跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机/风扇转子叶顶泄漏流动对压气机性能和稳定性有着极其重要的影响,近十年来,人们发现叶顶泄漏流的存在不仅与转子失速先兆有着密切联系,而且在近失速工况附近,叶顶泄漏流还表现出明显的非定常波动特性。因此,对压气机,尤其是被广泛应用的跨音速轴流压气机/风扇转子叶顶的非定常泄漏流动进行深入研究,并在此基础上寻找高效的扩稳控制方法,对于提高航空发动机及其它燃气轮机的气动性能和稳定性具有重要意义。
     本文以数值模拟方法为主,实验为辅,针对三个跨音速转子叶顶非定常泄漏流动进行研究,揭示了叶顶泄漏流的非定常特征、波动机理、起始机制和空间结构,并探索叶顶泄漏流非定常性与旋转失速之间的关系。
     本文的核心内容主要分为以下几个部分:(1)研究叶顶泄漏流非定常特征,证实叶顶泄漏流非定常性在跨音转子中的普遍存在性;(2)阐明跨音速转子叶顶泄漏流非定常波动机理和起始机制;(3)分析跨音速转子叶顶泄漏流动的三维空间结构;(4)探索泄漏流前缘溢出机制及其与叶顶泄漏流非定常性的关系。
     本文首先针对三个跨音速转子叶顶泄漏流进行非定常数值模拟,介绍三个跨音速压气机/风扇孤立转子在设计间隙下,叶顶泄漏流动的非定常特征,包括频率特征、波动强度分布和叶顶瞬态流场分布,验证了叶顶泄漏流非定常性在跨音速转子中的普遍存在性。三个跨音速转子叶顶泄漏流的非定常波动特征主要体现在两个方面:一是叶片压力面上一对高、低压区沿弦向向通道下游移动,二是叶顶泄漏涡涡核轨迹起始位置和方向的摆动。这种不依赖于外界非定常边界条件而存在的非定常性,被称为自激非定常性。针对Darmstadt转子叶顶泄漏流非定常性得到的实验结果非常接近数值计算结果,在实验环境下证实了叶顶泄漏流自激非定常性的存在。
     在对跨音速叶顶泄漏流非定常特征有一定认识的基础上,本文第二部分进一步深入分析了叶片顶部区域负载与泄漏流速度之间的关系,发现叶顶泄漏流非定常波动机理是主流与泄漏流之间的动态相互作用。通过对比NASA-67跨音速转子在相同间隙不同流量工况、相同流量不同间隙工况下叶顶流场的非定常特征,提出叶顶区域流动发生非定常波动的两个必要条件:1)泄漏涡轨迹影响区抵达相邻叶片压力面;2)泄漏流强度足够大,能够与主流抗衡并达到稳定的动态平衡状态。通过总结各转子叶顶流场参数,进而提出间隙区域泄漏流与主流动量比和间隙大小能够用来界定泄漏流非定常性的起始机制。对于不同转子,在相同间隙条件下,随流量的减小,叶顶泄漏流与主流的动量比增加,只有当动量比达到临界值时,叶顶区域流动才会发生非定常波动。
     在第三部分,本文研究了跨音速转子叶顶泄漏流的三维空间结构及其与时间非定常波动特征的关系。针对三个跨音速转子,利用在间隙中部释放粒子的轨迹线分析叶顶泄漏流的三维空间结构,发现根据叶顶负载分布,叶顶泄漏流沿弦长方向可以被分为两个部分,第一部分泄漏流称为主泄漏流,具有较强的负轴向速度,第二部分泄漏流称为次泄漏流,负轴向速度几乎为零。主泄漏流在叶片前缘泄漏后,卷起形成泄漏涡,泄漏涡与主流相互作用决定了交界面的起始位置和发展方向。主泄漏涡在向通道下游移动过程中,泄漏涡影响区域向轮毂方向偏移。次泄漏流在上游主泄漏流的“保护”作用下,越过主泄漏流,抵达相邻叶片压力面,形成了体现非定常波动特征之一的局部低压、低速区域,决定了泄漏流/主流交界面在叶片压力面附近的位置。主、次泄漏流的划分位置在不同几何转子中有所不同。在此基础上,本文提出描述跨音速转子中叶顶泄漏流三维空间结构的模型示意图。
     在第四部分,本文通过数值计算和实验验证了泄漏流与主流交界面溢出是失速先兆发生的必要条件,并揭示了叶顶泄漏流前缘溢出机制与泄漏流自激非定常性起始机制的关系。首先通过实验在机匣上测量零轴向剪切应力线来确认泄漏流与主流的交界面,发现当交界面溢出叶片前缘后,压气机顶部开始出现先兆信号,随后进入失速状态。同时利用不同进口畸变条件研究了泄漏流与主流交界面位置和泄漏流/主流轴向动量比之间的关系,发现泄漏流与主流轴向动量比是叶顶泄漏流与主流交界面前缘溢出的机制,该机制与叶顶泄漏流非定常性起始机制一致。
     以上四个方面的研究内容主要从跨音速转子叶顶泄漏流的非定常特征和三维空间结构两个方面入手,全面分析了跨音速转子叶顶泄漏流的非定常机制,并通过泄漏流与主流的动量比揭示了叶顶泄漏流非定常性与失速先兆机制的同源性。
A numerical and experimental study was conducted to investigate the unsteady tip leakage flow in three transonic compressor/fan rotors, with a hope to illustrate the unsteady features, reveal the originating mechanism, uncover the 3-D structure of tip leakage flow, and explore the link between the unsteady tip leakage flow and rotating stall.
     First of all, the existence of the unsteady tip leakage flows in three different transonic compressor/fan rotors was validated by numerical simulation and experiment. The unsteady features of tip leakage flow such as oscillating frequency, distribution of fluctuating strength, and instantaneous flow fields were studied. It was found that for all the three transonic rotors investigated, there were two main unsteady features of tip leakage flow:(1) the high-pressure spot washed down the low-pressure spot along blade pressure side, and (2) the trajectory of tip leakage vortex oscillated and thus changed the location of the low-pressure spot on the blade pressure side. This kind of unsteadiness was called self-induced unsteadiness because it emerged without external unsteady excitation.
     The fluctuation of pressure distribution and tip leakage velocity indicated that the mechanism of fluctuating tip leakage flow was the dynamic interaction between the incoming main flow and the tip leakage flow. An in-depth analysis of the unsteady flow fields was performed, and two necessary conditions for the initiation of unsteady tip leakage flow were proposed. One was that the region influenced by the tip leakage flow should reach the pressure side of the neighboring blade, and the other was that the tip leakage flow should be strong enough to interact with incoming main flow in order to achieve the dynamic balance. It was also found that the momentum ratio between tip leakage flow and incoming main flow and the tip clearance size could be used to quantify the initiating condition for the unsteadiness of tip leakage flow.
     The three-dimensional flow structure of tip leakage flow was studied by utilizing the pathline of the particles artificially released from the tip clearance region. The in-depth analysis of three-dimensional flow structures revealed three features:(1) there existed an interface between the incoming main flow and the tip leakage flow, (2) the tip leakage flow could be divided into two parts according to the blade loading distribution, and (3) each part played a different role in the location of the interface between the incoming main flow and tip leakage flow. A model of three-dimensional flow structures of tip leakage flow was thus proposed accordingly.
     Finally, a surface streaking method was used to experimentally examine the surface shear pattern on the casing. A region of zero axial shear stress was found to move upstream while decreasing flow coefficient. This phenomenon was also captured by numeical simulation. The compressor stalled once the zero-shear-stress line moved upstream of the blade leading edge for all cases. Inlet distortion was experimentally and numerically varied to alter the momentum ratio at the blade tip and the resulting location of the zero-shear-stress line was exmined. For all cases tested, the zero-shear stress line was observed to be at the same axial location just prior to stall. At the same mass flow rate, the the zero-shear-stress line is closer to the leading edge of the blade with tip inlet distortion than with hub inlet distortion, perhaps due to that the momentum ratio of tip leakage flow to incoming flow with tip inlet distortion is larger than that with hub inlet distortion.
引文
[1]. Denton, J. D., "Loss Mechanisms in Turbomachines", ASME J. Turbomachinery, Vol.115(4), pp.621-656,1993.
    [2]. Lin, F., Zhang, J. X., Chen, J. Y., Nie, C. Q., "Flow Structure of Short Length Scale Disturbance in an Axial Flow Compressor", AIAA J. Propulsion and Power, Vol.24(6), pp.1301-1308,2008.
    [3]. Vo, H. D., Tan, C. S., Greitzer, E. M., "Criteria for Spike Initiated Rotating Stall", ASME J. Turbomachinery, Vol.130(1), pp.011023-1-011023-9,2008.
    [4]. Tahara, N., Kurosaki, M., Ohta, Y., Outa, E., Nakakita, T., and Tsurumi, Y, "Early Stall Warning Technique for Axial Flow Compressors," ASME Paper 2004-GT-53292.
    [5]. D. Christensen, P. Cantin, D. Gutz, P.N. Szucs and A.R. Wadia, J. Armor, M. Dhingra, Y. Neumeier and J.V.R. Prasad, "Development and demonstration of a stability management system fro gas turbine egines", ASME Paper GT2006-90324.
    [6]. Houghtong T., Day, I., "Enhancing the Stability of Subsonic Compressor Using Casing Grooves", ASME Paper GT2009-59210.
    [7]. Emmons, H.w.,Pearson, C. E., Grant, H. P., "Compressor Surge and Stall Propagation", ASME J. Turbomachinery, Vol.77,1955.
    [8]. Moore, F.K., Greitzer, E.M., "A Theory of Post-Stall Transients in Axial Compressors:Part 1 Development of the Equations", ASME J. Eng. Gas Turbines and Power, Vol.108, pp.68-76, 1986.
    [9]. McDougall, N. M., Cumpsty, N. A., Hynes, T. P., "Stall Inception in Axial Compressor", ASME J. Turbomachinery, Vol.122, pp.116-123,1990.
    [10]. Gamier, V. H., Epstein, A. H., Greitzer, E. M., "Rotating Waves as a Stall Inception Indication in Axial Compressors", ASME J. Turbomachinery, Vol.113,1991.
    [11]. Day, I. J., "Stall Inception in Axial Flow Compressors", ASME J. Turbomachinery, Vol.115,1993.
    [12]. Epstein. A. H., Ffowcs Willianms. J.E., Greitzer.E. M., "Active Suppression of Aerodynamic Instabilities in Turomachines", AIAA 10th Aeroacoustics Conference, Seattle, Paper 86-1994,1986.
    [13]. Paduano, J. D., Epstein, A. H., Valavani, L., et al, "Active Control of Rotating Stall in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.115,1993
    [14]. Haynes, J. M., Hendricks, G. J., Epstein, A. H., "Active Stabilization of Rotating Stall in a Three-Stage of Axial Compressor", ASME J. Turbomachinery, Vol.116,1994
    [15]. Van Schalkwyk,C.M.,Paduano,J.D.,Greitzer,E.M., and Epstein,A.H., "Active Stabilization of Axial Compressor with Circumferential Inlet Distortion", ASME 97-GT-279, 1997.
    [16]. Day, I. J., "Active Suppression of Rotating Stall and Surge in Axial Compressors", ASME J. Turbomachinery, Vol.115(1),1993
    [17]. Freeman, C., Wilson, A. Day, I. and Swinbanks, M., "Experiments in Active Control of Stall on an Aero engine Gas Turbine," ASME J. Turbomachinery, Vol.120, pp.637-647,1998.
    [18]. Spakovszky, Z., Weigl, H., Paduano, J., van Schalkwyk, C., Suder, K. and Bright M., "Rotating Stall Control in a High-Speed Stage with Inlet Distortion," ASME J. Turbomachinery, Vol.121, pp.510-524,1999.
    [19]. Weigl, H., Paduano, J., Frechette, A., Epstein, A., Greitzer, E., Bright, M., and Strazisar, A., "Active Stabilization of Rotating Stall in a Transonic Single Stage Axial Compressor," ASME Transactions, Journal of Turbomachinery, Vol.120, pp.625-636,1998.
    [20]. Suder, K., Hathaway, M., Thorp, S., Strazisar, A., and Bright, M., "Compressor Stability Enhancement Using Discrete Tip Injection," ASME Transactions, Journal of Turbomachinery, Vol.123, pp.14-23,2001.
    [21]. Leinhos, D., Scheidler, S., Fottner, L., Grauer, F., Hermann, J., Mettenleiter, M., and Orthmann, A., "Experiments in Active Stall Control of a Twin-Spool Turbofan Engine," ASME 2002-GT-30002,2002.
    [22]. Koch, C. C., "Experimental evaluation of outer case blowing or bleeding of single-stage axial-flow compressor", NASA CR-54592,1970.
    [23]. Day, I.J., Breuer, T., Escuret, J., Cherett, M., Wislon, A., "Stall Inception and the Prospects for Active Control in Four High-Speed Compressors", ASME J.Turbomachinery, Vol.121, pp.18-27,1999.
    [24]. Khalid, S.A., Khalsa, A. S., Waitz, I. A., Tan, C. S., Greitzer, E. M., "Endwall Blockage in Axial Compressor", ASME Journal of Turbomachinery, Vol.121, pp.449-509,1993.
    [25]. Adamczyk, J. J., Celestina, M. L., and Greitzer, E. M., "The Role of Tip Clearance in High-Speed Fan Stall", ASME J. of Turbomachinery, Vol.115, pp.28-39,1993.
    [26]. Hoying, D. A., Tan, C. S., Vo, H. D. and Greitzer, E. M., "Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception", ASME Journal of Turbomachinery, Vol.121(4), pp.735-742,1999.
    [27]. Suder, K., "Blockage Development in a Transonic Axial Compressor Rotor", ASME Paper 97-GT-394,1997.
    [28]. Camp, T.R., Day, I.J., "A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.120, pp.393-401,1998.
    [29]. 童志庭,“轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的试验研究”,博士学位论文,中国科学院工程热物理研究所,2006.
    [30]. Jackson, A. D., "Stall Cell Development in an Axial Compressor", ASME Journal of Turbomachinery, Vol.109, pp.492-498,1987.
    [31]. Schlechtriem, S., and Lotzerich, M., "Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall," ASME Paper 97-GT-41,1997.
    [32]. Hah, C., Bergner, J., and Schiffer, H. Z., "Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor-Criteria and Mechanism", ASME Paper GT2006-90045,2006.
    [33]. Nie, C., Xu, G, Cheng, X., Chen, J., "Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.124(4), pp.572-579,2002.
    [34]. 邓向阳,“压气机叶顶间隙流的数值模拟研究”,博士学位论文,中国科学院工程热物理研究所,2006.
    [35]. Rain, D. A., "Tip Clearance Flow in Axial Flow Compressor and Pumps", California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories Report No.5, 1954.
    [36]. Kirtley, K. R., Beach, T. A., and Adamczyk, J. J., "Numerical Analysis of Secondary Flow in a Two-stage Turbine", AIAA Paper 90-2356,1990.
    [37]. Chen, G. T., Greitzer, E. M., Tan, C. S., Marble, F. E., "Similarity Analysis of Compressor Tip Clearance Flow Structure", ASME J. Turbomachinery, Vol.113(2), pp.260-271, 1991.
    [38]. Lakshminarayana, B., and Horlock, J., "Tip-Clearance Flow and Losses for an Isolated Compressor Blade", ARC R&M 3316,1962.
    [39]. Storer, J. A., Cumpsty, N. A., "An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors", ASME Paper 93-GT-140,1993.
    [40]. Storer, J. A., Cumpsty, N. A., "Tip Leakage Flow in Axial Compressors," ASME J. Turbomachinery, Vol.113(2), pp.252-259,1991.
    [41]. Lakshminarayana B, Zaccaria M, Marathe B. The Structure of Tip Clearance Flow in Axial Flow Compressors, ASME J. Turbomachinery, Vol.117(3), pp.336-347,1995.
    [42]. Michon GJ, Miton H, Ouayahya N., "Unsteady Off-Design Velocity and Reynolds Stresses in an Axial Compressor", J. Propulsion and Power, Vol.21(6), pp.961-972,2006.
    [43]. Bergner, J., Kinzel, M., Schiffer, Heinz-Peter, "Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor-Experimental Investigation", ASME Paper GT2006-90209,2006.
    [44]. Mailach, R., Lehmann, I., Vogeler, K., "Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor—Part Ⅱ:Wake-Tip Clearance Vortex Interaction", ASME J. Turbomachinery, Vol.130(4), pp.041005,2008.
    [45]. 于贤君,“亚音轴流压气机端壁区复杂流动研究及其模化分析”,博士学位论文,北京航空航天大学能源与动力工程学院,2009.
    [46]. Basson, A. H., Kunz, R. F., and Lakshminarayana, B., "Grid Generation for 3-D Turbomachinery Geometries Including Tip Clearance", J. of Propulsion and Power, Vol.9, pp.59, 1993.
    [47]. Hah, C., "A Numerical Modeling of Endwall & Tip-Clearance Flow of an Isolated Compressor Rotor", J. Engineering for Gas Turbines& Power, Vol.108, pp.15-21,1986.
    [48]. Chima, R. V, "Calculation of Tip Clearance Effects in a Transonic Compressor Rotor", ASME J. Turbomachinery, Vol.120, pp.131-140,1998.
    [49]. Van Zante, D. E., Strazisar, A. J., Wood, J. R., Hathaway, M. D. and Okiishi, T. H., "Recommendation for Achieving Accurate Numerical Simulation Of Tip Clearance Flows In Transonic Compressor Rotors", ASME Paper 99-GT-390,1999.
    [50]. Glanville, J. P., "Investigation into Core Compressor Tip Leakage Modeling Techniques Using a 3D Viscous Solver" ASME Paper 2001-GT-0336,2001.
    [51]. Anurag Gupta., Khalid, S. A., McNulty, G. S., and Dailey, L., "Prediction of Low Speed Compressor Rotor Flowfields with Large Tip Clearances", ASME Paper 2003-GT-38637,2002.
    [52]. Baldwin, B. S., Lomax, H., "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows", AIAA Paper 78-257,1978.
    [53]. Dunham, J., "CFD Validation for Propulsion System Components", AGARD-AR-355, 1998.
    [54]. Conley, J. M., Leonard. B. P., "Modification of the MML Turbulence Model for Adverse Pressure Gradient Flows", AIAA Paper 94-2715.,1994.
    [55]. Spalart, P. R., Allmaras, S. R., "A One-Equation Turbulence Model for Aerodynamic Flows", AIAA Paper 92-0439,1992.
    [56]. Baldwin, B. S., Barth, T., "A One-Equation Turbulence Transport Model for High-Reynolds Number Wall Bounded Flows", AIAA Paper 91-0610,1991.
    [57]. Lai, J. C., Yang, C. Y., "Numerical Simulation of Turbulence Suppression Comparisons of the Performance of Four k-ε Turbulence Models" Int. J. Heat and Fluid Flow, Vol.18(6):129-140,1997.
    [58]. Wilcox, D. C., "Reassessment of the Scale-Determining Equation for Advanced Turbulence Models", AIAA Journal, Vol.26(11),pp.1299-1310,1988.
    [59]. Coakley, T. J., "Turbulence Modeling Methods for the Compressible Navier-Stokes Equations", AIAA Paper 83-1693,1983.
    [60].宁方飞,徐力平,"Spalart-Allmaras湍流模型在内流流场数值模拟中的应用”,工程热物理学报,22(3):304-306,2001.
    [61]. Ning, F., Xu, L., "Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver with One-Equation Spalart-Allmaras Turbulence Model", ASME Paper 2001-GT-0359,2001.
    [62]. Gerolymos, G. A., Neubauer, J., Sharma, V. C., Vallet, I., "Improved Prediction of Turbomachinery Flows using Near-Wall Reynolds-Stress Model", ASME Paper 2001-GT-0196, 2001.
    [63]. Lee, G. H., Park, J., Baek, J., "Performance Assessment of Turbulence Models for the Quantitative Prediction of Tip Leakage Flow in Turbomachines", ASME Paper 2004-GT-53403, 2004.
    [64]. Baojun, S., Chuangang, G, Zhengxian, L., "One Two-Equation Turbulence Model for Complex Turbulent Flows by Using DI Approximation:(Ⅰ) Theory [A]", Proceeding of the 6th International Symposium on Flow Modeling and Turbulence Measurements, Tallahassee, Florida, USA,1996.
    [65]. Cumpsty, N.A.,Compressor Aerodynamics, Longman Group UK Ltd., London, England, 1989.
    [66]. Freeman C, "Effects of Tip Clearance Flow on Compressor Stability and Engine Performance", VKI Lecture Series,1985.
    [67]. Smith L H., "The Effect of Tip Clearance on the Peak Pressure Rise of Axial-Flow Fans and Compressors", ASME Symposium on Stall,1958.
    [68]. Wisler D. C., Advanced Compressor and Fan Systems.1985.
    [69]. Baghdadi S. Modeling Tip Clearance Effects in Multistage Axial Compressors, ASME J. Turbomachinery, Vol.118(4), pp.613-843,1996.
    [70]. Kang, S., Hirsch, C., "Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part I-Velocity and Pressure Fields", ASME Journal of Turbomachinery, Vol.115(3), pp.435-443,1993.
    [71]. Kang, S., Hirsch, C., "Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅱ-The Tip Leakage Vortex", ASME J. Turbomachinery, Vol.115(3), pp.444-452,1993.
    [72]. Kang, S., Hirsch, C., "Tip Leakage Flow in Linear Compressor Cascade", ASME J. Turbomachinery, Vol.116(4), pp.657-664,1994.
    [73]. 周正贵,吴国钏,阮立群,“采用平面叶栅模拟压气机动叶叶尖间隙流”,航空学报,23(1):69-71,2002.
    [74]. Inoue, M., Kuroumaru, M., and Fukuhara, M., "Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor", ASME J. Turbomachinery, Vol.108(1), pp.7-14,1986.
    [75]. Inoue, M., Kuroumaru, M., "Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor", ASME J. Turbomachinery, Vol.111(2), pp.250-256,1989.
    [76]. Inoue M, Furukawa, M., Saiki, K., Yamada, K., Kuroumaru M, "Physical Explanations of Tip Leakage Flow Field in an Axial Compressor Rotor", ASME Paper 98-GT-91,1998.
    [77]. Inoue M, Kuroumaru M, Iwamoto T, Ando Y. "Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors", J. Turbomachinery, Vol.113(2), pp.281-289,1991,
    [78]. Furukawa, M., Inoue, M., Saiki, K., Yamada, K., "The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics", ASME J. Turbomachinery, Vol.121(3), pp.469-480,1999.
    [79]. 马宏伟,蒋浩康,叶大均,徐刚,赵全春,董玉玺,“轴流压气机转子尖区三维湍流特性”,工程热物理学报,20(2):166-170,1999.
    [80]. 马宏伟,蒋浩康,“近失速状态轴流压气机转子内尖区三维流动结构”,工程热物理学报,22(6):700-702,2001.
    [81]. Saathoff, H., Stark, U., "Tip Clearance Flow Induced Endwall Boundary Layer Separation in a Single-Stage Axial-Flow Low-Speed Compressor ", ASME Paper 2000-GT-0501,2000.
    [82]. Brandt, H., Fottner, L., Saathoff, H., Stark, U., "Effects of the Inlet Flow Conditions on the Tip Clearance Flow of an Isolated Compressor Rotor", ASME Paper 2002-GT-30639,2002.
    [83]. Furukawa, M., Saiki, K., Nagayoshi, K., Kuroumaru, M., Inoue, M., "Effects of Stream Surface Inclination on Tip Leakage Flow Fields in Compressor Rotors", ASME J. Turbomachinery, Vol.120, pp.683-692,1998.
    [84]. Ma, H. W., Jiang, H. K., "Three-Dimensional Turbulent Flow of the Tip Leakage Vortex in an Axial Compressor Rotor Passage", ASME Paper 2000-GT-503,2000.
    [85]. Suder, K. L., Celestina, M. L., "Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor", ASME J. Turbomachinery, Vol.118, pp.469-229,1996.
    [86]. Copenhaver, W. W, Puterbaugh, S. L., "Unsteady Flow and Shock Motion in a Transonic Compressor Rotor," J. Propulsion and Power,Vol.13(1), pp.17-23.1997,
    [87]. Valkov, T. V, and Tan, C. S., "Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators:Part 1-Framework of Technical Approach and Wake-Stator Blade Interactions", ASME J. Turbomachinery, Vol.121, pp.377-386, 1999.
    [88]. Valkov, T. V, and Tan, C. S., "Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators:Part 2-Rotor Tip Vortex/Streamwise Vortex-Stator Blade Interactions", ASME Journal of Turbomachinery, Vol.121, pp.387-397, 1999.
    [89]. Graf, M. B., Greitzer, E. M., Marble, F. E., and Sharma,O. P., "Effects of Stator Pressure Field on Upstream Rotor Performance", ASME Paper 99-GT-99,1999.
    [90]. Kamiyoshi, S., and Kaji, S., "Application of Airfoil Clocking Technology to Reduction of Multi-Stage Fan Tone," presented at the AIAA/CEAS Aeroacoustics Conference and Exhibit, Maastricht, Netherlands, May 28-30, AIAA Paper 2001-2149,2001.
    [91]. Mailach, R., and Vogeler, K., "Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor—Part 1:Unsteady Profile Pressures and the Effect of Clocking," ASME J. Turbomachinery, Vol.126, pp.507-518,2004.
    [92]. Straka W. A., Farrell K. J., "The Effect of Spatial Wandering on Experimental Laser Velocimeter Measurements of the End-Wall Vortices in an Axial-Flow Pump", Experiments in Fluids, Vol.13:163-170,1992.
    [93]. Mailach R, Lehmann I, Vogeler K. "Rotating Instabilities in an Axial Compressor Originating from the Fluctuating Blade Tip Vortex", ASME J. Turbomachinery, Vol.123(3), pp.453-460,2001.
    [94]. Mailach, R., Sauer, H., and Vogeler, K., "The Periodical Interaction of the Tip Clearance Flow in the Blade Rows of Axial Compressor", ASME Paper 2001-GT-0299,2001.
    [95]. Marz, J., Hah, C., and Neise, W., "An Experimental and Numerical Investigation into the Mechanisms of Rotating Instability", ASME Paper 2001-GT-0536,2001.
    [96]. Bae, J., "Active Control of Tip Clearance Flow in Axial Compressor", Ph.D. thesis, MIT, 2001.
    [97]. Bae, J., Breuer, K. S., Tan, C. S., "Active Control of Tip Clearance Flow in Axial Compressor ", ASME Paper GT-2003-38861,2003.
    [98]. Bae, J., and Breuer, K. S., "Periodic Unsteadiness of Compressor Tip Clearance Vortex ", ASME Paper GT-2004-53015,2004.
    [99]. Furukawa, M., Saiki, K., Yamada, K., and Inoue, M., "Unsteady Flow Behavior Due to Breakdown of Tip Leakage Vortex in an Axial Compressor Rotor at Near-Stall Condition", ASME Paper 2000-GT-666,2000.
    [100]. Biela C., Muller, M. W., Schiffer H-P, Zscherp, C, "Unsteady Pressure Measurement in a Single Stage Axial Transonic Compressor near the Stability Limit", ASME Paper GT2008-50245,2008.
    [101]. Hah, C., Bergner, J., Schiffer, H-P, "Tip clearance vortex oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor", ASME Paper GT2008-50105,2008.
    [102]. Yamada, K., Furukawa, M., Inoue, M., Funazaki, K., "Unsteady Three-Dimensinal Flow Phenomena Due to Breakdown of Tip Leakage in a Transonic Axial Compressor Rotor", ASME Paper GT2004-53745,2004.
    [103]. 耿少娟,“压气机叶顶间隙泄漏流对微喷气的非定常响应机制与扩稳效果研究”,博士学位论文,中国科学院工程热物理研究所,2007.
    [104]. Hah, C., Rabe, D. C., Wadia, A. R., "Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Sweep Transonic Compressor Rotor", ASME Paper GT-2004-53867,2004.
    [105]. Strazisar, A. J., Wood, J. R., Hathaway, M. D., and Suder, K. L., "Laser Anemometer Measurements in a Transonic Axial-flow Fan Rotor," NASA TP 2879,1989.
    [106]. 宁方飞,“考虑真实几何复杂性的跨音压气机内部流动的数值模拟”,博士学位论文,北京航空航天大学,2002.
    [107]. Schulze, G, Blaha, C., Hennecke, D., Henne, J., "The Performance of a new axial single stage transonic compressor", Proc.12th Symposium Air Breathing Engines, ISABE-95-7072, 1995.
    [108]. Bergner, J., Hennecke, D. K., "Experimental Study of Stall Inception of a Single-Stage Transonic Compressor", Proc.16th Symposium Air Breathing Engines, ISABE-2003-1081, 2003.
    [109]. Cameron, J. D., Barrows, S. T., Morris, S. C., Chen, J-P, "On the Interface of Casing Measurements in Axial Compressors", ASME Paper GT2008-51371,2008.
    [110]. Cameron, J. D., Morris, S. C., "Spatial correlation based stall inception analysis", ASME Paper GT2007-28268,2007.
    [111]. Bennington, M. A., Ross, M. H., Du, J., Cameron, J. D., Morris, S. C., Lin, F., Chen, J. Y., "An Experimental and Computational Investigation of Tip Clearance Flow and its Impact on Stall Inception", AMSE Paper GT2010-23516, Accepted by ASME/IGTI Turbo Expo, June 14-18,2010, Glasgow, UK.
    [112]. Seong, M. C., Han, H. O., Ko, Y., and Baek, J. H., "Effects of the Inlet Boundary Layer Thickness on Rotating Stall in an Axial Compressor", ASME Paper GT2008-50886,2008.
    [113]. Shabbir, A., Adamczyk, J. D., "Flow Mechanism for Stall Margin Improvement Due to Circumferential Casing Grooves on Axial Compressors", ASEM J. of Turbomachinery, Vol.127, pp.708-717,2005.
    [114]. Muller, M. W., Schiffer, H-P, Hah, C., "Effect of Circuferential Grooves on the Aerodynamic Performance of an Axial Single-Stage Transonic Compressor", ASME Paper GT2007-27365,2007.
    [115]. Lu, X.G., Chu, W. L., Zhu, J. Q., "Mechanism of the Interaction between Casing Treatment and Tip Leakage Flow in a Subsonic Axial Compressor", ASME Paper GT2006-90077,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700