面向制造成本的复合材料加筋壁板结构设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料以其轻质、高强的优越特性广泛应用于航空航天等领域,但昂贵的制造成本是扩大其应用的主要障碍,如何减轻结构重量的同时降低成本、提高复合材料的性价比成为目前复合材料研究领域的核心问题之一。复合材料结构设计和制造过程中,通过大面积整体化成形技术,将几十甚至上百个零件减少到一个或几个零件,减少分段、减少对接、节省装配时间,可大幅度地减轻结构重量同时降低结构成本。复合材料加筋壁板是飞机典型的整体化结构,早期设计阶段建立科学的制造成本估算方法,有助于加筋壁板结构性能与成本权衡,不仅可作为材料选择的依据,还可用于工艺优选,实现低成本化结构的最优设计。然而,国内外有关复合材料加筋壁板设计的研究大多针对加筋几何形状能否满足结构性能要求,以壁板各组成部分铺层为研究对进行整体化结构优化设计,很少研究者考虑以成本为目标函数进行结构设计。本文基于整体化成形工艺,针对压剪组合应力作用下的复合材料加筋壁板结构,面向制造成本,以壁板结构稳定性要求和可制造性约束为前提条件,开展成本-重量权衡的结构设计研究:
     1.针对复合材料加筋壁板结构,建立了基于整体化成形工艺的制造工艺时间估算模型,并结合一阶反应动力学和幂定律原理给出模型参数、估算变量的确定方法。应用本文建立的工艺时间估算模型对共固化成形波纹形腹板壁板结构的铺层工序进行研究,模型估算值与实验值基本吻合,验证了模型的有效性,为复合材料加筋壁板结构制造成本估算奠定了理论基础。
     2.针对复合材料加筋壁板结构,建立整体化结构制造成本估算模型,提出了与制造工艺相关的材料成本、人工成本、设备成本和模具成本的估算方法。以共固化、二次胶接和胶接共固化三种整体化工艺成形复合材料蒙皮T形加壁板为例,应用制造成本估算模型进行研究,理论分析和实验结果吻合,验证了模型的适用性。所得结论有助于指导复合材料加筋壁板结构早期制造工艺优选,为面向制造成本的结构设计提供依据。
     3.分析复合材料加筋壁板结构复杂性对制造时间的影响,提出适合7种典型加筋壁板的结构的复杂效应表达式,并根据具体工程实例给出在结构复杂性影响下,制造工艺时间估算方程中工艺参数的修正方法。基于复合材料加筋壁板的固化特点,建立科学的固化时间估算方法,并结合国外对合模速率的研究,提出了合模工艺时间估算方法,有利于提高复合材料加筋壁板结构成本估算的准确性,为整体化结构面向结构复杂性设计提供依据。
     4.详细分析了压剪组合应力作用下复合材料加筋壁板影响结构设计的前提条件稳定性要求和可制造性约束,分别给出整体壁板结构屈曲、蒙皮湾处屈曲和加强筋柱状屈曲的解析表达式,与设计变量和结构几何尺寸紧密结合,研究了加强筋发生局部屈曲破坏的判别方法,与ANSYS非线性有限元分析结果进行对比,所得结论吻合较好,验证屈曲解析分析法的适用性,为建立飞机复合材料低成本结构设计与制造之间的有机衔接进行探索。
     5.以制造成本为目标函数,满足压剪载荷下结构稳定性要求和可制造性约束,提出一种基于成本-重量平衡的设计方法,并对相关流程进行详细研究。建立了7种横截面形状的加筋壁板成形工序表,并分别讨论了三种整体化成形方法的差异。基于典型加筋壁板结构特点,提出了其几何尺寸的确定方法。对典型加筋壁板结构基于成本-重量设计进行算例分析,讨论加筋间距、加强筋形状对成本-重量的影响。基于算例分析结论提出了成本-重量权衡的补偿函数,指导复合材料加筋壁板结构面向成本数字化制造和设计,为实现其高性价比设计提供依据。
Composite material has been applied widely in the aeronautic and astronautic area because of light-weight and high-strength. However, the high manufacture cost restricts its further widely application. Reducing the structural weight and manufacture cost simultaneously, and improving the performance price ratio are the main purposes during the research of composite material. In the design and manufacture of composite structure, there is an integrated mould technique which could integrate hundreds of parts into only one part, reducing division, joint, installation time, structural weight, and manufacture cost. Composite stiffened panel is a typical integrated structure used in aircraft. In the early design stage, manufacture cost is the main considered parameter. Establishing a scientific estimation method of manufacture cost is beneficial to select material, optimize manufacture process, evaluate the performance and cost, and realize low cost optimum design. Most of the current research is limited to the structure performance. But there is little research considering manufacture cost as optimum design parameter. This paper mainly considers the balance between manufacture cost and weight of composite stiffened panel. The detailed contents are listed as following.
     1. According to the structural characters of composite stiffened panel, the estimation method of manufacture time of integrated mould process is presented. By considering the first order dynamic principle and power law, the unknown parameters in the estimation equations are determined. Composite panel with waved stiffeners is studied to verify the accuracy of estimation model for manufacture cost. Moreover, the method of selecting estimation variables is introduced. The theoretical estimation method of manufacture cost for composite stiffened panel is presented.
     2. The main factors which are related to the manufacture cost during the mould process of composite stiffened panel are analyzed. The cost estimation methods for every parameter are presented. Based on the above discussion, the cost estimation model for composite stiffened panel is established. The three different integrated mould processes for composite panel with T stiffener are studied to verify the applicability of this model. This estimation method is beneficial to direct the design of various composite structures.
     3. The effect of structural complexity to the manufacture cost is analyzed. The estimation equations of complexity effect for seven typical stiffened panels are listed. According to the practical engineering, the parameters in the estimation equations are modified. Based on the characters of mould process, a scientific estimation method of curing time is presented. Also how the localization for tools affects to time of matching moulds is studied.
     4. The stability requirement and manufacturability for the design of composite stiffened panel under compressive stress and shear force are analyzed. The theoretical results are compared to the results of ANSYS finite element method.
     5. The manufacture cost and structural weight are selected as optimum parameters. The optimum design method of composite stiffened panel under compressive stress and shear force is presented. According to the typical forming method of stiffened structure, the detailed process plan suitable for practical engineering is listed. The method of determining the geometrical shape of seven typical stiffeners is introduced. Various factors which affect the optimum design of composite stiffened panel are analyzed based on practical case and the results are matched perfectly. The optimum function of manufacture cost and structural weight are built to realize the low cost design of integrated composite stiffened panel.
引文
1杨乃宾,章怡宁.复合材料飞机结构设计.航空工艺出版社. 2004: 18~19
    2 W.T. Freeman. The Use of Composites in Aircraft Primary Structure. Composite Engineer. 1993, 3 (7~8): 767~775
    3 T.G.古托夫斯基.先进复合材料制造技术.李宏远等译.化学工业出版社, 2004:433~435
    4陈绍杰.浅谈复合材料整体成型技术.高科技纤维与应用. 2005, 30(1): 6~9
    5杨乃宾,章怡宁.复合材料飞机结构设计.航空工艺出版社. 2004:4~5
    6 J. W. Goodman, J. W. Lincoln, and T. H. Bennett. Structural Assurance of Advanced Composite Components,AGARD-CP660,1978
    7赵长喜,李继霞.航天器整体壁板制造技术.航天制造技术.2006, (4): 46~48
    8 R.M. Mclane. Economic Issues in Composites Manufacturing. Proc. Am. Soc. Composites, 3rd Technical Conf.1988: 23~32
    9赵渠森,郭恩明.先进复合材料手册.机械工业出版社. 2003: 724~729
    10 S. Nagendra, R. T. Haftka, and Z. Gurdal. Design of Blade Stiffened Composite Panels by a Genetic Algorithm Approach. 34th AIAA/ASME/AHS Structures, Structural Dynamics, and Materials Conference (La Jolla,CA), April 19~22, 1993: 2418~2436
    11 R. A. Damodar, J. Navin, and W. H. Mark. Progressive Failure Studies of Stiffened Panels Subjected to shear loading. Composite Structures. 2004, 65(2): 129~142
    12 W. Liu, R. Butler, A. R. Mileham, et al. Bi-level Optimization and Postbuckling of Highly Strained Composite Stiffened Panels. AIAA Journal. 2006, 44(11): 2562~2570
    13 A. C. Orifici, R. S. Thomson, R. Degenhardt, et al. Degradation Investigation in a Postbuckling Composite Stiffened Fuselage Panel. Composite Structures. 2008, 82(2): 217~224
    14 P. Pevzner, H. Abramovich, and T. Weller. Calculation of the Collapse Load of an Axially Compressed Laminated Composite Stringer-stiffened CurvedPanel an Engineering Approach. Composite Structures. 2008, 83(4): 341~353
    15 J. E. Herencia, P. M. Weaver, and M. I. Friswell. Optimisation of Long Anisotropic Laminated Fibre Composite Panels with T-shaped Stiffeners. AIAA Journal. 2007, 45(10): 2497~2509
    16 Omprakash Seresta, B. Sameer Mulani, M. Mostafa, et al. Stacking Sequence Design of Laminated Composite Plates for Maximum Flutter Velocity and Buckling Capacity with Stability Constraint. AIAA-2005-2107. 2005
    17 R. T. Haftka, J. L. Walsh. Stacking Sequence Optimization for Buckling of Laminated Plates by Integer Programming. AIAA Journals, 1998: 814~819
    18 R. T LeRiche, Haftka. Optimization of Laminate Stacking Sequence for Buckling Load Maximization by Genetic Algorithm. AIAA Journal S, 1993: 951~956
    19朴春雨,章怡宁.典型加筋板的优化设计.飞机设计. 2003, (4): 29~32
    20 J. L. Henderson. Laminated Plate Design Using Genetic Algorithms and Parallel Processing. Computing Systems in Engineering. 1998, (5): 441~453.
    21 F. Eladldi,S. Lee and R. F. Scott. Manufacture of Composite Panels with J Shape Stiffeners. Mater Manufacture Process. 1998, 10(1): 27~36
    22 J. G. Williams, M. Stein. Buckling Behavior and Structural Efficiency of Open-section Stiffened Composite Compression Panels. AIAA 2004, 14(11): 1618~1626
    23 Darren Barlow, Chris Howe, Graham Clayton, et al. Preliminary Study on Cost Optimisation of Aircraft Composite Structures Applicable to Liquid Moulding Technologies. Composite Structures, 2002, 57(1~4): 53~57
    24 R. Curran, R. Rothwell, S. Castagne. A Numerical Method for Cost-Weight Optimization of Stringer-skin Panels. In: Proceedings of 45~(th) AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics & Materials Conference, California. 2004: 1~16
    25 R. J. McGrattan. Weight and Cost Optimization of Hydrostatically Loaded Stiffened Flat Plates. Journal of Pressure Vessel Technology. 2005, 107(1): 68~76
    26 U. Klanˇsek, S. Kravanja. Cost Estimation,Optimization and Competitiveness of Different Composite Floor Systems—Part 1: Self-manufacturing Cost Estimation of Composite and Steel Structures. Journal of Constructional Steel Research. 2006, 62(5): 434~448
    27 C. Kassapoglou. Simultaneous Cost and Weight Minimization of Composite-stiffened Panel under Compression and Shear. Composites Part A: Applied Science and Manufacturing. 1997, 28 (5): 419~435
    28 [美] E.M.马尔斯特罗姆.工程师应知:制造成本估算.1986: 1~14
    29 R. L. Ramkumar, R. B. Vastava, S. K. Sana. Manufacturing Cost Model for Composites. Proceedings of the 23rd International SAMPE Technical Conference, edited by R. L. Carri, L. M. Poveromo, and J. Gauland, Society for the Advancement of Materials and Process Engineering, Covina, CA. 1991:982~994
    30 W. J. Marx, D. N. Mavris, and D. P. Schrage. A Hierarchical Aircraft Life Cycle Cost Analysis Model. AIAA-1995-3861. 1995
    31 P. K. Ting, Dean, Zhang Chuck, et al. Product and Process Cost Estimation with Fuzzy Multi-attribute Utility Theory. The Engineering Economist. 1999, 30(4): 303~331
    32王殿富,刘玲,张博明.先进复合材料制造工艺成本估算模型研究现状.航空材料学报, 2004, 24 (2): 50~62
    33 E. B. Dean. Parametric Cost Analysis: A Design Function. Transaction of the American Association of Cost Engineers 33~(rd) Annual Meeting. San Diego: CA. June25-28, 1989: 156~167
    34 N. Berrnet, M. D. Wakeman, P.E. Bourban, et al. An Integrated Cost and Consolidation Model for Commingled Yarn Based Composites. Composites Part A: Applied Science and Manufacturing. 2002, 33(4): 495~506
    35 E. Wang, T. G. Gutowski. Cost Comparison between Thermoplastic and Thermoset Composite. SAMPE J ,1990, 26(6): 19~26
    36刘舜尧,李燕,邓曦明.制造工程工艺基础.云南大学出版社. 2002: 141~212
    37曹衍龙,刘保军,杨将新.基于模糊神经网络的公差=成本模型研究.工程设计学报. 2004, 11(2):73~76
    38 R. W. Hess, H. P. Romanoff. Advanced Airframe Structural Materials: A Primer and Cost Estimating Methodology. Rept.R-4016-AF.Santa Monica, Ca: Rand Corp. 1991: 67~79
    39 NASA. Parametric Cost Estimating Handbook. http://www.jsc.nasa.gov/ bu2/pcehg.html
    40 M. Rohani, E. B. Dean. Toward Manufacturing and Cost Considerations inMultidisciplinary Aircraft Design. In 37~(th) AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Salt Lake City: Utah, April 15~17, 1996: 453~468
    41 T. G. Gutowski, R. Henderson and C. Shipp. Manufacturing Costs for Advanced Composites Aerospace Parts. SAMPE J. 1991, 27(3): 37~43
    42 Anon. PRICE H Reference Manual. Moorestown: General Electric Company, NJ, 1988: 1~56
    43 D. J. LeBlanc. Advanced Composites Cost Estimating Manual. Northrop Corporation. 1976, 2 (1): 1~248
    44 S. Krolewski, T. G. Gutowski. Economic Comparison of Advanced Composite Fabrication Technologies. Proc. 34~(th) International SAMPE Symposium, May 1989: 329~340
    45 R. L. Ramkumar, P. Dewhurst, and S. K. Saha. Manufacturing Cost Model for Composites.Proceeding of the 23~(rd) International SAMPE Technical Conference. October, 1991: 982~994
    46 G. E. Mabson, B. W. Flynn, L. B. Ilcewicz, et al. The Use of COSTADE in Developing Composite Commercial Aircraft Fuselage Structures. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 35~(th) Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC. April 18-20, 1994, 7(3): 1384~1393
    47 L. B. Llcewicz, G. E. Mabson, S. L. Metschan, et al. Cost Optimization Software for Transport Aircraft Design Evaluation. NASA Contractor Report 4737. 1996:12~67
    48 T. Gutowski, D. Hoult, G. Dillon, E. Neoh, et al. Development of a Theoretical Cost Model for Advanced Composites Fabrication. Composite Manufacturing. 1994, 5(4): 231~239
    49 Z. B. Zabinsky, R. L. Smith, J. F. McDonald, et al. Improving Hit-and-Run for Global Optimization. Journal of Global Optimization. 2003, 3(2): 171~192
    50 J. V. Busch, B. Poggiali. Micro-Computer Based Cost Estimation for Composite Fabrication Processes. Proceedings of the 31st International SAMPE Symposium and Exhibition. Society for the Advancement of Materials and Process Engineering, Azusa, CA, April 7~10,1986: 232~244
    51 M. Foley and E. Bernardon. Computer-based Manufacturing Cost Analysis
    65 E. Kreyszing. Differential Geometry. Dover, New York, 1991: 1~17
    66 C. E. Kim. Composites Cost Modeling: Complexity [PHD Thesis]. MIT, 1993: 1~18
    67 NASA. Design, Ancillary Testing, Analysis and Fabrication Data for the Advanced Composite Stabilizer for Boeing737 Aircraft. NASA/CR-166011
    68 K. S. Willden, C. G. Harris, B. W. Flynn, et al. Advanced Technology Composite Fuselage-Manufacturing. NASA Contractor Report 4735. 1997: 14~22
    69赵渠森,郭恩明.先进复合材料手册.机械工业出版社. 2003: 1206~1246
    70 Timothy Gutowski. Advanced Composites Manufacturing. USA: A Wiley Interscience Publication John Wiley & Sons, Inc, ISBN 0-471-1530-X.1997:581
    71赵渠森,杨国章.复合材料飞机构件制造技术.国防工业出版. 1990:114~135
    72陈祥宝,包建文,娄魁阳.树脂基复合材料制造技术.化学工业出版社. 1999
    73乌云其其格,益小苏.复合材料低成本成型用预成型体的制备.高科技纤维与应用. 2005, 30(1): 28~33
    74梁志勇.复合材料液体成形工艺技术基础研究[博士论文]. 2001
    75张丽华,范玉青.复合材料构件低成本技术发展趋势.航空制造技术.2005,(7): 61~63
    76 A. P. Mouritz, K. H. Leong, and I. Herszberg. A Review of the Effect of Stitching on the In-plane Mechanical Properties of Fiber-reinforced Polymer Composites. Composites Part A: Applied Science and Manufacturing. 1997, 28(12): 979~991
    77 P. G. Boyajian. Manufacturing and Design of Textile Performs for Composite Materials [PHD Thesis]. Dept. of Civil and Environmental Engineering, MIT, 1993
    78张国利. T形整体壁板制件RFI工艺与性能的研究[硕士论文].天津大学. 2003
    79 SS. Suh. Effect of Stitching on Resin Film Infusion and Damage Tolerance of Stiffened Composite Structure [PHD thesis]. University of California, 2001
    80沈真.复合材料飞机耐久性/损伤容限设计指南.航空工业出版. 1995
    81 J. Butterfield, H. Yao, R. Curran, et al. Integration of Aerodynamic, Structural,
    65 E. Kreyszing. Differential Geometry. Dover, New York, 1991: 1~17
    66 C. E. Kim. Composites Cost Modeling: Complexity [PHD Thesis]. MIT, 1993: 1~18
    67 NASA. Design, Ancillary Testing, Analysis and Fabrication Data for the Advanced Composite Stabilizer for Boeing737 Aircraft. NASA/CR-166011
    68 K. S. Willden, C. G. Harris, B. W. Flynn, et al. Advanced Technology Composite Fuselage-Manufacturing. NASA Contractor Report 4735. 1997: 14~22
    69赵渠森,郭恩明.先进复合材料手册.机械工业出版社. 2003: 1206~1246
    70 Timothy Gutowski. Advanced Composites Manufacturing. USA: A Wiley Interscience Publication John Wiley & Sons, Inc, ISBN 0-471-1530-X.1997:581
    71赵渠森,杨国章.复合材料飞机构件制造技术.国防工业出版. 1990:114~135
    72陈祥宝,包建文,娄魁阳.树脂基复合材料制造技术.化学工业出版社. 1999
    73乌云其其格,益小苏.复合材料低成本成型用预成型体的制备.高科技纤维与应用. 2005, 30(1): 28~33
    74梁志勇.复合材料液体成形工艺技术基础研究[博士论文]. 2001
    75张丽华,范玉青.复合材料构件低成本技术发展趋势.航空制造技术.2005,(7): 61~63
    76 A. P. Mouritz, K. H. Leong, and I. Herszberg. A Review of the Effect of Stitching on the In-plane Mechanical Properties of Fiber-reinforced Polymer Composites. Composites Part A: Applied Science and Manufacturing. 1997, 28(12): 979~991
    77 P. G. Boyajian. Manufacturing and Design of Textile Performs for Composite Materials [PHD Thesis]. Dept. of Civil and Environmental Engineering, MIT, 1993
    78张国利. T形整体壁板制件RFI工艺与性能的研究[硕士论文].天津大学. 2003
    79 SS. Suh. Effect of Stitching on Resin Film Infusion and Damage Tolerance of Stiffened Composite Structure [PHD thesis]. University of California, 2001
    80沈真.复合材料飞机耐久性/损伤容限设计指南.航空工业出版. 1995
    81 J. Butterfield, H. Yao, R. Curran, et al. Integration of Aerodynamic, Structural,Cost and Manufacturing Considerations during the Conceptual Design of a Thrust Reverser Cascade, AIAA-2003-1896. New York: AIAA. 2003: 7~19
    82杨明顺,李鹏阳,李言,袁启龙.考虑不同类型可靠性-成本函数下的可靠性优化设计.中国机械工程. 2006, 17(22): 2342~2345
    83 B. Wielage, A.G. Odeshi, H. Mucha, et al. A Cost Effective Route for the Densification of Carbon-carbon Composites. Journal of Materials Processing Technology. 2003, 132(1~3): 313~322
    84中国航空研究院.复合材料结构设计手册.航空工业出版社. 1996
    85 S. H. Han, A. Adamu, B. L. Karihaloo. Minimum Cost Design of Multispan Partially Prestressed Concrete T-Beams Using DCOC. Structural Optimization. 2006, 12(2): 75~86
    86 S. M. Haffner, T. G. Manufacturing Time Estimation Laws for Composite Materials. In: Proceedings of the 2000 national science foundation (NSF) conference. 2000:115~127
    87 T. Gutowski, R. Henderson, C. Shipp. Manufacturing Costs for Advanced Composites Aerospace Parts. SAMPE Journal. 2001, 27(3): 37~43
    88 D. J. LeBlanc. Advanced Composites Cost Estimating Manual. Northrop Corporation , AFFDLTR-76-87, 1976, 27(1): 67~82
    89 W. J. Marx, D. N. Mavris, and D.P.Schrage. Cost/Time Analysis for Theoretical Aircraft Production. Journal of Aircraft, 1998, 35(4): 637~646
    90 V. Zaloom, C. Miller. A Review of Cost Estimating for Advanced Composite Materials Applications. Engineering Costs and Production Economics. 1982, 7(1): 81~86
    91 E. T. Neoh. Adaptive Framework for Estimating Fabrication Time. Cambridge:Massachusetts Institute of Technology. 1995
    92 S. M. Haffner, T. G. Gutowski. Automated cost estimation for advanced composite. In: Proceedings of the 1998 national science foundation (NSF) conference. 1998: 252~58
    93 K.C. Polgar. Simplified Time Estimation for Basic Machining Operations [PHD thesis]. Cambridge: Massachusetts Institute of Technology, 1996
    94刘玲.碳/环氧复合材料性能与工艺成本平衡分析设计方法的研究[博士论文].哈尔滨工业大学. 2004
    95沃丁柱.复合材料大全.化学工业出版社. 2000
    96牛春匀.飞机复合材料结构设计与制造.西北工业大学出版社. 1999
    97窦元龙.复合材料结构设计与制造.中国航空学会. 1997
    98 M.W. Tosh, D.W. Kelly. Fiber Steering for a Composite C-beam. Composite Structures. 2001, 53(2): 133~141
    99邵冠军,游有鹏,熊慧.自由曲面构件的纤维铺放路经规划.南京航空航天大学学报. 2005,37(1): 144~148
    100 H. Hosseini-Toudeshky, H.R. Ovesy, and M. Kharazi. The Development of an Approximate Method for the Design of Bead-stiffened Composite Panels. Thin-Walled Structures. 2005, 43(11):1663~1676
    101苏震宇,邱启艳.改性双马来酰亚胺树脂固化特性.纤维复合材料.2005,4(3): 24~27
    102 D. K. Roylance. Reaction Kinetics for Thermoset Resins. MIT Paper, MIT, March 2000: 23~52
    103 J. Y. Lee, H. K. Choi, M. J. Shim, et al. Kinetics Studies of an Epoxy Cure Reaction by Isothermal DSC Analysis. Thermochimica Acta, 2000, 343: 111~117
    104 P. Chiou, A. Letton. Reaction Kinetics and Chemoviscosity of a Thermoset Exhibiting Complex Curing Behavior. 4th American Society for Composites Technical Conference, 1989: 157~166
    105 J. D. Ferry, Viscoelastic Properties of Polymers, 2nd Edition,Wiley, New York, 1970
    106 T. G. Gutowski, T. Morigaki, Z. Cai. The Consolidation of Laminate Composites. Journal of Composite Materials. 1987, 21(2): 172~180
    107 T. G. Gutowski, Z. Cai, J. Kingery, et al. Resin Flow Fiber Deformation Experiments. SAMPE Quarterly. 1986, 17(4): 54~58
    108 J. L. Henderson, Zafer Gurdal, and A. C. Loos. Combined Structural and Manufacturing Optimization of Stiffened Composite Panels. AIAA Meeting Papers on Disc, A9638802. 1996: 999~1009
    109 D. A. Edwards, F. W. Williams, and David Kennedy. Cost Optimization of Stiffened Panels Using VICONOPT. AIAA Journal. 1998, 36(2): 267~272
    110杨乃宾,章怡宁.复合材料飞机结构设计.航空工艺出版社. 2004: 80~113
    111常楠,刘江,赵美英.复合材料蒙皮/长桁壁板结构优化设计.飞机设计. 2007, 27(6):28~32
    112 Prakash Jadhav, P. Raju Mantena. Parametric Optimization of Grid-stiffenedComposite Panels for Maximizing their Performance under Transverse Loading. Composite Structures. 2007, 77(3):353~363
    113 Christos Kassapoglou. Minimum Cost and Weight Design of Fuselage Frames Part A: Design Constraints and Manufacturing Process Characteristics. Composites Part A: Applied Science and Manufacturing. 1999, 30(7): 887~894
    114 B. N. Singh, N. G. R. Iyengar, D. Yadav. Stability of Curved Composite Panels with Random Material Properties. Journal of Aerospace Engineering. 2002, 15(2): 46~54
    115 B. Gangadhara Prusty. Free Vibration and Buckling Response of Hat-stiffened Composite Panels under General Loading. International Journal of Mechanical Sciences. 2008, 50(8): 1326~1333
    116 B. G. Falzon. The Behaviour of Damage to Lerant Hat-stiffened Composite Panels Loaded in Uniaxial Compression. Composites Part A. 2001, 32(9): 1255~ 1262
    117 H. Hosseini-Toudeshky, J. Loughlan, M. Kharazi. The Buckling Characteristics of some Integrally Formed Bead Stiffened Composite Panels. Journal of Thin-Walled Structures. 2005, 43(4):629~645
    118 M. W. Hilburger, J. H. Starnes Jr. Effects of Imperfections on Buckling Response of Compression-loaded Composite Shells. International Journal of Non-Linear Mechanics. 2002, 37(4~5): 623~643
    119 E. F. Bruhn. Analysis and Design of Flight Vehicle Structures. S.R. Jacobs & Associates Inc., Indianapolis, IN, 1973, Section c5.11
    120 J. M. Whitney. Structural Analysis of Laminated Aniso-tropic Plates. Lancaster. Technomic Publishing. 1987
    121 S. Timoshenko, S. Woinowsky-Krieger. Theory of plates and shells. New York: McGraw Hill. 1959: 230~297
    122王兆清,张景涛,李淑萍.计算复合材料有效弹性模量的重心有限元方法.复合材料学报. 2008, 24 (6):173~179
    123 Christian Mittelstedt. Closed-form Analysis of the Buckling Loads of Uniaxially Loaded Blade-stringer-stiffened Composite Plates Considering Periodic Boundary Conditions. Thin-Walled Structures. 2007, 45(4): 371~382
    124 S. S. Suh, N. L. Han, J. M. Yang, et al. Compression Behavior of StitchedStiffened Panel with a Clearly Visible Stiffener Impact Damage. Composite Structure. 2003, 62(2): 213~221
    125 J. Loughlan. The Buckling Performance of Composite Stiffened Panel Structures, Subjected to Combined In-plane Compression and Shear loading. Composite Structures. 1994(2), 29: 197~212
    126 R. Zahari, A. E. Zafrany. Progressive Failure Analysis of Composite Laminated Stiffened Plates Using the Finite Strip Method. Composite Structures. 2008, 87(1): 63~70
    127童贤鑫,高之恒,关德新等.压剪复合加载方法试验研究总结.中国飞机强度研究所技术报告. Q/12S-9001-95, 1990
    128关德新,童贤鑫,李新祥等.复合材料加筋板在轴压、剪切和压剪复合载荷下的稳定性试验研究.中国飞机强度研究所技术报告. 623S-9401-141,994
    129 Y. Tan, G. C. Wu, S. S. Sung, et al. Damage Tolerance and Durability of Selectively Stitched Stiffened Composite Structures. International Journal of Fatigue. 2008, 30(3): 483~492
    130 Chung Hae Park, Woo Il Lee, Woo Suck Han, et al. Simultaneous Optimization of Composite Structures Considering Mechanical Performance and Manufacturing Cost. Composite Structures, 2004, 65(1): 117~127
    131 C. K. Huang. Study on Co-cured Composite Panels with Blade-shaped Stiffeners. Composites Part A: Applied Science and Manufacturing. 2003, 34(5):403~410
    132 S. Raghunathan, R. Curran, A.K. Kundu, et al. Research into Integrated Aircraft Technologies. AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech 17 - 19 November 2003, Denver, Colorado, AIAA-2003-6736. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700