卫星对地观测需求分析方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用星载传感器从太空对地球表面进行探测而获取信息,已广泛应用于社会、经济建设和国防建设等各领域。用户越来越期望对地观测卫星能够完成更加复杂多样的观测需求。对地观测需求复杂性主要体现在空域覆盖要求广、时域覆盖要求多次和频域覆盖要求多维等方面。复杂多样的对地观测需求给卫星任务规划带来了诸如规划算法复杂度高、规划效能低、规划结果用户满意度低、稀缺的卫星资源利用不合理等问题。对地观测需求分析是卫星任务规划的前端,通过对原始观测需求的各项特征要素进行分析,合理融合关联冗余的对地观测需求,优化多星接力观测流程,能有效提升卫星任务规划调度效能,使得观测结果更加适应不同类型的用户要求。
     论文针对用户提请的对地观测需求复杂性问题,引出了对地观测需求关联融合分析和多星接力对地观测需求流程分析。论文主要工作包括:
     1.深入研究了对地观测需求的各项特征要素,并根据对地观测需求的特征要素建立了对地观测需求描述模型;其次,根据对地观测卫星的相关特征属性及其搭载的对地观测传感器类型,建立了卫星对地观测能力描述模型;然后,阐述了用户提请的对地观测需求复杂性和卫星任务规划过程中的过载规划问题,从而明确了本文的研究重点,也即需要对用户提请的对地观测需求做关联融合分析和多星接力观测流程分析。
     2.研究了对地观测需求之间的关联性问题。本文引入关联测度定量化研究对地观测需求间的关联度,包括空域关联测度、时域关联测度和频域关联测度以及总的关联测度。分别研究了点目标与点目标的关联融合、区域目标与区域目标的关联融合和区域目标与点目标的关联融合,并建立了对地观测需求关联融合分析模型,针对此模型,用基于矩阵的层次融合分析方法对模型进行求解,然后通过实验验证了本文提出的方法,通过融合存在正关联关系的对地观测需求,可以有效使用对地观测卫星资源。
     3.研究分析了多星接力观测需求及其流程。本文针对典型的多星接力观测需求——区域目标覆盖探测及其关键部分监测,深入分析其组织实施观测过程,根据历史的观测信息,提出了覆盖探测和详情监测两步骤。当具备历史观测信息且能预测出区域目标中的关键部分的状态时,采取关键部分详情监测策略,否则采取覆盖探测策略。通过深入研究Petri网的相关理论以及运行机理后,建立基于着色Petri网(CPN)的多星接力观测流程层次化模型。构建的CPN层次化模型包含两层,第一层为多星接力观测层,第二层为观测方案生成层和观测数据传输层。最后通过遍历树算法和仿真方法对流程模型进行了逻辑正确性分析。最后,提出了基于启发式规则的区域目标覆盖探测及其关键部分监测多星接力观测方案推理方法。
     基于上述研究成果,设计并实现了具有良好人机互动的对地观测需求分析原型系统,验证和评估各项技术的有效性和实用性。
That Earth Observing Satellites (EOSs) acquire information of the earth's surface from outer space by using satellite sensors are widely used not only in the social, economic but also many other applications especially such as militay.That users rely on remote satellite for acquiring information has been accelerating, and makes earth observing request more complicated than ever before. The complexity of earth observing requests mainly are: wide coverage in geography,multi-time observeing and multi-fequency detecting. These complexities have bring obstacle for satellite task scheduling such as accelerating complexity of planning, degrading efficiency, low satisfaction of users and unrational use of satellllites and etc. Analysis for earth observing request is pre-part of satellite task scheduling. Both satellite task scheduling efficiency and users’satisfaction can be improved through earth observing request analysis.
     On the basis of the complexity of earth observing requests, analysis of cohesion and agglomeration for earth observing request was stated and flow model for multi-satellite relay observing was constructed.The main work of this dissertation can be concluded as the following three parts:
     1. Congsidering the characteristics of observing requests and remote satellites, two models were constructed to describe the earth observing requests and the capability of satellites respectively.The complexity of earth observing requests was listed. After that, two problems, cohesion between earth observing requests and relay observing flow for multi-satellits, were brought out.
     2. Through analyzing the cohesion between different requests proposed by huge mount of users, coherency measures was used to quantitate the cohesion of each two different earth observing requests. Coherency measures include time coherency, space coherency and frequency coherenc。And then agglomeration between two region-objects or between two point-objects or between point-object and region-object was considered. Later a model for analysis of cohesion and agglomeration for earth observing requests was established. And a hierarchical agglomerative algorithm based on matrix was proposed. Some experiments were implemented to valid correctness and practicability of our method.
     3. Facing representative multi-satellite relay observing problem, regional object detection and key part surveillance, a flow model based on colored petri net (CPN) was developed after study the theory of Petri Net. Finally, logic of this CPN model was verified based on coverability tree and by simulation test. Finally a reasoning method for multi-satellite observing schema was proposed based on heuristic rules.
     According to the research works presented above, an experiment system, which has friendly multi-view interfaces of interaction between human and machines, for earth observing request analysis, was designed and implemented as the platform to verify our research achievements.
引文
[1]潘清,廖育荣.快速响应空间概念与研究进展[M].北京:国防工业出版社, 2010.
    [2]张育林,增国强,王兆魁,郝继刚.分布式卫星系统理论及应用[M].北京:科学出版社, 2008.
    [3]常庆瑞.等编著,遥感技术导论[M].北京:科学出版社,2004.
    [4]刁淑娟.地球观测卫星的过去、现在和未来[J].国土资源遥感,2001(3).
    [5]顾先冰,司群英.国内外遥感卫星发展现状[J].航天返回与遥感,2000,21(2):29~33.
    [6]冯健翔.人工智能航天应用研究[M].北京:宇航出版社, 1999.
    [7]张钧屏,方艾里,万志龙,对地观测与对空监测[M].北京:科学出版社,2001.
    [8]王永刚,刘玉文.军事卫星及应用概论[M].北京:国防工业出版社, 2003.
    [9]郭玉华.多类型对地观测卫星联合任务规划关键技术研究[D].长沙:国防科技大学, 2009.
    [10]王卫安,竺幼定.高分辨率卫星遥感图像及其应用.测绘通报,2000,6:20-21.
    [11] Barbulescu L,Watson J P,Whitley L D, Howe A E. Scheduling Space-Ground Communications for the Air Force Satellite Control Network [J]. Journal of Scheduling, 2004, 7(1): 7-34.
    [12] Barbulescu L, Howe A E, Whitley L D, et al. AFSCN Scheduling: How the Problem and Solution Have Evolved. Mathematical and Computer Modeling [J]. Mathematical and Computer Modeling, 2006, 43(9): 1023-1037.
    [13]陈浩.地表电磁环境探测卫星的资源规划调度方法[D].长沙:国防科技大学博士论文, 2009.
    [14] Walton J. Models for the Management of Satellite-based Sensors[D]. PH.D, Massachusetts Institute of Technology, 1993.
    [15]张帆.成像卫星计划编制中的约束建模及优化求解技术研究[D].长沙:国防科学技术大学, 2005.
    [16]张帆等.基于时间序无圈有向图的多准则优化成像调度[J],国防科技大学学报, 2005, 27(6): 61-66.
    [17] Gabrel V, Vanderpooten D. Enumeration and Interactive Selection of Efficient Paths in a Multiple Criteria Graph for Scheduling an EarthObserving Satellite [J]. European Journal of Operational Research, 2002, 139: 533-542.
    [18]贺仁杰.成像侦察卫星调度问题研究[D].长沙:国防科技大学,2004.
    [19]马满好.卫星成像侦察任务分解与资源匹配方法研究[D].长沙:国防科技大学博士论文, 2010.
    [20]祝江汉.航天成像侦察的任务流预测与任务规划方法研究究[D].长沙:国防科技大学博士论文, 2010.
    [21] Lemaitre M, Verfaillie G, Jouhaud F. How to Manage the New Generation of Agile Earth Observation Satellites [C]. In the Proceedings of SpaceOPS 2000, Toulouse, France, 2000.
    [22] Lemaitre M, Verfaillie G, Jouhaud F, et al. Selecting and scheduling observations of agile satellites [J]. Aerospace Science and Technology, 2002, 6: 367–381.
    [23] Pemberton J, Galiber F. A Constraint–Based Approach to Satellite Scheduling [J]. DIMACS Series in Discrete Mathematics and Theoretical Computer Science: Constraint Programming and Large Scale Discrete Optimization, 2001, 57: 101-114.
    [24] Bensana E, Verfaillie G, Agnese J, et al. Exact and Approximate Methods for the Daily Management of an Earth Observing Satellite [C]. In the Proceedings of the Symposium on Space Mission Operations and Ground Data Systems. Munich, Germany, 1996.
    [25] Frank J, Jonsson A, Morris R, et al. Planning and Scheduling for Fleets of Earth Observing Satellites[C]. Proc. of the 6th International Symposium on Artificial Intelligence, Robotics, Automation and Space, Montreal, 2002.
    [26] Dungan, J, Frank, J, Jonsson, A, Morris. Advances in Planning and Scheduling of Remote Sensing Instruments for Fleets of Earth Orbiting Satellites[C]. Proc. of the 2nd Earth Science Technology Conference, Pasadena, CA, USA, 2002.
    [27] ILOG Scheduler Get Start 5.1 2003.
    [28]陈金勇,冯阳,彭会湘.一种卫星照相规划软件的可视化设计与实现[J].无线电通信技术, 2004, 30(6): 35-37.
    [29]陈站华.资源卫星任务安排测试方法的研究与实现[J].无线电工程, 2005, 35(3): 62-64.
    [30] Veridian Inc. Generic Resource Event and Activity Scheduler. 2003.
    [31] Space Imaging Inc. Collection Planning System: A Multi-Source Satellite Imagery Collection Optimization Application. 2003.
    [32] Mougnaud P, Galli L, Castellani C, Famoso I. MAT: a Multi-missionAnalysis and Planning Tool for Earth Observation Satellite Constellations [C]. In the Proceedings of the SpaceOps 2006, Rome, Italy, 2006.
    [33] Globus A, Crawford J, Lohn J, et al. Scheduling Earth Observing Fleets Using Evolutionary Algorithms: Problem Description and Approach[C]. Proceedings of the 3rd International NASA Workshop on Planning and Scheduling for Space, NASA, 2002.
    [34] Globus A, Crawford J, Lohn J, et al. Scheduling Earth Observing Satellites with Evolutionary Algorithms[C]. Proceedings of Coference on Space Mission Changes for Information Technology, 2003.
    [35] Globus A, Crawford J, Lohn J. A Comparison of Techniques for Scheduling Earth Observing Satellites[C]. AAAI 2004: 836–843.
    [36] CLeachtenauerJ. Surveillance and Reconnaissance ImagingSystems[M]. Boston: Artech, 2001.
    [37] Analytical Graphics Inc., Satellite Tool Kit (STK). www.agi.com
    [38]马满好,邱涤珊,王亮.天基信息系统网络拓扑结构建模方法研究[J].武汉大学学报(信息科学版), 2009,34(5):605-610.
    [39]靳肖闪.成像卫星星地综合调度技术研究[D].长沙:国防科学技术大学,2009.
    [40]李菊芳.航天侦察多星多地面站任务规划问题研究[D].长沙:国防科技大学, 2005.
    [41]何红艳,乌崇德,王小勇.侧摆对卫星及CCD相机系统参数的影响和分析[J].航天返回与遥感, 2003,24(4):14-18.
    [42]杨颖,王琦. STK在计算机仿真中的应用[M].北京:国防工业出版社, 2005.
    [43] Lee S, Won J C, Kim J-H. Task Scheduling Algorithm for the Communication, Ocean and Meteorological Satellite[J]. ETRI Journal, 2008, 30(1):1-12.
    [44]金光,武小悦,高卫斌.卫星地面站资源调度优化模型及启发式算法[J].系统工程与电子技术, 2004, 26(12):1839-1875.
    [45]刘晓娣.多卫星综合任务规划关键技术研究与实现[D].长沙:国防科技大学, 2007.
    [46] Parish D A. A Genetic Algorithm Approach to Automating Satellite Range Scheduling[D]. In Masters Thesis. Air Force Institute of Technology, USA, 1994.
    [47] Yamaguchi Y, Kawakami T, Kahle A B, et al. ASTER Mission Planning and Operations Concept [C]. In the Proceedings of the 5th International Symposium on Space Mission Operations and Ground Data Systems, Tokyo, Japan, 1998.
    [48] Muraoka H, Cohen R H, Ohno T, Doi N. ASTER Observing Scheduling Algorithms [C]. In the Proceedings of the 5th International Symposium on Space Mission Operations and Ground Data Systems, Tokyo, Japan, 1998.
    [49] Chien S, Rabideau G, Knight R, et al. ASPEN - Automated Planning and Scheduling for Space Mission Operations [C]. In the Proceedings of the SpaceOps 2000, Toulouse, France, 2000.
    [50] Rabideau G, Knight R, Chien S, et al. Iterative Repair Planning for Spacecraft Operations in the ASPEN System [C]. In the Proceedings of 5th International symposium on Artificial Intelligence Robotics and Automation in Space, Noordwijk, Netherlands, 1999.
    [51] Potter W. A Photo Album of Earth: Scheduling Landsat 7 Mission Daily Activities [C]. In the Proceedings of the 5th International Symposium on Space Mission Operations and Ground Data Systems, Tokyo, Japan, 1998.
    [52] Frank J, Jonsson A, Morris R, et al. Planning and Scheduling for Fleets of Earth Observing Satellites [C], In the Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, Automation and Space, Montreal, Canada, 2002.
    [53] Dungan J, Frank J, Jonsson A, et al. Advances in Planning and Scheduling of Remote Sensing Instruments for Fleets of Earth Orbiting Satellites [C] In the Proceedings of the 2nd Earth Science Technology Conference, 2002.
    [54] Analytical Graphics Inc. Satellite Tool Kit 5.0. 2003.
    [55]王钧.成像卫星综合任务调度模型与优化方法研究[D].长沙:国防科技大学博士论文, 2007.
    [56]白保存,慈元卓,陈英武.基于动态任务融合的多星观测调度方法[J].系统仿真学报, 2009, 21(9): 2646-2649.
    [57]白保存,陈英武,贺仁杰,等.基于分解优化的多星融合观测调度算法[J].自动化学报, 2009, 35(5): 596-604.
    [58]徐雪仁,宫鹏,黄学智,等.资源卫星(可见光)遥感数据获取任务调度优化算法研究[J].遥感学报, 2007, 11(1): 109-114.
    [59] Cohen R. Automated Spacecraft Scheduling-The ASTER Example[R].Jet Propulsion Laboratory, California Institute of Technology, USA. 2002.
    [60]许语拉,卫星成像侦察任务聚类方法研究[D].长沙:国防科技大学硕士学位论文, 2010.
    [61]伍国华,马满好,王慧林,等.基于任务聚类的多星观测调度方法研究[J].航空学报, 2011, 32(x): xxx-xxx.
    [62] Nicola Bianchessi, Jean-Francois Cordeau, Jacques Desrosiers, Gilbert Laporte, Vincent Raymond, et al. A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites [J]. European Journal of Operational ReseArch 177 (2007) 750–762.
    [63]郭玉华.多类型对地观测卫星联合任务规划关键技术研究[D].国防科学技术大学,2009.
    [64]朱述龙,张占睦.遥感信息机理研究[M].北京:科学出版社, 2000.
    [65]谢晓方,姜震,一种专家系统开发工具CLIPS应用研究,海军航空工程学院学报,2004,19(2):239~242.
    [66] Travis J. Hawker. CYBERSPACE MISSION FOCUS: NW OPS VS. NETOPS [D].USA: DEPARTMENT OF THE AIR FORCEAIR UNIVERSITYAIR FORCE INSTITUTE OF TECHNOLOGY, 2010.
    [67]王冲,景宁,李军等.一种基于多Agent强化学习的多星协同任务规划算法[J].国防科技大学学报,2011,33(1):53~58.
    [68]经飞.卫星联合观测的资源配合模型及决策算法[D].长沙:国防科技大学硕士论文, 2010.
    [69]袁波.面向卫星资源规划的移动目标分析方法研究[D].长沙:国防科技大学硕士论文, 2010.
    [70]杨剑.基于区域目标分解的对地观测卫星成像调度方法研究.长沙:国防科技大学硕士学位论文,2009.
    [71]邱洪钢,张青莲,陆绍强等.ArcGIS Engine开发[M].北京:人民邮电出版社,2010.
    [72]吴秀芹,张洪岩,李瑞改等.ArcGIS9地理信息系统应用与实践[M].北京:清华大学出版社,2008.
    [73] M. M. Solomon. Algorithms for Vehicle Routing and Scheduling Problems with TimeWindow Constraints[J]. Operations Research. 1987, 2:254-265.
    [74] S. Chien, G. Rabideau, J. Willis, et al. Automating Planning and Scheduling of Shuttle Payload Operations[J]. Artificial Intelligence Journal, 1999, 114: 239-255.
    [75] S. Chien, B. Cichy, A. Davies, et al. An Autonomous Earth Observing Sensorweb[J]. IEEE Intelligent Systems, 2005:16-24.
    [76] S. Chien R. Sherwood, D. Tran, et al. Using Autonomy Flight Software to Improve Science Return on Earth Observing One[J]. Journal Aerospace Computing, Information, & Communication, 2005, 2:196-216
    [77] S. Chien, D. Tran, G. Rabideau, et al. Timeline-based space operations scheduling with external constraints[C]//Proceedings of International Conference on Automated Planning & Scheduling, Toronto, Canada, 2010:34-41.
    [78]江志斌. Petri网及其在制造系统建模与控制中的应用[M].北京:机械工业出版社, 2004.
    [79]袁崇义Petri网原理与应用[M].北京:电子工业出版社, 2005.
    [80]张劲松.基于受控混杂Petri网的连续过程生产调度建模及优化方法[D].济南:山东大学, 2008.
    [81]丁峰.有色时间Petri网与随机Petri网应用研究[D].合肥:合肥工业大学硕士论文, 2009.
    [82]郭伟民,赵新国,李强等.卫星军事应用系统支援常规导弹作战Petri网建模[J].系统工程与电子技术, 2009, 31(2): 407-410.
    [83] Du Zhuomin, He Yanxiang, Plan Specification of Multi-agent based on Colored Petri Nets[C]. Proceedings of the 20th International Conference on Advanced Information Networking and Application. Washington, DC, USA: IEEE Computer Society (1550-445X), 2006. (04):912-916.
    [84] Vincent F. Giampaolo.Shiptrack Detection Algorithm Study[D].Monterey:NAVAL POSTGRADUATE SCHOOL,1992.
    [85] John W. Lutz.Ship tracks a geographical and statistical study [D].Monterey:Naval Postgraduate School,1992.
    [86] Douglas E.Mays.Shiptrack datebase analysis[D].Monterey:NAVAL POSTGRADUATE SCHOOL,1993.
    [87] Rivett C, Pontecorvo C. Improving Satellite Surveillance Through OptimalAssignment of Assets (DSTO-TR-1488). Report, Australian GovernmentDepartment of Defence, 2004.
    [88]卓贤军,赵国泽,王继军.地震预测中的电磁卫星[J],大地测量与地球动力学, 2005, 25(2): 1-5.
    [89]赵国泽,陈小斌,蔡军涛.电磁卫星与地震预测[J],地球物理学进展, 2007, 22(3): 667-673.
    [90] Bleier T, Freund F. Impending Earthquake have been Sending Us Warming Singles and People are Starting to Listen [J], IEEE Spectrum, 2005(12): 17-21.
    [91] Michele L B. Learning WCF: A Hands-on Guide[M].电子工业出版社. 2008.
    [92] CPN Tools help, http://cpntools.org/.
    [93]孙建召.基于Pertri网的工作流模型的研究与实现[D].长沙:中南大学,2007(5).
    [94]徐建军.基于Pertri网的动态工作流技术研究[D].长沙:国防科技大学,2004,(11).
    [95] Miller J, Sheth A, Kochut K. Simulation Modeling With in Workflow Technology[C]. Proceedings of the 1995 Winter Simulation Conference,Arlinton.
    [96]高永明,吴钰飞等.快速响应空间体系与应用[M].国防工业出版社.
    [97]谢晓方,姜震,一种专家系统开发工具CLIPS应用研究,海军航空工程学院学报,2004,19(2):239~242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700