31(12):40-42
    72张兰芳,赵兴君,岳瑜.用BP网络预测粉煤灰混凝土的渗透性.粉煤灰综合利用. 2002,(4):37-38
    73 S. K. Dhawan, N. Singh and D. Rodrigues. Electromagnetic Shielding Behaviour of Conducting Polyaniline Composites. Science and Technology of Advanced Materials. 2007,(4):105-113
    74 T. W. Zhang, O. E. Gjorv. An Electrochemical Method for Accelerated Testing of Chloride Diffusivity in Concrete. Cement and Concrete Research. 1994, 24 (8):1534-1548
    75 X. Wang, X. Liu. Modeling Bond Strength of Corroded Reinforcement with Stirrups. Cement and Concrete Research. 2008,(34):1331-1339
    76 T. C. Power. A Working Hypothesis for Further Studies of Frost Resistance. Journalof the American Concrete Institute. 1945, 16(4)245-272
    77马国庆,钱玉林.混凝土的冻害及其机理.常州工学院学报. 2005(12):109-112
    78 C. C. Yang, S. W. Cho, The Relationship between Chloride Migration Rate for Concrete and Electrical Current in Ssteady State Using Accelerated Chloride Migration Test. Materials and Structure. 2009, 37: 456-463
    79 M. J. Setzer. Mechanical Stability Criterion, Triple-phase Condition, and Pressure Differences of Matter Condensed in a Porous Matrix. Journal of Colloid and Interface Science. 2001, (235):170-182
    80 K. Kimura, O. Hashimoto. Three-layer Wave Absorber Using Common Building Material for Wireless LAN. Electronics Letters. 2008,40(21):1323-1324
    81 J. P. Kaufmann. Experimental Identification of Ice Formation in Small Concrete Pores. Cement and Concrete Research. 2004, (34):1421-1427
    82易成,谢和平,孙华飞.混凝土抗渗性能研究的现状与进展.混凝土. 2003,160 (2): 7-11
    83 B. Y. Li, Q. B. Li and Y. J. Liang. Fiber Optic 2-D Sensor for Measuring the Strain inside the Concrete Specimen. Sensors and Actuators A. 2001, 94: 25-31
    84 B. S. Zhang, G. Lu and Y. Feng. Electromagnetic and Micro-wave Absorption Properties of Alnico Powder Composites. Magnetic Materials. 2006,299(1):205-210
    85 C. C. Yang, S. W. Cho and R. Huang. The Relationship between Charge Passed and the Chloride Ion Concentration in Concrete Using Steady State Chloride Migration Test. Cement and Concrete Research. 2009, 32:217-222
    86 P. K. C. Chan, W. Jin. Multi-point Strain Measurement of Composite-bonded Concrete Materials with a RF-band FMCW Multiplexed FBG Sensor Array. Sensors and Actuators A. 2007, 87: 19-25
    87 J. F. Geogrin, J. M. Reynouard. Modeling of Structures Subjected to Impact: Concrete Behaviour under High Srtain Rate. Cement and Concrete Composites, 2003, 25:131-143
    88 H. Friedmann, O. Amiri and P. Dumargue. A Direct Method for Determining Chloride Diffusion Coefficient by Using Migration Test. Cement and Concrete Research. 2008, 34(11):1967-1973
    89 R. L. Shan, Y. S. Jiang and B. Q. Li. Obtaining Dynamic Complete Stress-strain Cuvres for Rock Using the Split Hopkinson Pressuer Bar Technique. International Journal of Rock Mechanics Sciences. 2000, 37: 983-992
    90赵霄龙,卫军,黄玉盈.混凝土冻融耐久性劣化与孔结构变化的关系.武汉理工大学学报. 2002,(12):14-17
    91 C. C. Yang, S. W. Cho. Approximate Migration Coefficient of Percolated Interfacial Transition Zone by Using the Accelerated Chloride Migration Ttest. Cement and Concrete Research. 2005, 35:344-350
    92路新瀛,李翠玲.混凝土渗透性的电学评价.混凝土与水泥品. 1999,109(5):12-14
    93余红发,孙伟,鄢良慧等.混凝土使用寿命预测方法的研究Ⅰ——理论模型.硅酸盐学报. 2002, 30(6):686-690
    94林皋,闫东明,肖诗云.应变速率对混凝土特性及工程结构地震响应的影响.土木工程学报, 2005, 38(11):1-5
    95吴瑾,吴胜兴.氯离子环境下钢筋混凝土结构耐久性寿命评估.土木工程学报. 2005, 38(2):59-63
    96 D. D. Andesron, A. J. Rosakis. Comparison of Three Real Time Techniques for the Measurement of Dynamic Fracture Initiation Touhgness in Metals. Engineering Fracture Mechanics. 2006, 72: 535-555
    97冯乃谦,邢锋.高性能混凝土的氯离子渗透性和导电量.混凝土. 2001, (11): 3-7
    98 E. Samson, J. Marchand and J. J. Beaudoin. Describing Ion Diffusion Mechanisms in Cement-based Materials Using the Homogenization Technique. Cement and Concrete Research. 1999, 29(8):1341-1345
    99 H. R. Samaha, K. C. FIover. Influence of Microcracking on the Mass Transport Properties of Concrete. ACI Material Journal. 1992, 89(4): 416-424
    100李云峰,吴胜兴.混凝土加速寿命研究主要内容与试验设计.新型建筑材料, 2005, (3):10-12
    101张武满.混凝土结构中氯离子加速渗透试验与寿命预测.哈尔滨工业大学博士论文. 2006:96-97
    102黄运涛.海水直接电解制氯过程的研究.大连理工大学硕士论文. 2005:84-85
    103 P. P. Win, M. Watanabe and A. Machida. Penetration Profile of Chloride Ion in Cracked Reinforced Concrete. Cement and Concrete Research. 2009, 34: 1073-1079
    104施惠生,施韬,陈宝春.掺矿渣活性粉末混凝土的抗氯离子渗透性研究.同济大学学报. 2006,34(1):93-96
    105 S. Perron, J. J. Beaudoin. Freezing of Water in Portland Cement Paste- an Acimpedance Spectroscopy Study. Cement & Concrete Composites. 2007, 24:467-475
    106 C. S. Poon, Z. H. Shui and L. Lam. Compressive Behavior of Fiber Reinforced High-performance Concrete Subjected to Elevated Temperatures. Cement and ConcreteResearch. 2004, 34(12): 2215-2222
    107刘伟,邢锋,谢友均.水灰比、矿物掺合料对混凝土孔隙率的影响.低温建筑技术. 2006, 109(1):9-11
    108 P. Sukontasukkul, P. Nimityongskul and S. Mindess. Effect of Loading Rate on Damage of Conerete. Cement and Concrete Researeh. 2008, 34: 2127-2134
    109 H. J. Ba, A. L. Guo. Mix Proportion Optimization and Shrinking of New Developed Reactive Powder Concrete. Key Engineering Materials. 2009,405:37-43
    110 F. Ragueneau, F. Gatuingt. Inelastic Behavior Modelling of Concerte in Low and High Stain Ratedynamics. Computers and Structures. 2003, 81:1287-1299
    111 H. Ya. The Effect of Curing Conditions on Compressive Strength of Ultra High Strength Concrete with High Volume Mineral Admixtures. Build Environment. 2007,42:2083-2091
    112洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性.建筑技术. 2000, 31(2) :102-104
    113 S. Chatterji. Freezing of Air-entrained Cement-based Materials and Specific Actions of Air-entraning Agents. Cement & Concrete Composites. 2007, 25:759-765
    114马昆林,谢友均,李立斌.混凝土在NaCI溶液中抗冻及抗渗性能的研究.混凝土. 2006, 200(6):15-17
    115 Y. W. Chan, S. H. Chu. Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete. Cement and Concrete Research. 2004,34(1):1167-1172
    116 R. Pierre, C. Maecel. Compostion of Reactive Powder Concretes. Cement and Concrete Research. 1995,25(7):1501-1511
    117 B. Chen, J. Liu. Residual Strength of Hybrid-fiber-reinforced High-strength Concrete after Exposure to High Temperatures. Cement and Concrete Research. 2008, 34(6): 1065-1069
    118孙望超,颜承越.粉煤灰形态效应及应用技术.房材与应用. 1997(2):35-37
    119牛季收,王保君.粉煤灰在混凝土中的效应及应用.铁道建筑. 2004,(2):74-76
    120刘爱新.粉煤灰混凝土的性能及其应用.混凝土. 2001,(12):6-7
    121原通鹏,邓德华,曾志.矿物掺合料抗氯离子扩散性能的试验研究.混凝土. 2005,(11):62-70
    122 J. Xiao, H. Falkner. On Residual Strength of High-performance Concrete with and without Polypropylene Fibers at Elevated Temperatures. Fire Safety Journal. 2006, 41(2): 115-121
    123罗晓辉,卫军,罗昕.混凝土劣化与有害孔洞的物理关系.华中科技大学学报(自然科学版). 2006, 34(3): 94-96
    124谢友均,刘宝举,刘伟.矿物掺合料对高性能混凝土抗氯离子渗透性能的影响.铁道科学与工程学报. 2004,(2):49-53
    125 K. Hwang, T. Noguchi and F. Tomosawa. Prediction Model of Compressive Strength Development of Fly-ash Concrete. Cement and Concrete Research. 2009, 34(12):269-227
    126张武满,巴恒静,高小建.重复压应力作用下矿渣混凝土变形性能.混凝土. 2006,(9):5-8
    127谭克锋.水灰比和掺合料对混凝土抗冻性的影响.武汉理工大学学报. 2006, 28(3):58-60
    128 F. Christiane, M. Pigeon and B. Nemkumar. Freeze-thaw Durability and Deicer Salt Scaling Resistance of a 0.25 Water-cement Ratio Concrete. Cement and Concrete Research. 1998, (18)4: 604-614
    129 H. Shang, Y. Song and L. Qin. Experimental Study on Strength and Deformation of Plain Concrete under Triaxial Compression after Freeze-thaw Cycles. Building and Environment. 2008,43(7):1197-1204
    130 D. McPolin, P. A. M. Basheer and A.E. Long. Obtaining Progressive Chloride Profiles in Cementations Materials. Construction and Building Materials. 2005, 19(9):666-673
    131 M. G. Alexander, B. J. Magee. Durability Performance of Concrete Containing Condensed Silica Fume. Cement and Concrete Research. 1999, 29(6): 917-922
    132郝晓丽.氯腐蚀环境混凝土寿命与寿命预测.西安建筑科技大学硕士论文. 2004:35-36
    133金伟良,赵羽习.混凝土结构寿命研究的回顾与展望.浙江大学学报. 2002, 36 (4):371-380
    134 S. Jacobsen. Calculating Liquid Transport into High-performance Concrete during Wet Freeze-thaw. Cement and Concrete Research. 2005,(35):213~219
    135 R. Luo, Y. B. Cai and C. Y. Wang. Study of Chloride Binding and Diffusion in GGBS Concrete. Cement and Concrete Research. 2008, 33:1-7
    136 C. P. Atkins, J. D. Scantlebury and P. J. Nedwell. Monitoring Chloride Concentration in Hardened Cement Pastes Using Ion Selective Electrodes. Cement and Concrete Research. 1996, 26(2):319-324
    137 C. P. Neo, V. K. Varadan. Optimization of Carbon Fiber Composite for Microwave Absorber. IEEE Trans. Electromagnetic Compate. 2004,46(1):102-106
    138 M. Castellote, C. Andrade, C. Alonso. Measurement of the Steady and Non-steady-state Chloride Diffusion Coefficients in a Migration Test by means of Monitoring the Conductivity in the Anolyte Chamber Comparison with Natural Diffusion Tests. Cement and Concrete Research. 2009, 31:1411-1420
    139 W. Yao, J. Li and K. Wu. Mechanical Properties of Hybrid Fiber-reinforced Concrete at Low Fiber Volume Fraction. Cement and Concrete Research. 2003, 33: 27-30
    140 F. Leng, N. Feng and X. Lu. An Experimental Study on the Properties of Resistance to Diffusion of Chloride Ions of Fly Ash and Blast Furnace Slag Concrete. Cement and Concrete Research. 2000, 30:989-992
    141 O. Bayard, O. Ple. Fracture Mechanics of Reactive Powder Concrete: Material Modelling and Experimental Investigations. Engineering Fracture Mechanics. 2007,70: 839-851
    142 H. Guan, S. Liu and Y. Duan. Cement Based Electromagnetic Shielding and Absorbing Building Materials. Cement and Concrete Composites. 2006,28(5):468-74
    143 D. D. L. Chung. Cement-matrix Composites for Smart Structures. Smart Material and Structure. 2000,9(3):389-401
    144 L. Basheer, P. A. M. Basheer and A.E. Long. Influence of Coarse Aggregate on the Permeation Durability and the Microstructure Characteristics of Ordinary Proland Cement Concrete. Construction and Building Materials. 2005,(19):682-690
    145 J. M. L. Reis, A. J. M. Ferreira. Freeze–thaw and Thermal Degradation Influence on the Fracture Properties of Carbon and Glass Fiber Reinforced Polymer Concrete. Construction and Building Materials. 2006,20(10): 888-892
    146 F. Rubio. The Spalling of Long Bar as a Reliable Method of Measuring the Dynamic Tensile Strength of Ceramics. International Journal of Impact Engineering. 2008, 27(2): 161-177
    147 M. Meshrama, K. Agrawala and B. Sinha. Characterization of M-type Barium Hexagonal Ferrite-based Wide Band Microwave Absorber. Journal of Magnetism and Magnetic Materials. 2004,271:207-214
    148 F. Ragueneau, F. Gatuingt. Inelastic Behavior Modelling of Concerte in Low and High Stain Ratedynamics. Computers and Structures. 2003, 81:1287-1299
    149 Y. Lu, K. Xu. Modelling of Dynamic Behvaiour of Concrete Materials under Blast Loading. International Journal of Solids and Structures. 2004, 41(l):131-143
    150 L. Du, J. F. Kevin. Mechanisms of Air Entraiment in Concrete. Cement and Concrete Research. 2008,(35):1463-1471
    151 R. Bueno. Microwave-absorbing Properties of Ferrite-wax Composite in X-bandFrequencies. Journal of Magnetism and Magnetic Materials. 2007,21(2):7-9
    152 D. C. L. Teo, M. A. Mannan, V. J. Kurian, C. Ganapathy. Lightweight Concrete Made from Oil Palm Shell (OPS): Structural Bond and Durability Properties. Building and Environment. 2007,42:2614-2621
    153 M. Moulia, H. Khelafi. Performance Characteristics of Lightweight Aggregate Concrete Containing Natural Pozzolan. Building and Environment. 2006,38(11):1-6
    154 S. Zhutovsky, K. Kovler and A. Bentur. Efficiency of Lightweight Aggregates for Internal Curing of High Strength Concrete to Eliminate Autogenous Shrinkage. Materials and Structures. 2002,34(246):97-101
    155 C. R. Cheeseman, A. Makinde and S. Bethanis. Properties of Lightweight Aggregate Produced by Rapid Sintering of Incinerator Bottom Ash. Resources, Conservation and Recycling. 2005, 43:147-162
    156 C. R. Cheeseman, G. S. Virdi. Properties and Microstructure of Lightweight Aggregate Produced from Sintered Sewage Sludge Ash. Resources Conservation and Recycling. 2008,45:18-30
    157 M. N. Haque, H. Al-Khaiat and O. Kayali. Strength and Durability of Lightweight Concrete. Cement & Concrete Composites. 2004,26:307-314
    158 S. Shukla, S. Seal and Z. Rahaman. Electroless Copper Coating of Cenopheres Using Silver Nitrate Activator. Materials Letter. 2002,57(1):151-156
    159 M. Husem. The Effects of Bond Strengths between Lightweight and Ordinary Aggregate-mortar, Aggregate Cement Paste on the Mechanical Properties of Concrete. Materials Science and Engineering. 2007,36:152-158
    160 K. Ramamurthy, K.I. Harikrishnan. Influence of Binders on Properties of Sintered Fly Ash Aggregate. Cement & Concrete Composites. 2006,28:33-38
    161 C. Hwang, M. Hung. Durability Design and Performance of Self-consolidating Lightweight Concrete. Construction and Building Materials. 2005,19:619-626
    162 K. Wang, D. C. Jansen and S. P. Shah. Permeability Study of Cracked Concrete. Cement and Concrete Research. 1997, 27(3):381-393
    163 P. Sukontasukkul, P. Nimityongskul and S. Midness. Effect of Loading Rate on Damage of Concrete. Cement and Concrete Research. 2004, 34: 2127-2134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700