低速轴流压气机平面叶栅叶顶泄漏流动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶顶泄漏流对压气机的性能和稳定性都有着重要影响,近十多年来,人们又发现叶顶泄漏流与压气机的旋转失速现象有着密切的关系,并在近失速的工况下会表现出明显的非定常波动特性。由此促使人们去探究这种泄漏流的非定常特性的流动特征、形成机理进而发掘其与失速之间潜在的联系,以期找到有效的扩稳方法。
     叶顶泄漏为压力驱动,同时也受到诸多因素的影响,包括叶顶间隙的大小、叶片的负荷、叶片的几何造型、进口气流角、环壁附面层等。但由于在模拟真实流动环境的转子内部测量泄漏流非常困难,而且对于各种影响因素的变化也不方便考察,为了克服这些难题,采用叶栅试验台来研究泄漏流动成为重要的手段。
     本文以叶栅实验为主要手段,辅以数值模拟,针对两套不同折转角的叶栅的叶顶泄漏流动进行研究,考察叶顶泄漏流的定常流动特征,验证其非定常性的存在及发生条件并分析其非定常波动产生的机理。
     本文第一部分首先介绍了对本文实验所进行的实验环境的搭建及相关测量手段的完善,包括采用隔板对风洞进口边界层进行处理;设计加工了叶栅间隙可调装置;考核了风洞的品质;选取、调试并确定本文所用到流动显示方法——墨迹法,设计和加工了三孔探针和七孔探针,并建设了一标准校准风洞对二者进行了校准,标定了稳态和动态传感器,采用Labiew编写了数据采集程序等。
     本文第二部分考察了叶顶泄漏流的定常特性。通过墨迹法、七孔探针等实验手段和数值模拟方法研究了间隙大小、攻角、来流速度和折转角等因素对叶顶泄漏流动的影响,结果表明:(1)间隙增大使泄漏流的起始点明显向下游移动,泄漏流的轨迹逐渐向相邻叶片的压力面移动,同时泄漏涡在展向上的尺度增大。当间隙大到一定程度时,泄漏流会到达相邻叶片的压力面。(2)攻角与来流速度的影响都可归结为流量对泄漏流的影响。随着流量的减小(攻角增大或者来流速度降低),叶顶泄漏流的起始点逐渐向前缘移动,泄漏流轨迹也逐渐向相邻叶片的压力面移动。(3)当叶栅折转角增大时,叶顶泄漏流的轨迹相对于间隙大小、攻角以及来流速度等的变化都会变得不敏感。
     本文第三部分研究了叶顶泄漏流的非定常特性。通过Kulite动态传感器对叶顶泄漏流的端壁压力进行了测量,并对相应工况进行了非定常的数值模拟,发现(1)叶顶泄漏流在某些工况下存在非定常性。速度及攻角的变化都会影响该非定常性的频率特征,但相对来流速度影响较大。(2)叶顶泄漏流非定常性的发生需要泄漏流轨迹到达相邻叶片的压力面。(3)大折转角有助于抑制泄漏流非定常性的发生。在大折转角叶栅中,即使间隙和攻角较大,泄漏流轨迹依然被限制在叶片通道内,从而阻碍了非定常性的发生。
Tip leakage flow has significant effects on the performance and stability of compressor operation. In recent years, it has been found that tip leakage flow is closely related with the phenomena of rotating stall. And tip leakage flow will oscillate unsteadily when compressor is throttled close to the stability limit. In order to develop effective control techniques to delay the onset of rotating stall, the research on the unsteady flow features of tip leakage flow, its triggering mechanism and relationship with rotating stall is motivated.
     Tip leakage flow is driven by the pressure difference between pressure and suction sides of compressor blade, and is affected by many other factors, such tip clearance size, blade loads, blade shape, inlet flow angle and annular boundary layer. Due to the great difficulty to measure the compressor inner flow field in real rotating environment, and also to consider the effects of different factors, the compressor plane cascade is an important method to study the unsteady tip leakage flow.
     In this dissertation, the research is mainly conducted by experiments on compressor plane cascade, and numerical simulation also is adopted to validate the experiment results. For two sets of compressor plane cascades with large turning angles, the existence of tip leakage flow unsteadiness is confirmed, and its unsteady flow field features, occurrence condition and triggering mechanism are also explored.
     In the first section, the construction of the experiment test rig and development of corresponding measurement systems are introduced, during which the inlet boundary layer of wind tunnel is treated by the diaphragm, the adjustable device of cascade tip clearance size is designed and manufactured, the flow quality of the wind tunnel is checked, the ink traces method is used for flow visualization, the three-hole and seven-hole pressure probes are designed and manufactured and a standard wind tunnel is built to calibrate the two probes, the steady and unsteady pressure sensors are calibrated, the data acquisition program is written by the computer language of Labview.
     In the second section, the steady features of tip leakage flow are investigated. The effects of tip clearance size, attack angle, inlet flow velocity and turning angles on the tip leakage flow is studied by the ink traces method, measurement of seven-hole pressure probes and numerical simulation. The results showed that:(1) The originating location of tip leakage flow moves downstream obviously when the tip clearance size increases. The trajectory of tip leakage flow moves toward the neighboring blade pressure side. And at the same time, the radial range of tip leakage flow also expands. When the tip clearance size is increased to a certain extent, the trajectory of tip leakage flow impinges on the neighboring blade pressure side. (2) The effects of stack angle and velocity of inlet flow on tip leakage flow are equivalent to that of mass flow rate. With mass flow rate decreased (stack angle increased or inlet velocity decreased), the originating location of tip leakage flow moves upstream towards blade leading edge. And the trajectory of tip leakage flow also moves toward the neighboring blade pressure side. (3) When the turning angle is increased, the trajectory of tip leakage flow is not sensitive to the change of tip clearance size, stack angle and inlet velocity.
     In the third section, the unsteady features of tip leakage flow are studied. The casing pressure is measured by Kulite unsteady pressure transducers. And the numerical simulation is also the conducted for the corresponding operating points. It has been found that:(1) The unsteadiness of tip leakage flow occurs under some certain conditions. The changes of inlet velocity and stack angle will affect the unsteady frequency of tip leakage flow, and the effect of inlet velocity is relatively larger. (2) It is necessary for the occurrence of tip leakage flow unsteadiness that the trajectory of tip leakage flow arrives at the neighboring blade pressure side. (3) The large turning angle will restrain the occurrence of tip leakage flow unsteadiness. For the cascade with large turning angle, even if the tip clearance size and inlet stack angle are larger, the trajectory of tip leakage flow is still restrained within the blade passage. And thus the triggering of tip leakage flow unsteadiness is controlled.
引文
[1]. Bae, J. Active Control of Tip Clearance Flow in Axial Compressors. Massachusetts Institute of Technology, Aeronautics and Astronautics Dept, Ph.D. Thesis,2001.
    [2]. Wisler, D.C., Loss Reduction in Axial-Flow Compressor Through Low-Speed Model Testing. ASME J. Eng. Gas Turbines and Power,1985.107:p.354-363.
    [3]. Baghdadi, S., Modeling Tip Clearance Effects in Multistage Axial Compressors. Journal of Turbomachinery,1996.118(4):p.697-705.
    [4]. Denton, J.D., Loss Mechanisms in Turbomachines. ASME J. Turbomachinery,1993.115(4): p.621-656.
    [5]. Smith, L.H. and Jr, The Effect of Tip Clearance on the Peak Pressure Rise of Axial-Flow Fans and Compressors. ASME Symposium on Stall,1958:p.149-152.
    [6]. Lin, F., J.X. Zhang and J.Y. Chen, et al., Flow Structure of Short Length Scale Disturbance in an Axial Flow Compressor. AIAA J. Propulsion and Power,2008.24(6):p.1301-1308.
    [7]. Due Vo, H., C.S. Tan and E.M. Greitzer, Criteria for Spike Initiated Rotating Stall. Journal of Turbomachinery,2008.130(1):p.011023-9.
    [8]. Schlechtriem, S. and M. Lotzerich, Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall. ASME 97-GT-41,1997.
    [9]. Khalid, S.A., A.S. Khalsa and I.A. Waitz, et al., Endwall Blockage in Axial Compressors. ASME J. Turbomachinery,1999.121:p.499-509.
    [10]. Hah, C., R. Schulze and S. Wagner, Numerical and Experimental Study for Short Wavelength Stall Inception in a Low-Speed Axial Compressor. ISABE,99-7033,1999.
    [11]. 蒋康涛,低速轴流压气机旋转失速的数值模拟研究.中国科学院:工程热物理研究所,博士学位论文,2004.
    [12]. Mailach, R., I. Lehmann and K. Vogeler, Rotating Instabilities in an Axial Compressor Originating from the Fluctuating Blade Tip Vortex. ASME Paper,2000-GT-0506,2000.
    [13]. Mailach, R., H. Sauer and K. and Vogeler, The Periodical Interaction of the Tip Clearance Flow in the Blade Rows of Axial Compressor. ASME Paper,2001-GT-0299,2001.
    [14]. Marz, J., C. Hah and W. Neise, An Experimental and Numerical Investigation into the Mechanisms of Rotating Instability.2001-GT-0536,2001.
    [15]. Furukawa, M., M. Inoue and K. Saiki, et al., The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics. ASME Journal of Turbomachinery,1999.121:p.469-480.
    [16]. Yamada, K., M. Furukawa and M. Inoue, et al., Unsteady Three-Dimensional Flow Phenomena due to Breakdown of Tip Leakage Vortex in a Transonic Axial Compressor Rotor. GT2004-53745,2004.
    [17]. 邓向阳,压气机叶顶间隙流动数值模拟研究.中国科学院:工程热物理研究所,博士学位论文,2006.
    [18]. Rains, D.A., Tip Clearance Flow in Axial Flow Compressor and Pumps. California Institute of Technology, Hydrodynamics and Mechanical Engineering Laboratories Report No.5,1954.
    [19]. Lakshminarayana, B. and J. Horlock, Tip-Clearance Flow and Losses for an Isolated Compressor Blade. ARC R&M 3316,1962.
    [20]. Kirtley, K.R., T.A. Beach and J.J. Adamczyk, Numerical Analysis of Secondary Flow in a Two-stage Turbine. AIAA,90-236,1990.
    [21]. Chen, G.T., E.M. Greitzer and C.S. Tan, et al., Similarity Analysis of Compressor Tip Clearance Flow Structure. J. Turbomachinery,1991.113(2):p.260-271.
    [22]. Storer, J.A. and N.A. Cumpsty, An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors. ASME,93-GT-140,1993.
    [23]. Storer, J.A. and N.A. Cumpsty, Tip Leakage Flow in Axial Compressors. ASME J. Turbomachinery,1991.113(2):p.252-259.
    [24]. CS., T., Three Dimensional Flows and Tip Clearance in Axial Compressors. VKI Lecture Series "Advances in Axial Compressor Aerodynamics",2006.
    [25]. DA, R. Tip Clearance Flows in Axial Compressors and Pumps. California Institute of Technology, Ph.D,1954.
    [26]. Kang, S. and C. Hirsch, Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅰ--Velocity and Pressure Fields. Journal of Turbomachinery,1993.115:p.435-443.
    [27]. Kang, S. and C. Hirsch, Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance:Part Ⅱ-The Tip Leakage Vortex. Journal of Turbomachinery,1993.115:p.444-452.
    [28]. Kang, S. and C. Hirsch, Tip Leakage Flow in Linear Compressor Cascade. Journal of Turbomachinery,1994.116:p.657-664.
    [29]. Inoue, M., M. Kuroumaru and M. Fukuhara, Behavior of Tip Leakage Flow Behind an Axial Compressor Rotor. ASME J. Turbomachinery,1986.108(1):p.7-14.
    [30]. Inoue, M. and M. Fukuhara, Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor. ASME J. Turbomachinery,1989.111(2):p.250-256.
    [31]. Inoue, M., M. Furukawa and K. Saiki, et al., Physical Explanations of Tip Leakage Flow Field in an Axial Compressor Rotor. ASME,98-GT-91,1998.
    [32]. Lakshminarayana, B., M. Zaccaria and B. Marathe, The Structure of Tip Clearance Flow in Axial Flow Compressors. Journal of Turbomachinery-Transactions Of The Asme,1995.117: p.336-347.
    [33]. Inoue, M., M. Kuroumaru and T. Iwamoto, et al., Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors. J. Turbomachinery,1991.113(2):p.281-289.
    [34]. Furukawa, M., M. Inoue and K. Saiki, et al., The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics. ASME J. Turbomachinery,1999.121(3):p.469-480.
    [35]. 马宏伟,蒋浩康,叶大均等,轴流压气机转子尖区三维湍流特性.工程热物理学报,1999.20(2):第166-170页.
    [36]. 马宏伟,蒋浩康,近失速状态轴流压气机转子内尖区三维流动结构.工程热物理学报,2001.22(6):第700-702页.
    [37]. 于贤君,亚音轴流压气机端壁区复杂流动研究及其模化分析.北京航空航天大学:能源与动力工程学院,博士学位论文,2009.
    [38]. Saathoff, H. and U. Stark, Tip Clearance Flow Induced Endwall Boundary Layer Separation in a Single-Stage Axial-Flow Low-Speed Compressor. ASME,2000-GT-0501,2000.
    [39]. Brandt, H., L. Fottner and H. Saathoff, et al., Effects of the Inlet Flow Conditions on the Tip Clearance Flow of an Isolated Compressor Rotor. ASME,2002-GT-30639,2002.
    [40]. Kang, S. and C. Hirsch, Numerical Simulation of Three-Dimensional Viscous Flow in a Linear Compressor Cascade With Tip Clearance. Journal of Turbomachinery,1996.118:p. 492-502.
    [41]. 周正贵,吴国钏,等,采用平面叶栅模拟压气机动叶叶尖间隙流.航空学报,2002.23(1):第69-71页.
    [42]. Goto, A., Three-Dimensional Flow and Mixing in Axial Flow Compressor With Different Rotor Tip Clearance. ASME Journal of Turbomachinery,1992.114:p.675-685.
    [43]. Mailach, R., I. Lehmann and K. Vogeler, Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex. Journal of Turbomachinery,2001.123(3): p.453-460.
    [44]. Marz, J., C. Hah and W. Neise, An Experimental and Numerical Investigation into the Mechanisms of Rotating Instability. Journal of Turbomachinery,2002.124(3):p.367-374.
    [45]. Furukawa, M., K. Saiki and K. Yamada, et al., Unsteady Flow Behavior Due to Breakdown of Tip Leakage Vortex in an Axial Compressor Rotor at Near-Stall Condition. GT 2000-666, 2000.
    [46]. B, L., Y. X and W. H, et al., Evolution of the Tip Leakage Vortex in an Axial Compressor Rotor. ASME, GT2004-53073,2004.
    [47]. BJ, L., Y. XJ and Y. HJ, et al., Application of Spiv in Turbomachinery. Exp Fluids,2006. 40(4):p.621-642.
    [48]. 于宏军,刘宝杰,刘火星,近失速状态下压气机转子叶尖旋涡流动研究.航空学报,2004.25(1):第9-15页.
    [49]. XJ, Y., L. BJ and J. HK, Characteristics of the Tip Leakage Vortex in a Low-Speed Axial Compressor. AIAA Journal,2007.45(4):p.870-878.
    [50]. 杜娟,跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究.中国科学院:工程热物理研究所,博士学位论文,2010.
    [51]. 童志庭,轴流压气机中叶尖泄漏流、失速先兆、叶尖微喷气非定常关联性的试验研究.中国科学院:工程热物理研究所,博士学位论文,2006.
    [52]. Suder, K.L. and M.L. Celestina, Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. Journal of Turbomachinery,1996. 118(2):p.218-229.
    [53]. Yamada, K., K. Funazaki and M. Furukawa, The Behavior of Tip Clearance Flow at near-Stall Condition in a transonic Axial Compressor Rotor. ASME, GT2007-27725,2007.
    [54]. Chima, R.V., Calculation of Tip Clearance Effects in a Transonic Compressor Rotor. Journal of Turbomachinery,1998.120(1):p.131-140.
    [55]. Gerolymos, G.A. and I. Vallet, Tip-Clearance and Secondary Flows in a Transonic Compressor Rotor. Journal of Turbomachinery,1999.121(4):p.751-762.
    [56]. Biela, C., M.W. Muller and S. H-P, et al., Unsteady Pressure Measurement in a Single Stage Axial Transonic Compressor near the Stability Limit. ASME, GT2008-50245,2008.
    [57]. Hah, C., J. Bergner and H. Schiffer, Tip clearance vortex oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor. ASME, GT2008-50105,2008.
    [58]. Bergner, J., M. Kinzel and Schiffer, et al., Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor-Experimental Investigation. ASME, GT2006-90209,2006.
    [59]. Lin, F., J. Du and H. Zhang, et al., Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow for a Transonic Fan Rotor. ASME, GT2008-51463,2008.
    [60]. 俞镔,庄平,谭春青等,IET跨音速透平平面叶栅风洞鉴定材料汇总,1995.
    [61]. 俞镔,哈尔滨汽轮机厂855根部和620根部、中部超音速平面叶栅吹风试验报告,2004,中国科学院工程热物理研究所.
    [62]. 牛玉川,吸附式压气机叶栅的实验研究和分析.中国科学院:工程热物理研究所,硕士学位论文,2007.
    [63]. 王明杰,均匀来流下叶片吸力面附面层特性的实验研究.中国科学院:工程热物理研究所,硕士学位论文,2008.
    [64]. Benner, M.W. THE INFLUENCE OF LEADING-EDGE GEOMETRY ON PROFILE AND SECONDARY LOSSES IN TURBINE CASCADES. Ottawa, Ontario, Canada:Carleton University, Doctor of Philosophy,2003.
    [65]. 李根深,陈乃兴,强国芳,船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究).第1版.1980,北京:国防工业出版社.
    [66]. 陈海生,弯曲叶片透平叶栅和单级轴流风机气动特性的实验和模拟研究.中国科学院:工程热物理研究所,博士学位论文,2002.
    [67]. Tong, Z.T., F. Lin and J.Y. Chen, et al., The Self-Induced Unsteadiness of Tip Leakage Vortex and its Effect on Compressor Stall Inception. GT2007-27010,2007.
    [68]. Bae, J. and K.S. Breuer, Periodic Unsteadiness of Compressor Tip Clearance Vortex. ASME Paper, GT-2004-53015,2004.
    [69]. Mailach, R., I. Lehmann and K. Vogeler, Periodical Unsteady Flow Within a Rotor Blade Row of an Axial Compressor-Part Ⅱ:Wake-Tip Clearance Vortex Interaction. ASME J. Turbomachinery,2008.130(4):p.041-050.
    [70]. 吴吉昌,李成勤,朱俊强,七孔探针及其在叶栅二次流动测量中的应用.航空动力学报,2010.
    [71]. 范洁川,等,近代流动显示技术.第1版.近代空气动力学丛书.2002,北京:国防工业出 版社.22-23.
    [72]. 戴昌晖,等,流体流动测量.第1版.1992,北京:航空工业出版社.
    [73]. 范剑青,姚琦伟,非线性时间序列——建模、预报及应用.2005,北京:高等教育出版社.
    [74]. 胡广书,数字信号处理——理论、算法与实现.2003,北京:清华大学出版社.
    [75]. 张贤达,现代信号处理.1995,北京:清华大学出版社.
    [76]. 蒋鉴华,张振刚,热工测量及过程自动控制.2009,南昌:江西高校出版社.
    [77]. 钟兢军,弯曲叶片控制扩压叶栅二次流动的实验研究.哈尔滨工业大学,1996.
    [78]. 蒋康涛,低速轴流压气机旋转失速的数值模拟研究.中国科学院:工程热物理研究所,博士学位论文,2004.
    [79]. 耿少娟,压气机叶顶间隙泄漏流对微喷气的非定常响应机制与扩稳效果研究.中国科学院:工程热物理研究所,博士学位论文,2007.
    [80]. Reid, L. and R.D. Moore, Design and Overall Performance of Four Highly Loaded High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor.1978, NASA.
    [81]. Jeong, J. and F. Hussain, On the Identification of a Vortex. Journal of Fluid Mechanics,1995. 285:p.69-94.
    [82]. Houghton, T. and I. Day, ENHANCING THE STABILITY OF SUBSONIC COMPRESSORS USING CASING GROOVES. ASME, GT2009-59210,2009.
    [83]. Zhang, H.W., X.Y. Deng and F. Lin, et al., A Study on the Mechanism of Tip Leakage Flow Unsteadiness in an Isolated Compressor Rotor. GT2006-91123,2006.
    [84]. Bae, J., K.S. Breuer and C.S. Tan, Active Control of Tip Clearance Flow in Axial Compressors. ASME, GT2003-38661,2003.
    [85]. Schrapp, H., U. Stark and H. Saathoff, Breakdown of the Tip Clearance Vortex in a Rotor Equivalent Cascade and in a Single-stage Low-speed Compresor.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700