压气机叶顶泄漏流动的控制策略及其扩稳机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩系统中的以旋转失速和喘振为代表的流动失稳现象一直是困扰叶片式叶轮机械设计的难题。对流动失稳的机理进行研究,并实现有效的控制,对于提高压气机的性能和可靠性具有重要意义。以往的研究表明,旋转失速一般经由两种典型的失速先兆产生(模态波型和尖脉冲型),而失速先兆与叶顶区域的泄漏流动直接关联。本文研究工作的目的是,从改善叶顶区域泄漏流动的角度出发,研究轴流压气机的扩稳方法及其扩稳机理。
     本文拟采用定常方法和非定常方法相结合的方式,对不同流量工况下叶顶区域的流场特征进行考查,以更深入的认识旋转失速的触发机制。并基于此,分析两种有效的失稳控制策略——周向槽处理机匣和微量喷气提高压气机稳定工作范围的机理,考察了实施控制策略后,叶顶区域流场,尤其是泄漏流动的改善效果。论文内容安排如下:
     首先,对带实壁机匣的单转子压气机进行了单通道定常和非定常数值模拟,详细的分析了不同流量工况下动叶顶部泄漏流的特性以及损失和堵塞的变化,通过流动失稳触发过程中叶片通道内泄漏流的演化,探讨了泄漏流与流动失稳关联的物理机理。
     其次,对带具有不同槽数和开槽位置的周向槽处理机匣的单转子压气机内部流场进行了数值模拟,研究了不同的周向槽处理机匣结构对叶顶泄漏流动、压气机总体性能和失速裕度的影响,深入分析了周向槽处理机匣内流动与转子叶顶流场之间的相互作用机制,对比分析了处理机匣引入前后压气机叶顶流场结构的变化特征,解释了这类周向槽处理机匣结构实施后提高压气机稳定工作范围的原因。
     最后,就叶顶微喷气扩稳的实验结果,采用全三维非定常数值模拟技术对喷嘴与叶片通道之间的气动耦合下的流动特征进行了分析,通过对比研究了微喷气引入前后叶顶流场结构的变化,就稳态微量喷气提高压气机稳定工作范围的机理进行探讨,为下一步进行微喷气拓宽压气机稳定性途径的实际方案设计提供了认识方面的支撑。
The phenomenon of flow instability in the axial and centrifugal turbomachinery, including rotating stall and surge, has been a long-standing problem for the turbomachinery design and stable operation. To improve the performance and reliability of compressors, as well as the gas turbines, it is of great importance that the mechanism of unstable flow occurrence is well understood, and furthermore, this aerodynamic instability is successfully controlled. Based on a low-speed axial compressor at Institute of Engineering Thermophysics, variations of tip leakage flow and internal flow within blade passage under using of two passive control methods, circumferential grooves casing treatment and micro injection are discussed in details with the help of numerical simulation results. Mechanism of stall margin improvement with the above-mentioned passive control strategy is realized in this paper.
     Steady and unsteady numerical simulations are employed to investigate the character of the tip leakage flow and the change of loss and storage in different flow conditions. Then, the physical processes occurring when approaching stall have been assessed and, the influences of complex tip flow on flow instability has been analyzed.
     The flow field through the axial compressor rotor with circumferential groove casing has been simulated to investigate the effects of the number of grooves and the location of the grooves on the performance and stability of the compressor. Numerous studies were focused on the interaction between the complex tip flow and circumferential groove casing treatment. Detailed analyses of the flow visualization at the rotor tip have exposed the different tip flow topologies between the cases with treatment casing and with untreated smooth wall. It was found that the primary stall margin enhancement afforded by circumferential groove casing treatment should be a result of the tip flow manipulation.
     Based on the result of micro injection experiment, the coupled flow through the axial compressor rotor and the injector is simulated with a state-of-the-art multi-block flow solver. The performance and the primary stall margin improvement are investigated in the case with tip injection. The relationships between the unsteady tip leakage vortex and the rotating stall for smooth wall and micro tip injection have been researched. It is the key to clarify the developing process of such unsteadiness through numerical simulations and to explore its effects on the stall inception. It should be helpful to utilize the above-mentioned computation results for designing the effective passive control method in industry.
引文
[1]陆亚钧,《叶轮机械非定常流动理论》,北京航空航天大学出版社,1990
    [2]Koch C C. Experimental evaluation of outer case blowing or bleeding of single-stage axial-flow compressor. NASA CR-54592, 1970
    [3]Bailey E E, and Voit C H. Some observation of effects of porous casing on operating range of a single axial-flow compressor rotor. NASA TM X-2120, 1970
    [4]Osbom W M, Lewis G W, and Heidelberg L J. Effect of several porous casing treatment on stall limit and on overall performance of an axial-flow compressor rotor. NASA TN D-6537, 1970
    [5]Oscarson R P, Wright D L. Experimental evalution of a honeycomb rotor shroud configuration to improve the stall margin of a 0.5 hub-tip ratio single stage compressor. NASA CR-72809, 1970
    [6]Wisler D C, and Beacher B F. Improved compressor performance using recessed clearance (trenches) over the rotor. AIAA Paper, AIAA-86-1745, 1986
    [7]Azimian A. R, Elder R L, and Mckenzie A B. Application of recess vaned casing treatment to axial flow fans. ASME Paper, GT-89-68, 1989
    [8]Elder R L. Recess vane passive stall control. ASME Paper, GT-92-36, 1992
    [9]杜辉,朱俊强,楚武利.凹槽叶片式机匣处理的结构尺寸优化研究.推进技术,1998,19(1):70-74
    [10]Kang C S, Elder R L. Recessed casing treatment effects on fan performance and flow field. American Society of Mechanical Engineering Jun 5-8, 1995
    [11]Akhlaghi, M, Elder, R L, Ramsden, K W. Effects of a vane-recessed trbular-passage passive stall control technique on a multistage, low-speed, axial-flow compressor: results of the tests on the first stage with the rear stages removed. ASME Paper, GT-2003-38301, 2003
    [12]楚武利,刘志伟,朱俊强.折线斜缝式机匣处理的实验研究及机理分析.航空动力学报,1999,14(3):270-274
    [13]Lu X, Chu W, Zhu J. Experimental and Numerical Investigation of a Subsonic Compressor With Bend Skewed Slots Casing Treatment. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2006, 220(C12):1785-1796
    [14]Yu Q, Li Q, Li L. The Experimental Researches on Improving Operating Stability of a Transonic Fan. ASME GT-2002-30640, 2002
    [15]Baily E E. Effects of grooved casing treatment on the flow range capability of a single stage axial-flow compressor. NASA TM X-2459, 1972
    [16]刘志伟.关于周向槽机匣处理的若干观测.西北工业大学学报,1985,3(2):207-217
    [17]Moore R D. Effect of casing treatment on overall and blade element performance of a compressor rotor. NASA TN D-6538, 1971
    [18]Takata H, and Tsakada Y. Stall margin improvement by casing treatment-its mechanism and effectiveness. ASME Journal of Engineering for Power, 1977, 99(3): 121-133
    [19]Zhu,J.,Wu,Y.,Chu,W.,2005,"Axial Location of Casing Treatment in Multistage Axial Flow Compressors", Pro-ceedings of ASME TurboExpo 2005, June6-9 ,Reno-Tahoe, Nevada, USA, paper GT-2005-69105
    [20]D.C. Rabe, C. Hah,"Application of Casing Circumferential Grooves for Improved Stall Margin in a Transonic Axial Compressor", ASME GT-2002-30641 2002
    [21]杜朝辉,姚吉先.带有机匣处理结构的叶栅流场数值计算[J].航空动力学报,1996,11(2):169~172.
    [22]Lu,X.,Chu,W.,Zhu,J.,Wu,Y, "Mechanism of the Interaction between Casing Treatment and Tip Leak-age Flow in a Subsonic Axial Compressor", Proceedings of ASME Turbo Expo 2006, May8-11, Barcelona, Spain, paper GT-2006-90077
    [23]Epstein. A. H., Ffowcs Willianms. J. E., Greitzer E. M., "Active Suppression of Aerodynamic Instabilities in Turomachines", AIAA 10th Aeroacoustics Conference, Seattle, Paper 86-1994, 1986.
    [24]Moore, F. K., Greitzer, E. M., "A Theory of Post-Stall Transients in Axial Compressors: Part 1 Development of the Equations", ASME J. Eng. Gas Turbines and Power, Vol.108, 1986
    [25]Greitzer, E. M., Moore, F. K., "A Theory of Post-Stall Transients in Axial Compressors: Part 2 Application", ASME J. Eng. Gas Turbines and Power, Vol.108, 1986
    [26]Epstein,A.H.,Ffowcs Williams,J.E.,and Greitzer,E.M., "Active Auppression of Aerodynamic Instabilities in Turbomachines", ASME Journal of Turbomachinery, Vol.113, No.2, pp.290-302, 1989
    [27]Pinsley, J. E., Guenette, G. R., Epstein, A. H., et al, "Active Stabilization of Centrifugal Compressor Surge", ASME J. Turbomachinery, Vol.113, 1991
    [28]Paduano, J. D., Epstein, A. H., Valavani, L., et al, "Active Control of Rotating Stall in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.115, 1993
    [29]Haynes, J. M., Hendricks, G. J., Epstein, A. H., "Active Stabilization of Rotating Stall in a Three-Stage of Axial Compressor", ASME J. Turbomachinery, Vol.116, 1994
    [30]Day, I. J., "Active Suppression of Rotating Stall and Surge in Axial Compressors", ASME J. Turbomachinery, Vol.115, 1993
    [31]Behnken, R. L., et al, "Characterizing the Effects of Air Injection on Compressor Performance for Use in Active Control of Rotating Stall", ASME Paper 97-GT-316,1997
    [32]Weigl, H. J., Paduano, J. D., Frechette, L. G., et al, "Active Stabilization of Rotating Stall in a Transonic Single Stage Axial Compressor", 97-GT-411, ASME Turbo Expo, 1997
    [33]Suder, K. L., Hathaway, M. D., Thorp, S. A., et al, "Compressor Stability Enhancement using Discrete Tip Injection", ASME J. Turbomachinery, Vol.123, 2001
    [34]Nie, C., Xu, G., Cheng, X., et al, "Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.124, 2002
    [35]童志庭,“轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究”, 博士学位论文,中国科学院工程热物理研究所,2005
    [36]Emmons, H. W., Pearson, C. E., Grant, H. P., "Compressor Surge and Stall Propagation", Trans. ASME, Vol.77, 1955
    [37]McDougall, N. M., Cumpsty, N. A., Hynes, T. P., "Stall Inception in Axial Compressors", ASME J. Turbomachinery, Vol.112, 1990
    [38]Garnier, V. H., Epstein, A. H., Greitzer, E. M., "Rotating Waves as a Stall Inception Indication in Axial Compressors", ASME J. Turbomachinery, Vol.113, 1991
    [39]Paduano, J.D., Valavani, L., Epstein, A.H., "Parameter Identification of Compressor Dynamics During Closed-Loop Operation", American Control Confeerence, Boston, 1991
    [40]Paduano, J.D., Valavani, L., Epstein, A.H., et al, "Modeling for Control of Rotating Stall", Automatic, Vol.30, 1994
    [41]Mansoux, C.A., Cysling, D.L., Setiawan, J.D., et al, "Distribution Nonlinear Modeling and Stability Analysis of Axial Compressor Stall and Surge", American Control Conference, Baltimore, 1994
    [42]Bonnaure, L.P., "Modeling High Speed Multistage Compressor Stability", M.S. Dissertation, MIT, Aeronautics and Astronautics Dept., 1991
    [43]Hendricks, G.J., Bonnaure, L.P., Longley, J.P., et al, "Analysis of Rotating Stall Onset in High-Speed Axial Flow Compressors", AIAA Paper 93-2233, the 29th Joint Propulsion Conference, Monterey, 1993
    [44]Feulner, M.R., Hendricks, G. J., Paduano, J.D., "Modeling for Control of Rotating Stall in High Speed Multi-Stage Axial Compressors", ASME 94-GT-200
    [45]Frechette, L. G., "Implications of Stability Modeling for High-Speed Axial Compressor Design", M.S. Dissertation, MIT, Aeronautics and Astronautics Dept., 1997
    [46]Sun, X.F., "Three-Dimensional Compressible Flow Stability Theory Rotating Stall", BUAA Technical Report BH-B4765, Beijing University of Aeronautic and Astronautics, Jet Propulsion Dept., 1996
    [47]Day, I. J., "Stall Inception in Axial Flow Compressors", ASME J. Turbomachinery, Vol.115, 1993
    [48]Park, H. G., "Unsteady Disturbance Structures in Axial Flow Compressor Stall Inception", M. S. Thesis, MIT, Department of Aeronautics and Astronautics, 1994
    [49]Camp, T. R., Day, I. J., "A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor", 97-GT-526, ASME Turbo Expo, Orlando, 1997
    [50]Day, I. J., Freeman, C., "The Unstable Behavior of Low and High Speed Compressors", ASME J. Turbomachinery, Vol.116, 1994
    [51]Day, I. J., Breuer, T., Escuret, J., et al, "Stall Inception and the Prospects for Active Control in four High Speed Compressors", 97-GT-281, ASME Turbo Expo, Orlando, 1997
    [52]Silkowski, P. D., "Measurements of Rotor Stalling in a Matched and Mismatched Multistage Compressor", GTL Report No. 221, Gas Turbine Laboratory, MIT, 1995
    [53]McFougall, N.M., Cumpsty, N.A., Hynes, T.P., "Stall Inception in Axial Compressors", ASME J. Turbomachinery, Vol.112, 1990
    [54]Jackson, A.D., "Stall Cell Development in an Axial Compressor", ASME J. Turbomachinery, Vol. 109, pp 492-498, 1987
    [55]Wisler, D.C., "Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing", ASME J. Gas Turbines and Power, Vol.107, pp 354-363,1985,
    [56]Smith, L.H.,Jr., "The Effect of Tip Clearance on the Peak Pressure Rise of Axial-Flow Fans and Compressors", ASME Symposium on Stall, pp149-152,1958
    [57]Suder, K., "Blockage Development in a Transonic Axial Compressor Rotor", ASME 97-GT-394
    [58]Hoying, D. A., Tan, C. S., Vo, H. D., et al, "Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception", ASME 98-GT-588, 1998
    [59]Schlechtriem, S., and Lotzerich, M., 1997, "Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall", ASME 97-GT-41, 1997
    [60]Khalid, S. A., Khalsa, A. S., Waitz, I. A., Tan, C. S.,Greitzer, E. M., Cumpsty, N. A., Adamczyk, J. J. and Marble,F. E., "Endwall Blockage in Axial Compressors", ASME J. Turbomachinery, Vol. 121, pp 499-509, 1999
    [61]Vo, H.D., Tan, C.S., Greitzer, E.M., "Criteria for Spike Initiated Rotating Stall", ASME GT2005-68374, 2005
    [62]Hah, C., Schulze, R., Wagner, S., et al, "Numerical and Experimental Study for Short Wavelength Stall Inception in a Low-Speed Axial Compressor", ISABE 99-7033, 1999
    [63]邓向阳,“压气机叶顶间隙流的数值模拟研究”,博士学位论文,中国科学院工程热物理研究所,2006
    [64]Tong, Z.T., Lin, F., Chen,J.Y., Nie,C.Q., "The Self-Induced Unsteadiness of Tip Leakage Vortex and Its Effect on Compressor Stall Inception", ASME GT2007-27010,2007
    [65]张靖煊,“畸变条件下轴流压气机叶顶间隙流对流动失稳影响的非定常机制”,博士学位论文,中国科学院工程热物理研究所,2007
    [66]蒋康涛,“低速轴流压气机旋转失速的数值模拟研究”,博士学位论文,中国科学院工程热物理研究所,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700