海洋生物膜对海洋混凝土抗氯离子渗透性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋混凝土工程的日益增多,海洋环境下的混凝土耐久性受到了极大的挑战。在众多影响海洋混凝土耐久性的因素当中,氯离子导致的钢筋锈蚀是最为严重的因素之一。最近发现在海洋潮间带的混凝土表面上附着许多海洋生物,形成一层很厚的膜状结构,即本文所称的海洋生物膜,这些生物膜的成分中包含藤壶、牡蛎的外壳以及微生物及其有机代谢产物,同时发现附着之生物膜与混凝土耐久性之间有一定的关系,本文基于这个现象,对海洋生物膜对海洋混凝土抗氯离子渗透性的影响进行了系列的研究。
     所开展的工作主要有:
     (1)对青岛某海港旁防波堤上的混凝土工程进行钻芯取样,分析附着在混凝土表面上的生物膜组成成分;
     (2)对钻芯混凝土进行氯离子加速渗透试验,分析生物膜中的各种成分以及生物膜失去活性前后对潮间带混凝土抗氯离子渗透性的影响;
     (3)测定混凝土中氯离子含量沿深度的分布规律,分析附着于混凝土表面上的生物膜在混凝土长期服役过程中对混凝土抗氯离子渗透性的作用;
     (4)通过微观手段观察钻芯混凝土上生物膜的微观结构和分析生物膜的成分,从微观的角度分析生物膜对混凝土抗氯离子渗透性的影响。通过以上的研究工作,得出以下研究结果:潮间带混凝土表面海洋生物膜成分主要为牡蛎、藤壶外壳、微生物及其有机代谢产物等;海洋生物膜中的牡蛎外壳和藤壶夹杂附着在潮间带上层混凝土时对混凝土抗氯离子渗透影响最大,能减少渗入混凝土内部的氯离子含量;从整个混凝土服役过程来看,潮间带上层混凝土的实际氯离子含量高于下层,说明潮间带上层混凝土表面上的生物膜保护效果不够理想;研究表明生物膜具有活性时对混凝土抗氯离子渗透影响优于失去活性后,可能与微生物中的嗜盐菌吸收Cl?、生物膜干燥后部分脱落等因素有关;混凝土的碳化检测和微生物种属鉴别结果表明生物膜中不存在硫氧化、硫还原腐蚀,微生物亦未对混凝土的中性化造成不利影响。
     本文为研究海洋混凝土工程的耐久性和防护提供了另一种思路和方法。
With the growing number of marine concrete projects, the durability of concrete under the marine environment faces a great challenge, and the corrosion of steel leaded by chloride is the most serious one of those factors which affects the durability of marine concrete. It is discovered recently that there are many marine organisms which form a very thick film on the concrete surface of marine tidal zone. The film which is referred to as marine biofilm in this paper includes the shells of barnacle and oyster, it also contains a host of microorganisms and its organic metabolites, meanwhile, a certain relationship is found between the attachment of marine biofilm and the durability of marine concrete. A series of studies which based on the above phenomenon have been carried out in this paper to discover effect of marine biofilm on the anti-chloride permeability of marine concrete. All of the works are as follows:
     (1) Some samples are collected by core-drilling method from the concrete on a breakwater of the Qingdao Port, and the composition of the marine biofilm is analyzed.
     (2) The chloride accelerated penetration test are finished on the core concrete to discover what is the roles of the various components of marine biofilm which perhaps have some effects on the anti-chloride permeability of marine concrete, as well as the differences between the alive and the dead biofilm.
     (3) Determination of the actual situation of chloride ion content in the concrete has been done, which is helpful to analyze the role of marine biofilm on the anti-chloride permeability of marine concrete during the long-term service process.
     (4) By observing the micro-structure of the drilled concrete core and analyzing the compositions of the biofilm at a micro-level, effects of marine biofilm on the anti-chloride permeability of marine concrete have been confirmed.
     Through the above research work, results obtained are as follows: the ingredients of marine biofilm on concrete’s surface of marine tidal zone are mainly composed of the shells of oyster and barnacle, as well as some microorganisms and its organic metabolites. It makes the most effects of marine biofilm on the anti-chloride permeability of marine concrete when the biofilm is mixed of the shells of oyster and barnacle, which largely reduces the penetration amount of chloride of the concrete on tidal zone’s upper layer. Looking from the entire concrete service process, the actual chloride content of concrete of the upper tidal zone is higher than the lower, which shows the protection of biofilm against chloride penetration is not ideal. Study shows that biofilm with activity has a better effect on the anti-chloride permeability of marine concrete than the dead. The reasons of this result may have relation to the absorption of Cl- by halophile and the partly break-off of the biofilm when it is dried. The carbonization test of concrete and the differentiation of microbiology species in the biofilm indicate that there are no sulfur-oxidized and sulfur-reduced corrosion in the marine biofilm, and the microorganism in the biofilm has also no adverse effect to the neutralization of marine concrete which has been studied.
     This article has provided another kind of thread and method for the research of marine concrete project's durability and protection.
引文
1金伟良,赵羽习.混凝土结构耐久性.科学出版社. 2002:1~8
    2吴中伟,廉慧珍.高性能混凝土[M].中国铁道出版社. 1999:9~11
    3张武满.混凝土结构中氯离子加速渗透试验与寿命预测.哈尔滨工业大学博士学位论文. 2006:2~14
    4美国ACI222委员会报告,混凝土中金属的腐蚀,海工钢筋混凝土耐久性译文集.交通部第三航务工程科研所. 1988
    5李淑进,赵铁军.混凝土的渗透性与耐久性.海岸工程. 2001, (2):68~72
    6赵铁军.混凝土渗透性.科学出版社. 2006:1~8
    7 P.A.M. Basheer, A.E. Long, F.R. Montgomery. An Interaction Model for Causes of Determination and Permeability of Concrete. Proceedins on Concrete Technology: Past, Present and Future. Detroit, U.S.A. ACI SP-114. 1994:213~231
    8赵铁军.高性能混凝土的渗透性研究.清华大学博士学位论文. 1997:47~50
    9洪定海.混凝土中钢筋的腐蚀与保护[M].中国铁道出版社. 1998:1~3
    10巴恒静,张武满,邓宏卫.评价高性能混凝土耐久性综合指标_抗氯离子渗透性及其研究现状.混凝土. 2006, (3):4~5
    11刘斯凤.氯离子扩散测试方法演变和理论研究背景.混凝土. 2002, (10):21~24
    12 J.H. Waite, J. Int. Adhesion Adhesives. 1987, (7):9
    13王宁,姜国良,李立德.牡蛎的染色体及操作技术研究进展.海洋科学. 2003, (10):22
    14王海艳.中国近海常见牡蛎分子系统演化和分类的研究.中国科学院研究生院博士学位论文. 2004:60~62
    15蔡如星.中国沿岸的藤壶.生物学通报. 1992, (11):8~9
    16黄宗国等.海洋污损生物及其防除(上册)[M].海洋出版社. 1984:20~32
    17 L.D. Chambers, K.R. Stokes, F.C. Walsh, R.J.K. Wood. Modern approaches to marine antifouling coatings. Surface and Coatings Technology. 2006, 201:3642~3652
    18 F. Robert, Jr. Brady. Properties which influence marine fouling resistance inpolymers containing silicon and fluorine. Progress in Organic Coatings. 1999, (35):31~35
    19姜国良,陈丽,刘云.贝壳有机基质与生物矿化.海洋科学. 2002, 26(2):16~18
    20 H. Zhanga, R. Lamba, J. Lewisb. Engineering nanoscale roughness on hydrophobic surface-preliminary assessment of fouling behaviour. Science and Technology of Advanced Materials. 2005, 6:236~239
    21严涛,方正信,张穗,严文侠.藤壶胶组分的分离与制备.热带海洋. 1996, (3):61~63
    22 Lidita Khandeparker, Arga Chandrashekhar Anil. Underwater adhesion: The barnacle way. International Journal of Adhesion & Adhesives. 2007, 27:165~172
    23李会荣,付玉斌,李筠,纪伟尚,徐怀恕.海洋细菌在不同基质表面微生物粘膜中的组成.青岛海洋大学学报. 2001, (3):401~406
    24覃丽坤,宋玉普,赵东拂.处于海洋环境的钢筋混凝土耐久性研究.混凝土, 2002, 12:3~5
    25葛安亮.钢筋混凝土在海水中的腐蚀性能研究.青岛海洋大学硕士学位论文. 2004:14~15
    26 C. Parker. The Corrosion of Concrete Isolation of a Species of Bacterium Associated with the Corrosion of Concrete Exposed to Atmospheres Containing Hydrogen Sulfide[J]. Exp Biol Med Sci. 1945, 23(3):14~17
    27 C. Parker. Mechanics of Corrosion of Concrete Sewers by Hydrogen Sulfide [J]. Sewage and Industrial Wastes. 1951, (23):1477~1485
    28张小伟,张雄.混凝土微生物腐蚀的作用机制和研究方法.建筑材料学报. 2006, (1):52~58
    29乐建新,闫亚楠,李小燕,高培伟.微生物对混凝土的侵蚀机理及其控制的研究.江苏建材. 2006, (3):14~15
    30高培伟,吴胜兴,林萍华等.硫酸盐对碾压混凝土侵蚀开裂的机理微观分析[J].水利学报. 2005, 36(3):360~363
    31 Davisjl, Nica D. Analysis of Concrete from Corroded Sewer pipe[J]. International Biodeterioration and Biodegradation. 1998, 42(2):75~84
    32曹军卫,沈萍,李朝阳.嗜极微生物.武汉大学出版社. 2004:3~5
    33 Markus Roeβler, Volker Muller. Chloride Dependence of Glycine BetaineTransport in Halobacillus Halophilus. FEBS Letters 489 (2001):125~128
    34 Markus Roeβler, Volker Muller. Quantitative and Physiological Analyses of Chloride Dependence of Growth of Halobacillus Halophilus. Applied and Enviromental Microbiology. 1998, 64(10):3813~3817
    35苏安双,巴恒静,叶金蕊,邓宏卫.混凝土渗透性测定方法比较与选择.工业建筑. 2006, 36(9):60~61
    36刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用.浙江大学硕士学位论文. 2006:43~44
    37 C. Alonso, C. Andrade, M. Castellote M, et al. Chloride Threshold Values to Depassivate Reinforcing Bars Embedded in a Standardized OPC Mortar[J]. Cement and Concrete Research. 2000, 30(7):1047~1055
    38 G.K. Glass, N.R. Buenfeld, Corrosion Science 1997, 39:1001
    39 D.A. Hausmann. Steel Corrosion in Concrete. Materials Protection. 1967, 6:19~22
    40巴恒静,张武满.混凝土寿命加速实验方法与预测.硅酸盐学报. 2007, 35(2):242~243
    41 G.K. Glass, N.R. Buenefld. The Presentation of the Chloride Threshold Level for Corrosion of Steel in Concrete. Corrosion Science. 1997, 39(5):1001~1013
    42洪乃丰.混凝土中钢筋腐蚀与防护技术_3_氯盐与钢筋锈蚀破坏.工业建筑. 1999, 29(10):61~61
    43 N. Haque, O.A. Kayyali. Free and Water Soluble Chloride in Concrete. Cement and Concrae Reseach. 1995, 25(3):541
    44水运工程混凝土试验规程(JTJ270-98).人民交通出版社. 1998:202~206
    45孙国文,管学茂,罗树琼,黄丹.对水运工程混凝土试验规程中测试氯离子含量方法的几点见解.工业建筑. 2005, 35(12):8~10
    46龚洛书,刘春圃.混凝土的耐久性及其防护修补.中国建筑工业出版社. 1990
    47洪乃丰.混凝土中钢筋腐蚀与防护技术_2_混凝土对钢筋的保护及钢筋腐蚀的电化学性.工业建筑. 1999, 29(9):59
    48范宏.暴露26年后的混凝土的碳化和氯离子分布.工业建筑. 2006, 36(8):50~53
    49 A.K.Suryanshi, R.Narayan Swamy. Stability of Friedel's Salt in CarbonatedStructure Elements[J]. Cement and Concrete Research. 1996, 26(5):729~741
    50 N.M. Ihekwaba, B.B. Hope, C.M. Hansson. Carbonation and Electrochemical Chloride Extraction from Concrete[J]. Cement and Concrete Research. 1996, 26( 7):1095~1107
    51范宏,赵铁军,徐红波.码头混凝土中的氯离子侵入研究.水运工程. 2006, (4):49~53
    52海港工程混凝土结构防腐蚀技术规范(JTJ275-2000).人民交通出版社. 2001
    53姬永生,袁迎曙.干湿循环作用下氯离子在混凝土中的侵蚀过程分析.工业建筑. 2006, 36(12):23~24
    54赵霄龙,卫军,巴恒静.高性能混凝土在盐溶液中的抗冻性巴老师论文.建筑材料学报. 2004, 7(1):85~88
    55 Takeshi Oshiro. Corrosive Environment and Salt Induced Damage of RC Structures. University of the Ryukyus. 1999
    56范宏,赵铁军,徐红波.码头混凝土中的氯离子侵入研究.水运工程. 2006, (4):49~53
    57 G.K. Glass, N.R. Buenefld, The Influence of Chloride Binding on The Chloride Induced Corrosion Risk in Reinforced Concrete. Corrosion Science 2000, 42:329~344

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700