矿物掺合料对混凝土渗透性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的渗透性是影响混凝土耐久性的最重要因素之一。本文主要研究了矿物掺合料对混凝土的抗压强度、氯离子电通量和氯离子扩散系数的影响;自主设计加工了一种测试混凝土气体渗透系数的试验装置,并研究了施加于混凝土试件的气体压力、流量,矿物掺合料以及冻融循环次数对混凝土气体渗透系数的影响。
     研究结果表明:保持水泥用量一定时,增加用水量,混凝土的强度下降,氯离子电通量和氯离子扩散系数增大;掺入粉煤灰后,混凝土的28d强度下降,氯离子电通量的改善作用不明显,氯离子扩散系数降低,粉煤灰掺量20%时,C30混凝土的60d氯离子扩散系数比掺量为10%的混凝土的大,但仍低于基准混凝土;掺入矿渣粉和硅灰,混凝土的28d强度提高,氯离子电通量和氯离子扩散系数降低程度较大。
     加工的带数据采集系统的气体渗透试验装置很好的解决了以往测试装置未有数据自动采集系统的问题。研究发现,气体压力及流量对混凝土气体渗透系数的测试结果产生较大的影响,它们与气体渗透系数的关系并不是单纯的正比和反比关系。掺入粉煤灰后,混凝土的气体渗透系数降低,但掺量20%时,C30混凝土的60d气体渗透系数比掺量为10%时大6.2%;掺入矿渣和硅灰,混凝土的气体渗透系数降低幅度较大。混凝土经冻融循环后,气体渗透系数增加,并且冻融循环次数越多,混凝土的气体渗透系数越大,其中冻融80次时,C60和C30混凝土的气体渗透系数分别增加了16.5%和49.0%。
Permeability is one of the most important factors which influenced the durability of concrete. In this paper, compressive strength, chloride permeability of concrete with mineral admixtures were experimentally investigated. A experimental arrangement for testing gas permeability coefficient of concrete was designed and processed independently, and investigated the influence of gas pressure imposed on the concrete sample, gas flow rate, mineral admixtures and freeze-thaw cycle on gas permeability coefficient of concrete.
     Test results showed that increased water-cemenet ratio, compressive strength of concrete declined, the charge passed the concrete and chloride diffusion coefficient increased. The incorporation of fly ash can let compressive strength and chloride diffusion coefficient of concrete down, but the improvement of the charge is not very significant. When the mass percent of fly ash was 20%, the 60d charge and chloride diffusion coefficient of C30 concrete are bigger than the ones when the mass percent of fly ash was 10%, but they were lower than basic concrete. The incorporation of ground slag or silica fume can increase the 28d strength, and let the charge and chloride diffusion coefficient decline significantly.
     An experimental arrangement with data processing system for the test of the gas permeability coefficient of concrete was processed. The study shows gas pressure and flow influenced the test result of gas permeability coefficient clearly, the relationship between them and gas permeability coefficient is not simple proportional or inverse relationship. The incorporation of fly ash can let gas permeability coefficient of concrete down. When the mass percent of fly ash was 20%, the 60d gas permeability coefficient was 6.2 percent bigger than the ones when the mass percent of fly ash was 10%. The incorporation of ground slag or silica fume can decline gas permeability coefficient significantly. After freezing and thawing action, gas permeability coefficient of concrete increased with the frequency of freeze-thaw cycle. When the frequency of freeze-thaw cycle is 80, the gas permeability coefficient of C60 and C30 concreterose by 16.5 percent and 49.0 percent respectively.
引文
1 How to make today concrete durable for tomorrow. The Institution of Civil Engineers. London. 1985,7(4):272~273
    2 P. K. Mehta. Concrete durability: fifty year,s progress. Proceeding of 2nd International Conference on Conference on Concrete Durability. ACI SP 126-1, 1991:1~33
    3卢木.混凝土耐久性研究现状和研究方向.工业建筑. 1997,(5):1~6
    4练波.从混凝上的渗透性预测混凝上的耐久性.广东建材. 2002,(1):43~44
    5孟振全,吴振琏.表面渗透性对混凝土耐久性的影响.工业建筑. 1994,(5):46~62
    6施惠生,许碧莞,阐黎黎.矿渣微粉对混凝土气体渗透性及强度的影响.同济大学学报. 2008,36(6):783~786
    7 M. I. Khan, C. J. Lynsdale. Strength, permeability, and carbonation of high-performance concrete. Cement and Concrete Research. 2002,(32):123~131
    8吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999:218~220
    9刘嘉璐.高性能混凝土工作性及渗透性评价方法研究.大连理工大学硕士论文. 2005:111~112
    10 J. Kropp, H. K. Kilsdrof. Performance Criteria for Concrete Durability. published by EFNSPON. 2003:18~22
    11杨钱荣,朱蓓蓉.混凝土渗透性的测试方法及影响因素.低温建筑技术. 2003,(1):7~10
    12李淑进,赵铁军.混凝土的渗透性与耐久性.海岸工程. 2001,20(2):68~72
    13 R. K. Dhir, M. R. Jones, E. A. Byars, et al. Predicting Concrete Durability from Its Absorption Proceedings on Concrete Durability. ACI SP-145, 1994:1177~1194
    14陈荣元.高强混凝土与高性能混凝土(续1).建筑技术. 1997,(10):723~725
    15 A. I. Caste, R. Francois, G. Arliguie. Effect of loading on carbonation penetration in reinforced concrete elements. Cement and Concrete Research. 1999,(29):561~565
    16张武满.混凝土结构中氯离子加速渗透试验与寿命预测.哈尔滨工业大学博士论文. 2006:5~6
    17张誉.基于碳化机理的混凝土碳化深度实用数学模.工业建筑.1998,(1):16~19
    18高相东,王新友.低水胶比粉煤灰混凝土的钢筋锈蚀性能与抗冻性的研究.混凝土. 2000,(1):48~51
    19周宏伟等.描述孔隙介质孔隙空间分布的数学方法.西安矿业学院学报. 1997,(4): 299~305
    20赵铁军等.高性能混凝土的强度和渗透性的关系.工业建筑. 1997,(5):14~17
    21混凝土结构耐久性设计与施工指南.北京:中国建筑工业出版社. 2004:56~58
    22金伟良,赵羽习.混凝土结构耐久性.北京:科学出版社. 2002:48~50
    23张士玉.战略管理.北京:中国财政经济出版社. 2002:11~13
    24李淑进,吴科如,赵铁军.混凝土渗透性与碳化作用下钢筋锈蚀量的关系.建筑材料学报. 2004,(1):89~93
    25 T. Sugiyama, T. W. Bremner. Determination of chloride diffusion coefficient and gas permeability of concrete and the irrelationship. C. C. R. 1996,
    26,(5):781~790
    26李淑进.混凝土的渗透性与耐久性研究.青岛建筑工程学院硕士毕业论文. 2002:23~28
    27黄慎江,曾严红.从混凝土渗透性评价混凝土耐久性.工程与建设. 2006,20,(2):162~169
    28巴恒静,苏安双,叶金蕊,邓宏卫.水压法评价混凝土渗透性的适用性研究.混凝土. 2005,(6):3~6
    29 S. W. Yu, C. L. Page. Diffusion in cementitious materials:Ⅰ. Comparative study of chloride and oxygen diffusion in hydrated cement pastes. Cement and Concrete Research. 1991,(21):581
    30 S. W. Yu, C. L. Page. Diffusion in cementitious materials:Ⅱ. Further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30% PFA pastes. Cement and Concrete. 1991,(25):819
    31 J. J. Korlek. The determination of the permeability of concrete to oxygen by the Cembureau method– a recommendation. Materials and Structures. 1989,(22):225
    32张涛,杨德斌.混凝土透气性测试方法研究概述.山西建筑. 2004,30(22):75~76
    33叶跃中.混凝十抗气渗的研究.混凝土与水泥制品. 1994,(6):38~40
    34王雨齐.基于渗透性分析的混凝土耐久性可靠度评估.武汉理工大学硕士论文.2006:26~27
    35周啸尘,施惠生.利用气体渗透性评价高性能混凝土的碳化性能.建筑材料学报. 2004,7(2):150~155
    36王中平,吴科如,张青云,柳宗耀.混凝土气体渗透系数测试方法的研究.建筑材料学报. 2001,4(4):317~321
    37王中平,吴科如,阮世光.单轴压缩作用对混凝土气体渗透性的影响.建筑材料学报. 2001,4(2):127~131
    38 V. Picandet, A. Khelidj, G. Bastian. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete. Cement and Concrete Research.2001,31:1525~1532
    39施惠生,许碧莞.粉煤灰高性能混凝土气体渗透性能研究.同济大学学报. 2007,35(9):1230~1234
    40杨钱荣,杨全兵.掺有粉煤灰和引气剂的混凝土的气体渗透性能.粉煤灰的综合利用. 2004,(2):8~11
    41 V. Picandet, A. Khelidj, H. Bellegou. Crack effects on gas and water permeability of concretes. Cement and Concrete Research. 2009,(39):537~547
    42张之颖,周建军,王晋,崔庆怡.服役状态下混凝土渗透性的研究.混凝土. 2005,(6):7~10
    43周俊龙,杨德斌.混凝土气密性研究.混凝土与水泥制品. 2003,(1):9~11
    44 T. Sugiyama, T. W. bremner and Y. Tsuji. Determination of chloride diffusion coefficient and gas permeability of concrete and their relationship. Cement and Concrete Research. 1996,26(5):781~790
    45施惠生,许碧莞,阚黎黎.矿渣微粉对混凝土气体渗透性及强度的影响.同济大学学报(自然科学版). 2006,36(6):782~78
    46 P. Kalifa, G. Chéné, C. Gallé. High temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure. Cement and Concrete Research. 2001, 31:1487~1499
    47 S. Tsivilis, J. Tsantilas, G. Kakali, E. Chaniotakis, A. Sakellariou. The permeability of Portland limestone cement concrete. Cement and Concrete Research. 2003,(33): 1465~1471
    48刘志国.混凝土的二氯甲烷渗透系数与直流电量相关性研究.工业建筑. 2005,35(6):66~67
    49 A. A. Kyi, B. Batchelor. An Electrical Conductivity Method for Measuring the effects of Additives on Effective Diffusivities in Portland Cement Pastes. Cement and Concrete Research. 2003,24(4):752~764
    50樊杰.混凝土渗透性评价方法的研究.哈尔滨工业大学硕士论文. 2006:7~9
    51何富强,元强等.掺矿物掺合料混凝土ASTMC1202测试指标的相关性.东南大学学报(自然科学版). 2006,11:105~109
    52杨昆.硅粉混凝土的抗渗透性机理分析.工程与管理. 2003,(9):39~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700