层状自由场地固有频率的求解方法、特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场地土层的固有频率是场地土的重要动力特性之一,大量震害观测资料表明,许多震害是由结构物与场地地基的共振或类共振效应引起的,因此,为了有效的估计和防止这类震害的发生,工程设施的固有频率应尽量避开场地地基的固有频率。本文视工程场地为半空间上的水平层状土层,对其固有频率的求解方法、特性及工程应用进行了深入系统的研究,在此基础上,对半空间上水平层状场地固有频率特性及影响因素进行了分析和总结。
     对传统的基于集中质量矩阵的剪切质点系法(集中质量法)的质量矩阵、刚度矩阵,阻尼矩阵及振动方程的建立以及固有频率和振型的求解进行了说明,在此基础上,本文发展和建立了基于一致质量矩阵的剪切质点系法(一致质量法),同时,引入半无限单元模拟半无限空间,建立了可考虑半空间弹性影响的改进一致质量法,并用其分析了半空间刚性假设对场地自振频率的影响。其次,对剪切质点系法求解精度的影响因素及其影响规律以及分层策略对一致质量法求解“收敛”速度的影响进行了分析,并比较了集中质量法和一致质量法的不同,发现了集中质量法的“振荡”缺陷以及一致质量法的良好求解稳定性。最后,应用剪切质点系法,分析了半空间上水平层状场地的固有频率影响因素及特性,通过实例分析,提出了场地固有频率计算深度的选取问题并简单进行了讨论。
     基于匀直剪切梁横向自由振动微分方程及其振型函数解答,对刚性半空间上的直立悬臂剪切梁模型的自由振动微分方程进行了求解,获得了半空间上单层、双层以及三层覆盖情况下的超越方程隐式解析解答,并对适用于任意多层覆盖情况的递推解法进行了分析和推导。在此基础上,考虑半空间弹性,既考虑半空间与上覆土层之间的相互作用,建立和发展了改进弹簧一剪切梁模型,同样获得了单层、双层、三层以及任意多层覆盖情况的解析解答公式。其次,通过引入复材料常数,获得了考虑阻尼情况下的解析公式。最后,通过不同算例,用本章提出的弹簧-剪切梁模型分析了半空间弹性的对场地固有频率的影响,并用剪切梁法解析公式分析了“波速法”以及一致质量法在单层和多层情况下的求解精度。
     基于平面体波波动方程,分平面内(P-SV波)和平面外(SH波)问题,分别获得了土层顶底面之间状态向量的转换矩阵,在此基础上得到了土层和半空间的动力刚度矩阵,通过组集所有土层及半空间动力刚度矩阵获得以整体刚度矩阵表示的体系振动方程,从而求解整体系的固有频率和振型。其次,考虑土层水平向纯剪切振动,推导了波垂直入射情况下的解答,并与前面剪切梁法解答进行了比较,分析了剪切梁法的求解精度以及利用改进弹簧-剪切梁模型来考虑半空间弹性的合理性。最后,通过引入复材料参数,获得了阻尼情况下的波动法解答,并通过算例,分析了上覆土层阻尼和半空间阻尼对场地固有频率的影响。
     环境振动引起的地脉动能量以瑞利波为主,对脉动卓越频率所反映的影响深度和场地固有频率计算深度的关系进行了分析,获得了不同类型场地条件下瑞利波波长与计算深度之间的关系,同时对其特性和影响因素进行了总结。
The natural frequency of soil layers is one of the most important dynamic characteristics of site soils. It's indicated by large numbers of observation data that much seismic disasters is caused by the resonance vibration between structures and ground, so, in order to effectively estimate and prevent this kind of seismic disasters, the natural frequencies of engineering structures should keep away from that of the ground. In this dissertation, engineering sites are regarded as horizontally layered soils on half space, and the solving methods, characteristics and engineering applications are studied deeply and systematically. On the basis of these researches, the natural frequency and its influencing factors of horizontal soil layers on half space are analyzed.
    The mass matrix, stiffness matrix, damping matrix, establishment of vibration equations and the solving of natural frequency and mode shapes of the shear mass point system method based on clump mass matrix(clump mass method) are explained firstly, based on it, another kind of shear mass point system method based on consistent mass matrix(consistent mass method) is developed. Through introducing semi-infinite element to simulate the half apace, a kind of improved consistent mass method is developed and the influence of the half space elasticity is analyzed by it. Then, the solving precision and its influencing factors of shear mass point system methods and the influence of delaminating strategy on the convergence speed of consistent mass method are analyzed. At the same time, the differences of two kinds of shear mass point system methods are compared. Finally, the influencing factors and their characteristics of the natural frequency of horizontally layered sites on half space are analyzed with shear mass point system methods and a problem about the computing depth selecting of sites' natural frequencies is put forward and discussed briefly.
    Based on the horizontal vibration differential equations of straight beam and its mode shape function solution, the natural vibration differential equation of vertical shear cantilever model on rigid half space is solved and the analytic solutions with transcendental equation form of single layer and double, three layers on half space are obtained. At the same time, the recurrence solution which applicable for random multi-layer is deduced. Then, considering the elasticity of half pace, that is, take the reaction between half space and the soil layers on it considered, the spring-shear beam model is developed and the analytic solutions of single layer and double, three layers and random multi-layer on half space are obtained. Through introducing complex material parameters, the analytic solutions with damping are gained. Finally, the influence of the elasticity of half space on sites' natural frequencies and the solving precision of wave velocity method and consistent mass method are analyzed by spring-shear beam model solutions.
    On the basis of plane body wave motion equations, dividing to in-plane(P-SV) and anti-plane(SH) problems, the conversion matrixes of state vectors between soil layer's top and under sides are deduced, and based on these, dynamic stiffness matrixes of soil layers and half space can also be gained separately. By assembling dynamic stiffness matrixes of all soil layers and half space, system vibration equation can be get, which is expressed with integral dynamic stiffness matrix, and hence natural frequency and vibration mode for the
    whole system can be solved. Then, taking pure shear vibration in horizontal direction into considerations, solutions are deduced under the condition of wave injecting vertically, and taking contrast with solutions get by shear beam methods, accuracy of shear beam methods and rationality of using spring - shear beam model to consider half space elasticity are analyzed. Lastly, according to introducing complex material parameters, solutions with damping are obtained. Then through calculation cases, damping influences of soil layers and half space on natural frequency are studied.
    On the assumption that Rayleigh wave is the main energy in microtremors caused by environmental vibrations, the relation between the reflecting depth of microtremors and the computing depth of site's natural frequency is analyzed and relations between Rayleigh wavelength and computing depth for different models with different site's conditions are obtained. On the basis of these, characteristics and influent factors of them are summarized.
引文
Abrahamson N A, Schneider J F, Stepp J C. Empiricalspatial coherency functions for application to soil- structure interaction analysis [J]. Earthquake Spectra,1991, 7: 1-28.
    Ambraseys N N. A note on the response of an elastic overburden of varying rigidity to an arbitrary ground motion[J]. Bull. Seism. Soc. Am. 1959, 49(3): 211-220.
    Anestis S, Veletsos and Carlos E. Ventura, Dynamic analysis of structures by the DFT method [J], ASCE 1985, 111(12), 2625-2642.
    Antes H, and Von Estorff, O. (1994). Dynamic response of 2D and 3Dblock foundations on a halfspace with inclusions[J]. Soil Dyn. EarthquakeEng., 13, 305-311.
    Ahmad S, Al-Hussaini, T. M., and Fishman, K. L. (1996). Investigationon active isolation of machine foundations by open trenches. J. Geotech.Eng., 122(6), 454-461.
    Al-Hussaini, T. M., and Ahmad, S. (1996). Active isolation of machine foundations by in-filled trench barriers[J]. J. Geotech. Eng., 122(4),288-294.
    Athanasonpoulos G A, Pelekis P C. Ground vibrations forom sheetpile driving in urban environment: measurements, analysis and effects on buildings and occupants [J]. Soil Dynamics and Eearthquake Engineering. 2000, 19(5): 371-387.
    Babak A and Krawinkler H. Consideration of near-fault ground motion effects in seismic design [A]. 12 WCEE [C], 2000 , (3) , No. 2665 : 1 - 8.
    
    Bard P Y. Microtremors measurements: a tool for site effect estimation[A]. ESG 98 Symposium[C].1998.
    
    Beskos, D. E., Dasgupta, B., and Vardoulakis, I. G. (1986). Vibration isolation using open or filled trenches[J], Part 1: 2-D homogeneous soil. Comput. Mech., 1(1), 43-63.
    Chang, K. W. NG, T-S and H-H. M. Hwang (1989). Subsurface conditions of Memphis and Shelby county [R]. Technical Report NCEER-89-0021.
    Cassano R C. Earthquake code2posion or panacea [A]. ASCE National Structural Engineering Meeting [C], 1973, 1.
    
    Capon J. High-resolution Frequency-Wavenumber Spectrum Analysis[J]. Proc, of the IAEE, 1969,57(8)
    Castro R P. et al, S-waves site-espouse estimates using horizontal-to-vertical spectral ratios[J]. Bull. Seism. Soc. Am. 1997(87): 256-260
    Chouet B. Luca D, Milana G, Dawson P. Shallow velocity structure of Stromboli Volcano Italy, derived from small-aperture array measurements of strombolian tremor[J]. Bull. Seism. Soc. Am., 1998(88): 653-666.
    Dobry R , Oweis I , Urzua A. Simplified procedures for estimating the fundamental period of soil profile [J]. Bulletin of Seismological Society of America, 1976 , 66 (4) : 1293-1321.
    Dezfulian H and Seed H B. Seismic response of soil deposits underlain by sloping[J]. Journal of the Soil Mechanics and Foundation Division, ASCE ,1970 ,96 (SM6).
    Dezfulian H and Seed H.B. Response of nonuniform soil desposit to travelling seismic waves [J]. Journal of the Soil Mechanics and Foundation Division, ASCE ,1971. 97(SM1) :27 - 46.
    Dakoulas P, Gazatas G. Seismic lateral vibration of embankment dams in semi-cylindrical valleys. Earthquake Engng Struct Dyn, 1986, (14): 19-40.
    Dasgupta, B., Beskos, D. E., and Vardoulakis, I. G. (1990) Vibration isolation using open or in-filled trenches[J]. Part 2: 3-D homogeneous soil. Comput. Mech., 6, 129-142.
    Dunkin J W. Computation of modal solution in layered elastic media at hight frequency. Bull Seism Soc Am, 1965(55): 335-358
    Erdal Safak (1997). Models and methods to characterize site amplification from a pair of records[J],Earthquake Spectra, 13(1): 97-129.
    Finn W D L. Dynamic response analysis of saturated sands. In: Pande G N, Zienkiewiez O C eds. Soil Mechhanics-Transient and Cyclic Loading. UK: John Wiley and Son, 1982. 105-131.
    Finn W D L, Lee K W, Martin G R. Seismic response and liquefaction of sands[J]. J Geotech Engng Div, ASCE, 1976, 102(GT8): 841-856.
    Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction[J]. J Geotech Engng Div, ASCE, 1977, 103(GT6): 517-533.
    Gazetas G, Dakoulas P. Seismic analysis and design of rockfill dams: State-of-the-art. Soil Dyn Earthquake Engng, 1992,(11): 27-61.
    Gazetas G. Seismic response of earth dams: some recent developments. Soil Dyn Earthquake Engng, 1987, 6(1): 3-47.
    Hajian A H. Fundamental period and mode shape of layered soil profiles[J]. Soil Dynamics and Earthquake Engineering, 2002, (22): 885-891
    
    Haskell N A. The dispersion of surface waves on multilayered media. BSSA , 1953, 62 (4) : 1241-1258
    Haubrich R A. and Camy M. Microseisms: coastal and pelagic sources. Rev of Geophys, 1969(7):539-571.
    Huey Chu Huang , Chie Song Shieh , Hung Chie Chiu. Linear and nonlinear behaviors of soft soil layers using lotung downhole array in Taiwan [J]. TAO ,2001 ,12 (3) :503-524.
    Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time [J]. Journal of Engineering Mechanics, 1986, 112: 154-174.
    Horike M. Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized areas[J]. Phys. Earth, 1985.(33): 59-96
    Hung, H. H., Yang, Y. B., and Chang D.W. (2004). Wave Barriers for Reduction of Train-Induced Vibrations in Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(12): 1283-1291
    Idriss I M. Seed H B. Seismic response of horizontal soil layers[J Journal of the Soil Mechanics and Foundation Engineering Division , ASCE , 1968 , 94 (4) : 1003 - 1031.
    Idriss I M. et al. QUAD4: A computer p rogram for evaluating the seismic response of soil structures by variable damping finite element procedures.
    Idriss I M. Response of soft soil sites during earthquake [A]. Proceeding of a memorial Symposium to honor Professor Seed H.B [C]. University of California, Berkeley ,1990.
    Ikuo Towhata. Seismic wave propagation in elastic soil with continuous variation of shear modulus in the vertical direction. Soils and Foundation ,1996 ,36 (1) :61-72
    Joyner W B ,Chen A T F. Calculation of nonlinear ground response in earthquakes[J]. BSSA, 1975, 65(5): 1315-1330
    
    Jacobsen L S. Vibration transfer from shear buildings to ground[J]. Proc. ASCE. 1964, 90(EM3): 21-38.
    Ju, S. H. (2002). Finite element analyses of wave propagations due to high-speed train across bridges[J]. Int. J. Numer. Meth. Eng., 54: 1391-1408.
    
    Kausel E, Roesset J M. Stiffness matrix for layered soils. BSSA , 1981, 71 (6): 1743-1761
    Kaynia, A. M., Madshus, C, and Zackrisson, P. (2000). Ground vibration from high-speed trains: Prediction and countermeasure[J]. J. Geotech. Geoenviron. Eng., 126(6), 531-537.
    Kanai, K. and Tanaka, T. 1961 , On microtremors , VIII., Bull. Earthq. Res. Inst., 39, 97-114.
    Kanai. K. and Tanaka, T., On microtremors[J]. Bull, of the Earth Research Institute, 1961(39): 97-114.
    Katz L., Microtremors analysis of local geological conditions[J]. Bull. Seis. Soc. Am. 1976(66): 45-60
    Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics, 1992,21: 713-740.
    Konno.K. and Ohmachi, Ground-motion characteristics estimated from spectral ratio between horizontal and vertical compo-nests of microtremors[J]. Bull.Seism.Soc. Am. 1998, 88, 228-241
    Luis Fabian Bonilla , Jamison H. Steidl , Jean-Christophe Gariel , et al. Borehole response studies at the Garner Valley Downhole Array. Southern California [J]. Bulletin of the Seismological Society of America, 1992(8) : 3165-3179.
    Lee V W. Three-dimensional diffraction of plane P,SV, and SH wave by a hemispherical alluvial [J]. SDEE, 1984,3(3): 133-144.
    Lakin T J. DENSONR98-A computer program for seismic analysis of nonlinear horizontal soil layers[Z]. New Zealand. 1998
    Lachet C and Bard P, Numerical and theoretical investigations on the possibilities and limitations of the Nakamura's technique[J]. Journal of Physics of the Earth 1994(42) 377-397.
    Lacoss R T, Kelly E J. and Toksoz M N. Estimation of seismic noise structure using arrays. Geophysics, 1969, vol34: 21-38.
    Lenno. J. and Chavez-Garcia. J., Are microtremors useful in site response evaluation [J]. Bull. Seism. Soc. Am. 1994(84): 1350-1364
    Lee M K, Finn W D L. DEARA-2, Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential. Soil Mechanics Series, No.38, Dept of Civil Engng, University of British Columbia, Canada, 1978.
    Lee M K, Finn W D L. DEARA-1, Program for the dynamic effective stress response analysis of soil deposits including liquefaction evaluation. Soil Mechanics Series, No.36, Dept of Civil Engng, University of British Columbia, Canada, 1975.
    Liaw L J. and McEvilly T V. Microseisms in geothermal exploration-studies in grass valley, Nevada, Geophysics, 1979(44): 1097-1115.
    
    Lysmer J. Wang G. Shear wave in plane infinite structures. J Engrg Mech Div, ASCE, 1972, 98(1): 85-105
    Madera G A. Fundamental period and amplification of peak acceleration in layered systems. Research Report R 70-37, June. Cambridge, MA: MIT Press; 1970.
    Masri S F, Udwadia F. Transient response of a shear beam to correlated random boundary excitation[J]. J. Applied Mechanics, 1977, 44 : 487-491.
    
    Myklestad N O. Concept of Complex Damping[J]. JAM, 1952, 19(3): 284-288
    Minle H K. The impulse response function of a single degree of freedom system with hysteretic damping [J], Sound J. Vibration, 1985, 100(4): 590-593.
    Martin P P and Seed H B. A Computer program for the non-linear analysis of vertically propagation shear waves in horizontally layered deposit [R]. Report No. EERC 78-23 , University of California, Berkeley, Calif., 1978.
    Milana G, Barba S, Pezzo D, Zambonelli E. Site response from ambient noise measurements: new perspectives from an area study in Central Italy[J]. Bull.Seism.Soc. Am. 1996(86): 320-328
    Martin, P.P and Seed, H.B. One dimensional dynamic ground response[J]. J. ASCE. GT7. 1982: 935-952.
    Martin, P.P and Seed, H.B. MASH-A computer program for nonlinear analysis of vertically propagating shear waves in horizontally layered soil deposits. Report No. EERC78-23, Earthquake Engineering Research Center, University of California at Berkeley, USA, 1978.
    Martin, P.P and Seed, H.B. Simplified procedure for the dynamic effective stress analysis of ground response[J]. J. Giotech Engng Div. ASCE, 1979, 101(GT5): 423-438
    Martin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading[J]. J Geotech Engng Div, ASCE, 1975, 101(GT5): 423-438.
    Mayne P W. Ground vibration during dynamic compaction. Vibration problems in geotechnical engineering. Special Publication of ASCE: 247-265.
    Mononobe N, Takata A, Matunura M. Seismic stability of earth dam. In: Proc 2nd Congress of Large dams, Vol 4, Washington, D C, USA, 1936.
    Makdisi F I, Seed H B. Simplified procedure for evaluating embankment response. J Geotech Engng Div, ASCE,1979, 105(GT12): 1427-1433.
    Nigam N C, Jennings P C. Calculation of response spectra from strong-motion earthquake records [J]. BSSA, 1969, 59(2).
    Nakamura Y A. A method for dynamic characters estimation of subsurface using microtremors on the ground surface [R]. QR of RTRI, 1989 , 30 (1) : 25-33.
    Nakamura Y A. Clear identification of fundamental idea of Nakamura technique and its application [A]. 12th WCEE [C]. 2000, 2656#
    Nakamura Y A. et al. Study on the stability of H/V spectral ratio of microtremor in short period range for the estimation of dynamic characteristics of surface geology[A]. Proc, of the 12 WCEE[C]. 2000.
    Newmark N M. Numerical procedure for computing deflections, moments, and buckling loads[J]. Trans. ASCE, 1943(108): 161-1234.
    Nogoshi M and N. Nakajima. Site effects evaluated by detailed seismic intensity, peak acceleration and velocity, ground vibration by aftershock and microtremors. surface geology, and theoretical amplification on the ground in Akita City[A]. Proc, of the 10th World Conf. Earth. Eng[C]. 1992. 1019-1021.
    Pitarka A , Kojiro I, Tomotaka I and Haruko S. Three-dimension simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe) , Japan. Earthquake [J]: BSSA, 1998, 88(2) : 428-440.
    Qian Z W. Second-order harmonic surface waves in solid, Advences in Nonlinear Acoustics, 13~(th) International Symposium on Nonlinear Acoustics, Bergen, World Scientific, 1993: 490-495
    
    Report No. UCB-/EERC 73-16, Berkeley: University of California, 1973.
    Robert Pyke. Nonlinear soil models for irregular cyclic loadings [J] . Journal of the Geotechnical Engineering Division, ASCE , 1979 ,105(GJ6): 715-726
    
    
    Real, C. R. and Cramer. C. H. (1992). Site characterization and standard geotechnical model for Turkey Flat, ESG 1992, Odawara, Japan, 9-14
    Ramancharla, Merguro. Numerical modeling of dip-slip faults for studying ground surface deformation [A]. Bulletin of Earthquake Resistant Structure Research Center [C]. Institute of Industrial Science, The University of Tokyo, 2001 , 34.
    Reimer R B , Clough R W and Raphacl J M. Evaluation of the Pacoima dam accelerogram[A] . Proc. 5th , WCEE[C],1973.
    
    Richter C F. Elementary Seismology [M]. San - Francisco , 1958.
    Suzuki, S. and Asano, K (1996). Effect of different layered ground models on dynamic amplification considering the soil parameter variations[C]. Proc, of 11 WCEE : 1181-1188.
    Suzuki. S. and Asano. K (1992). Dynamic amplification function of surface layer considering variation of the soil parameter [C]. Proc, of 10 WCEE : 1193-1198.
    Scanlan R H, Linear damping models and causality in vibrations [J]. Sound J. Vibration, 1970, 13(4) , 499-509.
    Scanlan R. H. and Sachs K. Earthquake time histories and response spectra [J]. J.of Eng. Mech. Div, ASCE. 1974, 100 (EM4)
    Scott R F, Schoustra J J . Nuclear power plant sitting on deep alluvium [J]. Journal of Geotechnical Engineering Division , ASCE , 1974 , 100 (GT4): 449- 459.
    Su F, K. Aki , T. Teng , Y. Zeng , S. Koyanagi and K. Mayeda , The relation between site amplification factor and surficial geology in central California, Bull . Seism. Soc. Am.,, 1992., 82 , 580-602.
    Sun J et al. Dynamic module and damping factors for cohesive soils[R], EERC-88/15, University of California Berkeley.
    Stokoe K H et al. Dynamic response of San Francisco bay mud [A]. Proceedings, ASCE conference On earthquakeengineering and soil dynamics[C], 1978
    Seed H B et al. Module and damping factors for dynamic analysis of cohesionless soils[R].Report No. UCB/EERC 84/14, 1984.
    Seed H B. Idriss I M. Influence of soil conditions on ground motions during earthquakes. J soil Mech Found Div, ASCE, 1969, 95(SM1): 99-137
    Swaddiwudhipong S , Chow Y K. Dynamic response of surface foundations on layered media [J]. Earthquake Engineering and Structural Dynamics ,1991 ,20 (11) : 1065 - 1081.
    Seekins L, Wennerberg, L, Mwrgheriti L, Liu P. Site amplification at five locations in San Francisco. California: a comparison of S-waves, codas and microtremors[J]. .Bull. Seism. Soc. Am. 1996(86):. 627-635
    Seo, K. Application of microtremors to earthquake engineering lessons learned from recent joint researches[A] Proc, of the Jape-China Joint Workshop on Prediction and Mitigation of Seismic Risk in Urban Region[C]. October, 1997. 11-13.
    Seed H B. Martin G R. The seismic coefficient of earth dam design. J Soil Mech Found Div, ASCE, 1966, 92(SM3): 25-28.
    Seed H B. Earthquake effects on soil-foundation system. In: Winterkorn H F, Faud H Y eds. Foundation Engineering Handbook. New York: Van Nostrand Reinhold, 1975.
    Seed H B, Idriss I M. Simplified procedure for evaluating soil liquefaction potential. J Geotech Engng Div, ASCE, 1971,97(SM9): 1249-1273.
    Schnabel, P. et al. Modification of seismograph records for effects of local soil conditions[J]. BSSA. 1972, 62(6): 1649-1664
    Schnabel, P B. et al. SHAKE-A computer program for earthquake response analysis of horizontally layered sites. Report No. EERC72-12, Earthquake Engineering Research Center, University of California at Berkeley, USA, 1972.
    
    Streeter, V.L. et al. Soil motion computiation by characteristics method[J]. J. ASCE, Vol.100, GT3.
    Schmid, G., Chou W. N., and Le, R. (1991). Shielding of structures from soil vibrations[A]. Soil Dynamic and Earthquake Engineering V, Proc., Int. Conf. on Soil Dynamics and Earthquake Engineering, Computational Mechanics Publications, Southampton, U.K., 651-662.
    Toshikazu, I. and Takayuki, F (1996). A seismic stability of structure considering soil parameter uncertainty [C]. Procof 11 WCEE, Paper No. 1033.
    
    Toksoz M N. and Lacoss R T. Microseisms: mode structures and sources. Science, 1968, vol159: 872-873.
    Theodorsen T., Garrick I E., Mechanism of flutter-a theoretical and experimental investigation of the flutter problem [R], NACA Tech. Rep. 685, 1940.
    Taniyama, Watanable. Deformation of sandy deposits by movement [A]. Proc. 12 th WCEE (No 2209) [C]. 2000, (6).
    Trifunac M D. Surface motion of a semi-cylindrical alluvial vally for incident plane SH waves [J] . BSSA, 1971 ,61(6): 1755-1770.
    Takemiya, H., and Fujiwara, A. (1994). Wave propagation/impedimentin a stratum and wave impeding block (WIB) measured for SSI response reduction[J]. Soil Dyn. Earthquake Eng., 13, 49-61.
    Thomson W T. Transmission of elastic waves through a stratified soil medium. J Appl Phys, 1950, 21 (1): 89-93
    Vardoulakis I. Vrettos C. Dispertion law of Rayleigh-type waves in a compressible Gibson half-space. Int J Numer Methods Geomech, 1988(12): 639-655
    Vrettos C. In-plane Vibration of soil deposits with variable shear modulus: I. Surface wave. Int J Numer Methods Geomech, 1990(14): 209-222
    
    Wolf J P. Dynamic soil-structure interaction [M]. Englewood Cliffs, Inc. ,Pretice-Hall ,New Jersey, 1985.
    Westergaard H M. Earthquake shock transmission in tall buildins[J]. Engrg. NewsRecord, 1933(111): 654-656.
    Wong Y L et al. Assessing seismic response of soft soil site in Hong Kong using microtremor record [J]. Hong Kong Institute of Engineering. Transaction, Groups, 1998, 5(3): 70-79
    Wong A C W et al. Pilot study of effects of soil amplification of seismic ground motions in Hong Kong[R], Technical Note, TNS/97. Geotechnical Engineering Office of Hong Kong, 1997.
    Wolf J P. Obernhuber P. Free-field response from inclined SH-waves and love-waves [J]. Earthquake Engineering and Structural Dynamic, 1982(10), 823-845, Reprinted by Permission of John Wiley & Sons, Ltd.
    
    Woods, R. D. (1968). Screening of surface waves in soils[J]. J. Soil Mech.Found. Div., 94, 951-979.
    Wiss, J. E. (1981). Construction vibrations: State-of-the-art. Geotechnical Engineering Division. 107(2): 167-181.
    Yamamoto H. Estimation of shallow S-wave velocity structures from phase velocities of Love-and Rayleigh- waves in Microtremors [A]. Proc, of the 12WCEE[C]. 2000.
    Yang, Y. B., and Hung, H. H. (1997). A parametric study of wave barriersfor reduction of train-induced vibrations[J]. Int. J. Numer. MethodsEng., 40, 3729-3747.
    Yang, Y. B., Kuo, S. R., and Hung, H. H. (1996). Frequency independent infinite element for analyzing semi-infinite problems[J]. Int. J. Numer. Methods Eng., 39, 3553-3569.
    Yang, Y. B., and Hung, H. H. (1997). A parametric study of wave barriers for reduction of train-induced vibrations[J]. Int. J. Numer. Methods.Eng., 40, 3729-3747.
    Yang, Y. B., and Hung, H. H. (2001). A 2.5D finite/infinite element approach for modelling visco-elastic body subjected to moving loads[J]. Int. J. Numer. Methods Eng., 51, 1317-1336.
    GB50011-2001,《建筑抗震设计规范》[S].北京:中国建筑工业出版社,2001.
    GB17741-1999,《工程场地地震安全性评价技术规范》[S].北京:中国建筑工业出版社,1999.
    GBJ50021-94,《岩土工程勘察规范》[S].北京:中国建筑工业出版社,1995.
    GB/T50269-97,《地基动力特性测试规范》[S].北京:中国计划出版社,1998.
    爱林根A C.连续统力学.程昌钧,俞焕然译.北京:科学出版社,1991
    薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱特征周期的影响[J].地震工程与工程振动,2003,(05).
    薄景山,李秀领,刘德东,刘红帅.土层结构对反应谱平台值的影响[J]地震工程与工程振动,2003,(04).
    薄景山,李秀领,刘红帅.土层结构对地表加速度峰值的影响[J].地震工程与工程振动,2003,23(03):35-40.
    薄景山,吴兆营,翟庆生,齐文浩.三种土层结构反应谱平台值的统计分析[J].地震工程与工程振动,2004,24(02):23-28.
    薄景山,翟庆生,吴兆营,齐文浩.三种土层结构反应谱特征周期的统计分析[J].地震工程与工程振动,2004,24(03):124-129.
    薄景山,翟庆生,吴兆营,齐文浩.基于土层结构的场地分类方法[J].地震工程与工程振动,2004,24(04):46-49.
    薄景山,李秀领,李山有.场地条件对地震影响研究的若干进展[J].世界地震工程,2003,19(2):11-15.
    曹志翔,杨永红,王政章.平面外地震波入射下场地的动力响应[J].吉林化工学院学报学报,2006,23(4):56-59.
    曹志翔.土层性质对SH波场地放大效应的影响[J].沈阳理工大学学报,2006,25(3):88-91.
    崔正涛.场地土组合特征和设计反应谱[D].哈尔滨:国家地震局工程力学研究所.1995.
    陈继华,陈国兴,史国龙.深厚软弱场地地震反应特性研究[J].防灾减灾工程学报,2004,(02).
    陈继华,贾学民,王伟.软弱夹层土对软土场地地震效应的影响[J].燕山大学学报,2006,30(5):451-455
    陈云敏,凌道盛,周承涛.打桩振动近场波动的数值分析和实测比较[J].振动工程学报,2002,15(2):178-184.
    陈云敏.成层地基中的瑞利波及其谱分析测试技术[D].杭州:浙江大学土木系.1989.
    陈云敏,吴世明.成层地基的Rayleigh波特征方程的解法[J].浙江大学学报,1991,25(1):40-52.
    陈国兴,陈继华.软弱土层的厚度及埋深对深厚软弱场地地震效应的影响[J].世界地震工程,2004,20(3):66-73.
    陈龙珠,吴世明.用机械阻抗法求成层地基的固有频率[J].岩土工程学报,1989,11(2):82-87.
    陈清军,朱合华.分析层状半空间对入射地震波响应的改进模型[J].力学学报,1997,29(1):123-127
    陈镕,陈竹昌.夹有软弱土层的层状场地对入射SH波的响应分析[J].岩石力学与工程学报,1999,18(2):161-165.
    陈镕,陈竹昌,薛松涛,等.横观各向同性场地对入射SH波的响应分析[J].上海力学,1998.
    蔡元奇,韩芳,朱以文.场地卓越周期与结构基本周期关系研究[J].地震工程与工程振动,2005,24(4):70-74.
    蔡袁强,王大力,等.强夯加固机理及其环境影响的数值分析[J].岩土力学,2005,26(增刊):159-162.
    丁海平,刘长和.复阻尼理论的一点注记[J].地震工程与工程振动,2001,21(1):61-63
    丁伯阳,著.土层波速与地表脉动[M].兰州:兰州大学出版社,1996.
    郭明珠,谢礼立,等.利用地脉动进行场地反应分析研究的综述[J].世界地震工程,1999,15(3):14-19
    郭明珠,,于海英.地脉动机制分析方法研究[J].世界地震工程,2002(2):17-23.
    郭明珠,谢礼立,凌贤长.弹性介质面波地脉动单点谱比法研究[J].岩土工程学报,2004,26(4):450-453.
    郭明珠.地脉动波场分析及其在场地动力特性测试中的应用[D].哈尔滨:中国地震局工程力学研究所,2000.
    郭明珠,谢礼立,等.体波地脉动的单点谱比法[J].岩土力学,2003,24(1):109-112.
    郭明珠,宋泽清.论地脉动场地动力特性分析中的Nakamura法[J].世界地震工程,2000,16(2):88-92.
    郭学彬,肖正学,等.爆破地震作用的沟槽效应[J].爆破器材,1999,28(3):4-7.
    高玉峰,金建新,谢康和,王朝晖.成层地基一维土层地震反应解析解[J].岩土工程学报,1999,21(4):498-500.
    高玉峰.对“成层地基一维地震反应解析解”讨论的答复[J].岩土工程学报,2003,25(3):378.
    高广运,吴世明,周健,刘奋勇.场地卓越周期的讨论与测定[J].工程勘察,2000,(05):29-31.
    甘杨,李凡,李大华.一维土层非线性地震反应分析的解析递推格式法[J].吉林大学学报(地球科学版),2006,36(4):631-635
    黄义,王春玲,曹彩芹.成层地基一维土层对地震的随机反应分析[J].世界地震工程,2004,20(1):126-132.
    黄义,门玉明.结构-地基相互作用系统可靠性分析[M].西安:陕西省科学技术出版社,2000.
    黄义,王春玲.水平成层均质地基地震反应非线性分析的版解析算法[J].世界地震工程,2005,25(3):115-119.
    黄义,王小岗.横观各向同性饱和层状地基的三维稳态动力响应[J].固体力学学报,2006,27(3):223-229.
    黄玉龙,周锦添,郭迅,袁一凡.软泥夹层对香港软土场地地震反应的影响[J].自然灾害学报,2000,9(1):109-116.
    何钟怡.复本构理论中的对偶原则[J].固体力学学报,1994,15(2):177-180
    何钟怡,廖振鹏,王小华.关于复阻尼理论的几点注记[J].地震工程与工程振动,2002,22(1): 1-6
    胡海岩.结构阻尼模型及系统时域动响应闭.振动工程学报.1992.5(1):8-15.
    胡聿贤.地震工程学[M].北京:地震出版社,1988
    胡聿贤,孙平善,章在墉等.场地条件对震害和地震动的影响[J].地震工程与工程振动,1980,试(1):35-41.
    金星,孔戈,丁海平.水平成层场地地震反应非线性分析[J].地震工程与工程振动,2004,24(3):38-43
    金井清,著.常宝奇等,译.工程地震学[M].北京:地震出版社,1987.
    江静贝,符圣聪,崔卫国.从不同场地反应谱形状看设计谱的确定[J].工程抗震,1995(2):47-49.
    蒋通.脉动的研究及其在地震工程中的应用[J].世界地震工程,1999(4).
    蒋通,崔哲,李文艺.层状介质中瑞雷面波理论及其在场地地脉动观测中的应用[J].上海力学,1999(3):252-258.
    克拉夫R W,彭津J著;王光远,等译.结构动力学[M].北京:科学出版社,1981.
    廖振鹏,李小军.地表土层地震反应的等效线性化解法[A].地震小区划-理论与实践[C].北京:地震出版社.1989:141-153.
    廖振鹏.地震小区划—理论与实践[M].北京:地震出版社,1989.
    廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    廖振鹏,王品波.离散网络中的弹性波动[J].地震工程与工程振动,1986,6(2).
    廖振鹏.近场波动的数值模拟[J].力学进展,1997,27(2).
    廖振鹏.近场波动问题的有限元解法.地震工程与工程振动,1984,4(2):1-14.
    栾茂田,林皋.场地地震反应一维非线性计算模型[J].工程力学,1992,9(1):94-103.
    栾茂田,林皋.场地地震反应非线性分析的有效时域算法[J].大连理工大学学报,1994,34(2):228-234.
    栾茂田,刘占阁.成层场地振动特性及地震反应简化解析解的完整形式[J].岩土工程学报,2003,25(6):747-749.
    栾茂田,金崇磐,林皋.非均质地基振动特性及地震反应分析[J].大连理工大学学报,1992,32(1):81-87.
    李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    李小军.土的动力本构关系的一种简单函数表达式[J].岩土工程学报,1998,14(4).
    李小军.场地土层对地震地面运动影响的分析方法[J].世界地震工程.1992.8(2):49-60
    李天,李杰.具有随机参数的场地地震反应分析[J].岩土工程学报,1994,11(5):79-83.
    李杰,李国强.地震工程学导论[M].北京:地震出版社,1992,43-44.
    李大华.结构地震反应数值分析的解析递推格式[J].地震工程与工程振动,1992,12(3):48-54.
    李伟华.P波入射下土饱和度对土层交界面运动的影响[J].岩土力学,2002,2 3(6):782-786.
    李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.
    李媛媛,徐扬,吴东.覆盖层厚度对反应谱峰值的影响[J].地震地磁观测与研究,2003,19(2):33-38.
    李秀领.土层结构对地表地震动参数影响的研究[D].哈尔滨:中国地震局工程力学研究所,2003.
    李昊.核址地脉动测试与分析研究[J].上海地质,2000(2):57-59.
    林学文.场地的脉动评价[J].西北地震学报,1991,13(2):76-82.
    林皋.结构和地基相互作用体系的地震反应及抗震设计[A].中国地震工程研究进展[C].北京:地震出版社,1992.
    冷伍明,赵善锐.土工参数不确定性的计算机分析[J].岩土工程学报,1995,17(2):68-72.
    刘曾武,等.场地土层的周期特性[J].中科院工程力学研究所地震工程研究报告集(4),北京:科学出版社,1981.
    刘曾武.考虑软弱夹层的影响对设计反应谱修正的简易方法[A].第四届全国地震工程会议论文集(1)[C].哈尔滨:1994:86-91.
    刘曾武.长周期地脉动应用研究进展(研究报告)[R].工程力学研究所,1992.
    刘俊杰,王家全.场地卓越周期的讨论与场地建筑的共振现象[J].广西工学院学报,2005,16(3):47-50.
    刘晶波.波动的有限元模拟及复杂场地条件对地震动的影响[D].哈尔滨:国家地震局工程力学研究所,1989.
    刘奉喜,刘建坤,等.多年冻土区铁路隔振沟隔振效果的数值分析[J].中国铁道科学,2003,24(5):48-51.
    廖河山,陈清军,徐植信.SH波倾斜入射时土层的非线性响应分析[J].同济大学学报,1994,22(4):517-522.
    廖河山,徐植信.场地土一维非线性地震反应分析方法[J].地震工程与工程振动,1992,12(4):30-39.
    梁建文,尤红兵.层状半空间中洞室对入射平面P波的散射[J].地震工程与工程震动,2005,25(2):16-24
    楼梦麟.变参数土层的动力特性和地震反应分析[J].统计大学学报,1997,25(2):155-160.
    娄建武,龙源等.爆炸波传播的沟槽效应及分析[J].矿冶工程,2004,24(1):11-16.
    潘旦光,楼梦麟,董聪.SH波作用下层状土层随机波动分析[J].工程力学,2005,22(5):20-25.
    潘旦光,楼梦麟,董聪.P-SV波作用下层状土层随机波动分析[J].工程力学,2006,23(2):66-71.
    彭远黔,路正,李雪英,高登平.场地脉动卓越周期在工程抗震中的应用[J].华北地震工程,2000,18(4):61-68.
    彭远黔,李雪英,高登平.场地脉动观测数据处理方法的差异性研究[J].山西地震,2000(2):18-22.
    钱胜国.软土夹层地基场地土层地震反应特性的研究[J].工程抗震,1994(1):32-36.
    钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996,558-566.
    钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    钱祖文.各向同性弹性介质中P波和SV波的非线性相互作用[J].声学学报,1996,21(4):346-351
    沈聚敏,周锡元.抗震工程学[M].北京:中国建筑工业出版社,2000.
    时振梁,张少泉,赵荣国,等.地震工程手册[M].北京:地震出版社,1990.604-605.
    首培,刘曾武,朱镜清.地震波在工程中的应用[M].北京:地震出版社,1982.
    宋天霞,郭建生,杨元明.非线性固体计算力学[M].武汉:华中科技大学出版社,2002.
    孙建平,朱唏.考虑土非线性层状场地地震反应计算方法[J].岩石力学与工程学报,2002,
    石建梁.考虑土层不确定性的一维土层地震反应分析[D].硕士学位论文,中国地震局工程力学研究所,1990.
    石玉成.黄土场地的脉动特征及地震工程意义[J].兰州大学学报,2001,37(5):105-110.20(2):220-224
    童广才,刘康和.场地卓越周期的确定[J].电力勘测,2000,26(02):43-46.
    陶夏新,刘曾武,郭明珠,等.工程场地条件评定中的地脉动研究[J].地震工程与工程振动,2001,21(4):18-23.
    陶夏新,师黎静,董连成.中日地脉动台阵联合观测[J].世界地震工程,2002(2):24-31.
    王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    王建平,刘宏昭,原大宁,张忠明.含复阻尼振动系统的对偶原则及其数值方法研究[J].振动工程学报,2004,17(01):62-65
    王广军.场地条件影响和抗震设计反应谱的若干问题[J].工程抗震,1992(3):28-32.
    王广军.层状地基剪切波速及其统计关系[J].工程勘察,1982,(1):26-29.
    王春玲,黄义.关于“成层地基一维地震反应解析解”的讨论[J].岩土工程学报,2003,25(3):377-378.
    王春玲,郭华.非均质地基的地震随机反应[J].纺机高校基础科学学报,2003,25(3):377-378.
    王志良.不规则循环剪切荷载作用下土的粘弹塑性模型[J].岩土工程学报,1980,2(3):10-19。
    王志良,韩清宇.粘弹塑性土层地震反应的波动分析法[J].地震工程与工程振动,1981,1(1):117-137
    王钟崎,谢君斐,石兆吉.地震工程导论[M].北京:地震出版社,1983.
    王松涛,陈向东,魏钢等.超软弱土层对场地地震反应的影响[A].第四届全国地震工程会议论文集(一)[C].哈尔滨:1994:79-85.
    王复明,林皋.层状地基分析的样条半解析法及其应用[M].郑州:河南科学技术出版社,1988.
    汪闻韶,金崇磐,王成克.土石坝的抗震计算和模型实验及原型观测[J].水利学报,1987,(12):1-15.
    王绍博,丁海平.土动力参数对土层动力反应的影响[J].地震工程与工程振动,2001,21(1):105-108.
    吴世明.土介质中的波[M].北京:科学出版社,1997,383-395.
    门玉明,黄义,刘峥嵘.场地土的随机地震反应分析[J].工程地质学报,2004,20(1):126-132.
    Wolf J P著.土-结构动力相互作用[M].吴世明,唐有职,陈龙珠等译.北京:地震出版社,1989
    夏唐代,陈云敏,吴世明.利用瑞利波波速弥散性反演地基参数[J].振动工程学报,1991,4(4):31-37.
    夏唐代.地基中表面波特性及其应用[D].杭州:浙江大学土木系,1992.
    夏唐代,陈云敏,吴世明.匀质软夹层地基瑞利波弥散特性[J].振动工程学报,1993,6(1):42-50.
    夏唐代,吴世明.流体-固体介质中瑞利波特性[J].水利学报,1994(1):69-85.
    夏唐代,蔡袁强,吴世明,宫全美.各向异性成层地基中Rayleigh波的弥散特性[J].振动工程学报,1996,9(2):191-197.
    夏唐代,张忠苗,吴世明.Rayleigh面波法原理的数值模拟[J].浙江大学学报,1996,30(3):277-285.
    谢定义.土动力学[M].西安:西安交通大学出版社,1988,363-395.
    谢礼立,李沙白,章文波.唐山响嘡三维场地影响观测台阵[J].地震工程与工程振动,1999,19(2):1-8.
    谢忠球,温佩琳.场地微动各向异性分析及其应用[J].工程勘察,2004(4):64-66.
    薛松涛,陈镕,秦岭.横观各向同性层状场地在SH波入射时的共振特性[J].同济大学学报,2002,30(2):127-132.
    薛松涛,谢丽宇,陈镕,王远功.平面P-SV波入射时TI层状自由场地的响应[J].岩石力学与工程学报,2004,23(7):1163-1168.
    徐志英.奥罗维尔土坝三维简化动力分析[J].岩土工程学报,1996,18(2):82-87.
    熊建国,许贻燕.分层土自振特性分析[J].地震工程与工程振动,1986,6(4):21-35.
    俞载道,曹过敖.随机振动理论及其应用[M].上海:同济大学出版社,1988.
    于国有,何玉敖,梁建文.层状半空间场地对地震波的放大作用[J].天津大学学报,1993,26(4):79-85.
    杨学林,陈云敏,蔡袁强,吴世明.利用地脉动确定地基自振频率[J].岩土工程学报,1995,17(4):51-55.
    杨学林,吴世明,周亚刚.利用短周期地脉动推断深层地基S波速度[J].振动工程学报,1997,10(2):169-175.
    杨学林.短周期地脉动信号的分析与应用[D].杭州:浙江大学,1994.
    周锡元,王广军,苏经字.场地分类和平均反应谱.岩土工程学报,1984,6(5):59-68
    周锡元.土质条件对建筑物所受地震荷载的影响[A].中国科学院工程力学研究所地震工程研究报告集(第二集)[C].北京:科学出版社,1965.
    周锡元,王国权,徐国栋.1999年土耳其地震和中国台湾地震近场强地面运动的特征[A].现代地震工程进展[C].南京:东南大学出版社,2002:48-56.
    周锡元,王广军,苏经宇.场地·地基·设计地震[M].北京:地震出版社,1991
    周克森.一维土层非线性地震反应分析的δ-θ法[J].地震工程与工程振动,1996,16(4):1-13
    周正华,廖振鹏,丁海平.一种时域复阻尼本构方程[J].地震工程与工程振动,1999,19(02):37-44
    朱镜清.结构抗震分析原理[M].地震出版社,2002.
    朱镜清.关于复阻尼理论的两个基本问题[J].固体力学学报,1992;13(2):113-118
    朱镜清,朱敏.复阻尼地震反应谱的计算方法及其它[J].地震工程与工程振动,2000,20(2):19-23
    朱镜清.频率相关枯性阻尼理论及有关问题的解[J].振动与冲击,1992,11(4).
    朱镜清,朱敏.复阻尼多自由度系统动力分析的模态叠加法[J].地震工程与工程振动,2004,24(1):55-58
    朱敏,朱镜清.逐步积分法求解复阻尼结构运动方程的稳定性问题[J].地震工程与工程振动,2001,12(4).
    朱敏,朱镜清.复阻尼地震反应谱计算的再研究[J].地震工程与工程振动,2001,21(2):36-40
    朱敏,朱镜清.逐步积分法求解复阻尼结构运动方程的稳定性问题[J].地震工程与工程振动,2001,21(4):59-62
    朱敏,朱镜清.复阻尼振动方程频域解法中有关问题的研究[J].世界地震工程,2004,20(01):23-28
    朱伯龙,张琨.建筑结构抗震设计原理[M].上海:同济大学出版社,1984
    郑柱坚.场地卓越周期的测定及其在建筑抗震设计中的应用[J].工程抗震,2000,(01):36-39
    翟永梅,李文艺,蒋通.上海市地脉动观测及其在场地卓越周期测试中的应用[J].地震研究,2004,27(3):277-282.
    赵崇斌,张楚汉,王光纶,张光斗.用无穷元研究土层特性对场地地震反应的影响[J].水利水运科学研究,1988,23(1):31-45.
    赵荣欣,谢永利,等.泡沫塑料—水泥土充填沟隔振性状研究[J].西安公路交通大学学报,1998,18(1):38-42.
    赵松戈,胡聿贤,廖旭.土层参数的随机性对场地传递函数的饿影响[J].地震工程与工程振动,2000,20(2):7-12.
    曾心传,秦小军,土层对地震的随机反应分析[J].地震工程与工程振动,1998,18(3):27-38.
    张楚汉,赵崇斌.复杂地基中波动问题和数值模拟[J].土木工程学报,1987,20(4):83-96.
    张为民,王春玲,黄义.成层地基一维土层地震反应解析解[J].西安建筑科技大学学报,2003,35(2):159~161.
    张克绪,谢君斐.土动力学[M].北京:地震出版社,1989.
    张自平,贺军.外部干扰引起某酒店楼房共振观测与分析[J].工程质量,2002,(03):42-44.
    浙江大学建筑设计研究院.杭州CBD尊宝大厦岩土工程勘察报告,2005.
    浙江大学土木工程测试中心.杭州CBD尊宝大厦场地地脉动测试报告,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700