考虑应力各向异性土体本构模型及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应力诱导各向异性是土体的重要特性,也是土体材料不同于金属材料的一个典型特性,并且在很多土体工程中都普遍存在这种因为应力状态改变而导致土体各向异性的现象。如何正确的在土体本构关系的研究中模拟、反映这种应力各向异性的影响,尝试突破现有传统理论中各向同性假设所带来的实践和理论上的限制,建立能够反映这种特性的土体本构模型,对于土体本构关系的研究具有重要的理论意义,同时对于解决工程实际问题提供新的思路和解决途径,对岩土工程实践有相当的实际意义。
     本文首先在河海大学ZSY-1真三轴试验仪上进行了主要针对砂土的系列不等向固结后单向加载试验。通过对装样方法的试验验证,表明振捣湿法装样可以有效消除制样所引起初始各向异性的影响;在前人试验的基础上,进一步验证和揭示了土体在复杂应力状态下的各向异性应力变形规律;为建立各向异性模型提供了试验依据。通过对真三轴试验和相关资料试验结果分析比较,表明在三向应力状态下,土体这种非连续介质散粒体材料具有典型的应力各向异性;
     在复杂应力状态下土体真三轴试验揭示的出土体各向异性基本规律基础上,从柔度矩阵的角度分析各向异性的影响,总结了复杂应力状态下柔度矩阵应该具有的特征,同时对现有模型的局限性进行深入分析;提出应力各向异性是土体这种散粒体非连续介质材料区别于一般典型弹性连续介质材料的根本特性之一
     考虑各向异性特点,从实用角度出发,对既有常用的土体非线性弹性本构模型的深入分析;在常用经典非线性弹性模型—邓肯E-v非线性弹性土体本构模型基础上,结合真三轴试验结果所揭示的复杂应力条件下土体应力各向异性特性,建立一种近似的实用各向异性非线性弹性模型,从而从一定程度上反映土体应力各向异性的影响
     结合坐标转换方法,通过适当假设,给出各向异性模型在一般应力空间的应力应变关系转换矩阵,推导了平面问题的各向异性有限元格式;在河海大学BCF固结有限元程序的基础上,通过添加各向异性模型的相应程序段,编制了各向异性固结有限元计算程序,对一简单算例进行了数值计算分析,并和邓肯E-v模型计算结果进行比较,结果初步验证了各向异性模型和程序的可靠性。
     依据本文各向异性模型和平面固结有限元程序,对某面板堆石坝进行平面应力变形分析,并和常规邓肯模型计算结果及现有实测资料比较,分析了各向异性对于面板堆石坝应力变形的影响;通过分析蓄水期间面板堆石坝的加荷特征,说明在此阶段在坝体内由于应力各向异性的影响,坝体材料的应力应变规律和常规模型有所不同,并将对坝体应力变形特征,尤其是面板上的变形和应力分布规律产生显著影响。现有模型因为不能合理考虑这种应力各向异性的影响,采用了较大的泊松比和较小的弹性模量,计算出的面板拉应力分布区域和数值大小和现有的实测资料比较,都普遍偏大。本文提出的各向异性非线性弹性模型能从一定程度上考虑这样各向异性的影响,计算的面板应力变形规律更符合实际规律;
     用各向异性模型对某土质心墙坝进行应力变形有限元计算,并和常规邓肯模型结果比较,分析说明各向异性对于高土质心墙坝水力劈裂评估效果存在影响;复杂加荷条件下,
    
    如土石坝蓄水阶段,由于土体加荷方式和常规三轴试验中的轴向加荷方式不同,水荷载是
    从小主应力作用方向施加,土体中存在应力诱导各向异性;各向同性模型不能考虑这种影
    响,导致对心墙水力劈裂进行评估结果可能偏危险;各向异性模型结果较邓肯E-v模型有
    所改善。
     鉴于土体本质上的弹塑性特性,以及弹塑性模型在土体本构理论研究中的重要地位,
    本文在前人研究的基础上,以剑桥模型为基础,借鉴关口太田模型的建模思想,通过在修
    正剑桥模型中引入新的应力比参数,初步尝试建立各向异性弹塑性模型。将关口太田模型
    的弹头形屈服轨迹修正成为椭圆形屈服轨迹以适应等向固结应力路径;通过调整弹性区的
    范围,改善关口太田模型过大的计算变形。用修正后的各向异性弹塑性模型对一简单算例
    作有限元计算,结果比较说明修正后模型的计算变形有所改善。
    关键词:土体本构关系应力各向异性真三轴试验柔度矩阵有限元
Stress-induced anisotropy is one of very important characters of soil and also key difference from metal material, which exist in many geotechnical projects. It is very important to stimulate and reflect the anisotropy in the process of study on soil's constitutive relationship. To establish a reasonable anisotropic constitutive model will supply some new methods to solve some practical problem. Study on the stress-induced anisotropy is very important in terms of theoretical analysis and practical engineering.Based on series true-triaxial tests under complex stress state, basic anisotropic deformation mechanism and mechanical characteristics of soil is discovered, which will supply enough data for the establishment of anisotropy constitutive model. Based on the test results, the main character of the strain-stress matrix of soil under complex stress state is summarized. It is summarized that the shape and form of the strain stress matrix of soil elements under complex stress state, which may be used to verify and check the correct and rationality of soil's constitutive model.By considering the stress-induced anisotropy under complex stress state, based on the usual-used Duncan-Chang model, a new anisotropic model is developed, which can describe the stress-induced anisotropy and is convenient by applying the same parameter as Duncan-Chang model.To apply the new model in the FEM, the coordinate transformation method is discussed. The anisotropic finite element format of planar is derived. By making some necessary changes to the BCF FEM codes, an anisotropic 2D FEM program is given, which apply the new anisotropic model. A simple example is analyzed and it is shown that the anisotropic model is superior to conventional non-linear elastic model on aspect of reflecting the anisotropy and the program is reliable.Compared with conventional Duncan-Chang E-v and E-B model, the anisotropic model was applied to perform the 2D Fern analyses on the practical rockfill dam. The results showed that conventional model couldn't stimulate the stress-induced anisotropy produced during the process of reservoir impoundment, which will bring major error of stress and displacement calculation in the concrete faceplate and also will influence the hydro fracture in the earth core rockfill dam. Anisotropy model can stimulate this character to some extent. A new elastic-plastic model is also presented based on the Cam-clay model with the consideration of initially stress anisotropy. This model was developed by modifying the Sekiguchi-Ohta model using a new stress parameter and adjusting the yield locus and hardening axis in the p-q plane, which will improve the calculated results. A simple
    
    example is analyzed by FEM with the new model. The result is compared with that got from Cam-clay model and Sekiguchi-Ohta model; it is shown that new anisotropic model is superior to original model.
引文
[1] 沈珠江,理论土力学,北京:中国水利水电出版社,2000,1~30
    [2] 李广信,有关土的相互作用问题,岩土工程学报,Vol.18,No.6,1996,111~113
    [3] Arthur J.R.F &Menzies B.K., Inherent anisotropy in a sand, Geotechnique Vol.22, No.1,115~128, 1972
    [4] Hansen, J.B &Gibson, R.E., Undrained shear strength of anisotropically consolidated clays, Geotechnique, Vol. 1, No.3,1949,189~204
    [5] Scott, R. F., and Ko, H. Y, "Stress-Deformation and strength characteristics", Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, 1969, 1~49
    [6] H. Sekiguchi ,H. Ohta, Idnduced anisotropy and time dependency in clays, Preseedings of 9th ICSMFE, 1977, 229-230
    [7] Paul V. Lade, James M. Duncan. Cubical triaxial tests on cohesionless soil, Journal of the Soil Mechanics and Foundation, ASCE, 1973,793~812
    [8] Arthur, J.R.F.,chua, K.S&Dunstan, T., Induced anisotropy in a sand, Geothchnique27, NO.1.13-30, 1977
    [9] H.Sekiguchi and H.Ohta, Induced inisotropy and time dependency in clays, Preseedings of 9thlCSMFE, 1977, 231~238
    [10] Masanobu Oda, Isao Koishikawa and Toshio Higugui, Experimental study of anisotropic shear strength of sand by plane strain test, Soils and foundations, 18 ( 1 ) , 153~162, 1978
    [11] Bonder, S.R., Hardness law for inelastic deformation. International Journal of Engineerin gScrinece, 1978, 16(3), 221-230
    [12] Yasuo Yamada, and Knji Ishihara, Anistropic deformation characteristics of sand under three-dimensional stress conditions, Soils and foundations, 19(2), 119-123,1979,
    [13] Hashiguci, K., Constitutive equations of granular media with an ansisotropic hardening. Kyushu Univ, Fukuoka, Jpn Sourse: SAE Prepringts, 1979, A.A Balkema, 435~439
    [14] Teruo Nakai and Hajime Matsuoka, Shear behaviors of sand and clay under three dimension stress condition, Soils and foundations, Vol. 23, No. 2, June 1983, 26~41
    [15] Baker, R. And Desai, C.S., Induced Anisotropy during Plastic Straining internation Jorunal for numbercal and analytical methods in geomechanics, 1984, 8(2), 167-185
    [16] Desai, C.S and Faruque, Md. Omar, ,Constitutive model fogeological matierials, JEM, 1984, 110 (9), 1391-1408
    [17] Teruo Nakai and Yasuji Mihara, A new mechanical quantity for soils and its application to elastoplastic constitutive models, soils and foundations, Vol. 24, No. 2, June, 1984,25~40
    [18] Sehchi Miura and Shosuke Toki, Anisotropy in Mechanical Properties and its simulation of sands sampled from natural deposits, Soils and foundations, Vol. 24, No. 3, 69-84, 1984
    [19] M. J. P. R. Symes, A. Gens and D. W. Hight, Undrainded anisotropy and principal stress rogation in saurated sand, geotechnique,34, No. 1, 25~29, 1984
    [20] Prevost,Jean H.,Simple plasticity theroy for friectional cohestionless soils, soil Dynamics and Earthquake Engineering, 1985, 4 ( 1 ), 9-17
    [21] Sharhrour, I.and Robinet, ,J.c.,Introduction of a non-linera incremetal constitutive moin a finite element program, Proceedings of the Fifth international conference on Numberical methods in geomechanics, 1985, 4, 1777-1784
    
    [22] Ohta, H. And Nichihara, A., Anisotropy of Undrained Shear strength of clays under Axi-symmetric loading conditions, Soils and foundations, 1985, 25 (2), 73-86
    [23] Anandarajah, ,A.,Influence of Anisotropy on the deformations behavior of cohesitive soils, Numberical methods in engineering: Theory and Applications, Proceedings of the international conference, 1985, 359-366
    [24] Miura, K., Toki, S. etc, Deformations prediction for anisotropic sand during the rotation of principal stress axes, soils and foundations, 1986, 26 (3), 42-56
    [25] Pierre-Yves Hither and Lade, P. V., Rotation of Principal Directions in KO-Consolidated Clay, JGED, ASCE, 1987, 113 (7), pp. 774~788
    [26] Cambou, B. And Lanier, J., Induced anisotropy in cohesionlesssoil:experiments and modelling, Computers and geotechincs, 1988, 6 (4), 291-311
    [27] Somasundaram, S. And Desai, C.S., Modeling and testing for anisotropic behavior of soils, Journal of engineering mechanics, 1988, 114 (9), 1473-1496
    [28] Kohata, Y. And Mitachi,T., Modelling for the stress-strain behavior of anisotropically lightly overconsolidated clay, Proceedings of the japan soiciety of civil engineers, 1989, 147-155
    [29] Wood,D. Muir and Graham, J.Anisotropic elasticity and yielding of anatural plastic clay, International journal of plasticity, 1990, 6 (4), 377-388
    [30] Yasufuku, N. And Ochiai, H., Anisotropic Hardening Model for sandy soils over a wide stress region, 1991, 51 (2), 81-118
    [31] Noriyuki Yasufuxu, Hidekazu Murata and Masayuki Hyodo, Yield characteristics of anisotropically consilidated sand under low and high stresses, soils and foundations, Vol 31, No.1, 95-109, Mar, 1991
    [32] Iizuka, A., Yatomi, C., Yashima, A.,Sano, Land Ohta,H, Effect of stress induced anisotropy on shear band formation, Archive of applied mechanics, 1992, 62 (2), 101-114
    [33] Oka, F.,Elasto-Viscoplastic Constitutive model for clay using a transformed stress tensor, Mechanicss of materials , 1993, 16 (1-2), 47-53
    [34] Whittle, A.J.an dkavvadas, ,M.J., Formulaations of MIT-E3 constitutive model for overconsolidated clays, Journal of geotechnical engineering, 1994,120(1), 173-198]
    [35] 朱俊高,卢海华,殷宗泽,土体侧向变形性状的真三轴试验研究,河海大学学报,1995,23(6),28-33
    [36] 卢海华,土体的弹塑性柔度矩阵研究及修正的双屈服面模型,硕士论文,1994,南京
    [37] 施斌,王宝军,宁文务,各向异性粘性土蠕变的微观力学模型,岩土工程学报,1997,19(3),7-13
    [38] 夏建中,谢新宇等,三维各向异性固结方程的求解,浙江大学学报,1998,32(3),292-300
    [39] Wu, Wei, Rational approach to anisotropy of sand, International journal for numberical and analytical methods in geomechanics, 1998, 22 ( 1 ), 921-940
    [40] Eqramul Hoque and Fumio Tatsuoka, Anisotropy in elastic deformation of granular materials, Soils and Foundations, 38(1) 163-179, Mar. 1998
    [41] HaAjme Matsuoka, Yangping Yao and DE'an Sun, The Cam clay models revised by the smp Criterion, Soils and Foundations,39(1),81-95,1999,
    [42] 岳承毅,粘性土各向异性及压缩与旁压试验的相关分析,工程勘察,1999,3:17-18
    [43] 孙红,赵锡宏,软土的弹塑性各向异性损失分析,岩土力学,1999,20(3),7-12
    
    [44] Kavvadas, M.and Amorosi,A., Constitutive model for structured soils, Geotechnique, 2000, 50 (3), 263-273
    [45] 孙德安,姚仰平,殷宗泽,初始应力各向异性土的弹塑性模型,岩土力学,21(9),2000,222-226
    [46] Lings, M.L;Pennington, D.S; and Nash,Anisotropic stiffness parameters and their measurement in a stiff natural clay, Geotechnique 50,No.2,109-125
    [47] 施建勇,赵维炳等,软粘土的各向异性和小应变条件下的本构模型,岩土力学,21(3),209~212,2000,
    [48] 殷宗泽,土的侧膨胀性及其对土石坝应力变形的影响,水利学报,2000,7,49~54
    [49] 孙红,赵锡宏,软土的损失对剪切带形成的影响,同济大学学报,2001,29(3),278-282
    [50] Lings, M.L., Drained and undrained anisotropic elastic stiffenss parameters, Geotechnique, 2001, 51, No. 6, 555-565,
    [51] Dudumu Ksyo,Krnji Idhihsts Snf Ikuo Towhatak, Undrained shear characterstics of saturated sand under ansisotropic consolidations, Soils and Foundations, 41 (1),2001,1-11
    [52] Vinayagamoorthy Sivakumar et al, The effect of anisotropic elasticity on the yielding characteristics of foverconsolidated natural clay, Can. Geothech, J.38:125-137, 2001,
    [53] Sushil K. Chaudhary, and Jiro Kuwano, Effects of initial fabric and shearing direction on cyclic deformation characterstics of sands, Soils and foundations,42(1),147-157,2002
    [54] 龚晓南等,软粘土地基各向异性初步探讨,浙江大学学报,1986,4,20~24
    [55] 袁聚云,软土各向异性性状的试验研究及其在工程中的应用,同济大学博士论文,1995
    [56] 殷宗泽,徐志伟,土体的各向异性及其近似模拟,岩土工程学报,24(5),2002,547-551
    [57] Kjellman, W., Report on an Apparatus for Consummate Investigation of the Mechanical Properties of Soils, 1st ICSMFE, 1963, 2, 667~669
    [58] Shibata, T. and Karube, D., Influence of the Variation of the Intermediate Principal Stress on the Mechanical Properties of Normally Consolidated Clays, Proc. of the 6th ICSMFE, Montreal, Sep. 8-15, Univ. of Toronto Press, Toronto, 1965, 1, pp. 359~363
    [59] Yong, R. N. and Mckyes, E., Yieldng of Clay in a Complex Stress Field, Proc. of 3rd Pan American Conf. On Soil Mechanics and Foundation Engineering, Caracas, Venezuela, 1967, 1, pp. 131~143
    [60] Pearce, J. A., A Truly Triaxial Machine for Testing Clay, Veroffenlichungen des Institutes fur Bodenmechanik und Feismechanik der Universitat Fridericiana Karlsruhe, 44, Karisruhe, Germany, 1970, pp. 95~110
    [61] Pearce, J. A., A New True Triaxial Apparatus, Stress-Strain Behavior of Soils, Proc. of the Roscoe Memorial Symposium, Cambridge Univ. England, Eds. by R. H. G. Parry, G. T. Foulis, and Co. Ltd. Yeovil, England, 1971, pp. 330~339
    [62] Vaid, Y. P. and Campanella, R. G. Triaxial and Plane Strain Behavior of Nature Clay, JGED, ASCE, 1974, 100 (GT3), pp. 207~224
    [63] Ko, H. -Y. and Scott, R. F., Deformation Sand ad Failure, J. SMFD, ASCE, 1968, 94 (SM4), 883~898
    [64] Sutherland, H. B. and Mesdary, M. S., The Influence of the Intermediate Principal Stress on the Strength of Sand, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1969, 391~399
    [65] Bishop, A. W., Discussion of Shear Strength of Soil Other than Clay, Proceedings of the Geotechnical Conference, Oslo, Norway, 1967, Vol. Ⅱ, 201~204
    [66] Lade, P. V. and Duncan, J. M., Cubical Triaxial Tests on Cohesionless Soil, J. SMFD, ASCE, 1973, 99 (SM10), 783~812
    [6
    
    [67] Lade, P. V. and Musante, H. M., Tree-Dimensional Behavior of remoulded Clay, JGED, ASCE, 1978, 104 (GT2), 193~209
    [68] Nakai, T. and Matsuoka, H., Shear Behavior of Sand and Clay under Three-Dimensional Stress Condition, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering , 1983, 23 (2), 27~42
    [69] 朱俊高,卢海华,殷宗泽,土体侧向变形性状的真三轴试验研究,河海大学学报,1995,23(6):28~33
    [70] Murayama, S., A Theoretical Consideration on a behavior of Sand, Proc., IUTAM Symposium on Rheology and Soil Mechanics, Grenoble, 1964, 146~159
    [71] Murayama, S. and Matsuoka, H., A Microscopic Study on Shearing mechanism of Soils, Proc., 8thlCSMFE, 1973, 1 (Part2), 293~298
    [72] Matsuoka, H., Stress-Strain Relationship of Sands based on the Mobilized Plane, Soils and Foundations,, 1974b, 14 (2), 47~61
    [73] Matsuoka, H. and Nakai, T., Stress Deformation and Strength Characterastics of Soil under Three Different Principal Stresses, Proc., JSCE, 1974, 232, 59~70
    [74] Nakai, T. and Mihara, Y., A New Mechanical Quantity for Soils and Its Application to Elastoplastic Constitutive Models, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 1984, 24 (2), 82~94
    [75] Nakai, T. and Matsuoka, H., A Generalized Elastoplastic Constitutive Model for Clay in Three-Dimensional Stresses, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 1986, 26 (3), 81~98
    [76] Nakai, T., Matsuoka, H., Okuno, N. and Tsuzuki, K., True Triaxial Tests on Normally Consolidated Clay and Analysis of the Observed Shear behavior Using Elastoplastic Constitutive Models, Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 1986, 26 (4), 67~78
    [77] Matsuoka, H. and Sun, D. A., An Elasto-Plastic Model for Frictional and Cohesive Materials Including Granular Materials and Metals, Proc., Japan Society of Civil Engineering Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineers (JSCE), 1994, 505, 201~210
    [78] Sun, D. A. and Matsuoka, H., An Elasto-Plastic Model for c_ φ Materials under Complex Loading, Computer Methods and Advances in Geomechanics, Yuan (ed), Salkema, Rotterdam, 1997, 17~25
    [79] Matsuoka, H., Yao, Y. P. and Sun, D. A., The Cam-Clay Models Revised by the SMP Criterion, Soils and Foundations, Japanese Geotechnical Society, 1999, 39 ( 1 ), 81-95
    [80] Yao, Y. P. and Sun, D. A., Application ofLade's Criterion to Cam-Clay Model, J. of Engineering Mechanics, 2000, 1, 12~119
    [81] Hayashi, S., Ochiai, H. and Motoki, M., Yield Criterion for Anisotropic Soils, Proc., 11th ICSMFE, San Francisco, USA, 1985, 667~670
    [82] Kirkgard, M. M. and Lade, P. V. , Anisotropic Three-Dimensional Behavior of a Normally Consolidated Clay, Can. Geotech. 1993, 30, 848~858
    [83] Chu, J., Lo, S. -C. R. and Lee, I. K., Strain Softening Behavior of Granular Soils, J. Geotech. EngngDiv. Am. Soc. Civ. Engrs, 1992, 118 (2), 191~208
    [84] Chu, J., Lo, S. -C. R. and Lee, I. K., Strain Softening and Shear band Formation of Sand in Multi-Axial Testing, Geotechnique. 1996, 46 ( 1 ), pp. 63~82
    [85] Callisto, L. and Calabresi, G., Mechanical Behavior of a Natural Soft Clay, Geotechnique. 1998, 48 (4), pp. 495~513
    [86] 许东俊,耿乃光,岩石强度随中主应力变化规律,固体力学学报,1985,1:72~80
    [87] 许东俊,中间主应力对岩石变形和强度的影响,岩石力学,1987,15,16合订本:90-98
    
    [88]陈晓光,许广庚,潘国栋,王树海,电液控制真三轴仪的研究,应用科学学报,1990,8(2):158~164
    [89]高延法,陶振宇,岩石强度准则的真三轴压力试验检验与分析,岩土工程学报,1993,15(4):26~32
    [90]李锦坤,张清慧,应力劳台角对空隙压力发展的影响,岩土工程学报,1994,16(4):17~23
    [91]李广平,陶振宇,真三轴条件下的岩石微观损伤力学模型,岩土工程学报,1995,17(1):25~31
    [92]袁聚云,软土各向异性性状的试验研究及其在工程中的应用,同济大学博士论文,1995
    [93]姜洪伟,软土的三维各向异性弹塑性/弹粘塑性本构关系理论及其应用研究,同济大学博士论文,1995
    [94]曾开华,土质心墙坝水力劈裂机理及影响因素的研究,河海大学博士论文,2001
    [95]黄文熙,土的工程性质,水利电力出版社,1982,385~387
    [96]姜朴等,现代土工测试技术,北京:中国水利电力出版社,1997
    [97]张过平,王洪瑾,周克骥,内外室压力不等的空心圆柱扭剪仪的研制,第七届土力学及基础工程学术会议论文集,北京:中国建筑工业出版社,1994:65~70
    [98]Thiers, G. R. and Seed, H. B., Strength and Stress-Strain Characteristics of Clays Subjected to Seismic Loading Conditions, Vibration Effects of Earthquakes on Soils and Foundations, A Symposium, ASTM STP 450, American Society for Testing and Materials, Philadelphia, Pa., 1968, 3~56
    [99]Lee, K. L. and Focht, J. A., Strength of Clays Subjected to Cyclic Loading, Marine Geotechnology, 1976, 1 (3), 165~185
    [100]Andersen, K. H. et al., Cyclic and Static Laboratory Tests on Drammen Clay, JGED, ASCE, 1980, 106 (5), 499~529
    [101]Pierre-Yves Hicher and Lade, P. V., Rotation of Principal Directions in KO-Consolidated Clay, JGED, ASCE, 1987, 113 (7), 774~788
    [102]Saada, A. S. and Townsend, F. C., State of the Art: Laboratory Strength Testing of Soils, Laboratory Shear Strength of Soil, ASTM STP 740, R. N. Yong and F. C. Townsend, Eds.,American Society for Testing and Materials,Philadelphia, Pa., 1981, 7~77
    [103]Wright, D. K., Gilbert, P. A. and Saada, A. S, Shear devices for Determining Dynamic Soil Properties, Proceedings, ASCE Specialty Conference on Earthquake Engineering and Soil Dynamics, Pasadena, Calif., 1978, 2, 1056~1075
    [104]Sushil. K. Chaudhary, and Jiro Kuwano, Effects of initial fabric and shearing direction on cyclic deformation characterstics of sands, Soils and foundations , 42(1), 147-157, 2002
    [105]Paul V. Lade, James M. Duncan. Cubical triaxial tests on cohesionless soil, Journal of the Soil Mechanics and Foundation. ASCE. 1973,793~812
    [106]徐志伟,土体各向异性真三轴试验研究,博士学位论文,河海大学
    [107]钱家欢,殷宗泽,土工原理与计算北京:中国水利电力出版社,1996,60~73
    [108]Naylor, D. J., Stress-Strain Law for Soils. In: Development in Soil mechanics, Edited by Scott. C. R., 923~932,1978
    [109]Kondner, R. L., Hyperbolic Stress-Strain Response: Cohesive Soils, J. SMFD, ASCE, 1963, 89 (SM1), pp. 115~145
    [110]Janbu, Nilmar, Soil Compressibility as Determined by Oedometer and Triaxial Tests, European Conference on Soil Mechanics & Foundations Engineering, Wiesbaden, Germany, 1963, 1, pp. 19~25
    [111]Kulhawy, F. H. and Duncan, J. M., Stresses and Movements in Oroville Dam, J. SMFD, ASCE, 1972, 98 (SM7), pp. 653~665
    [1
    
    [112] Clough, R. W., The Finite Element Method in Plane Stress Analysis, Proceedings of the 2nd ASCE Conference on Electronic Computation, Pittsburgh, 1960, 688~694
    [113] Lambe, T. W., Methods of Estimating Settlement, J. SMFD, ASCE, 1964, 90 (SM5), pp. 43~67
    [114] Lambe, T. W., Stress Path Method, J. SMFD, ASCE, 1967, 93 (SM6), 117~141
    [115] Breth, H., Schuster, E. and Pise, P., Axial Stress-Strain Characteristics of Sand, J. SMFD, ASCE, 1973, 99 (SM8), pp. 117~141
    [116] Desai, C. S., Nonlinear Analysis Using Spline Functions, J. SMFD, ASCE, 1971, 97 (SM10)
    [117] 陆培炎等,三次及双三次样条函数应用于土的非线性分析,岩土工程学报,1982,4(1),111~116
    [118] 骆筱菊,用斯普林函数分析土的应力—应变非线性,工程勘察,1984,1,85~89
    [119] 沈珠江,考虑剪胀性土和石料的非线性应力应变模式,水利水运科学研究,1986,4
    [120] 曾国熙,正常固结粘土不排水剪切的归—化性状,软土地基学术讨论会论文选集,水利出版社,1980
    [121] 程新华,用数值方法研究土的本构关系的一个设想,岩土工程学报,1986,8(6)
    [122] 王园,岩土数据本构研究及其应用,武汉水利电力大学博士学位论文,1995
    [123] Daniel, D. E. and Olson, R. E., Stress-Strain Properties of Compacted Clay, J. GED, ASCE, 1974, 100 (GT10)11~23
    [124] Duncan, J. M. et al., Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stress and Movements in Soil mass, Report No. VCB/GT/80-81, Univ. of California Berkeley, 1980
    [125] 司洪洋,确定土石坝坝壳料邓肯模型参数的几个问题,水利发电,1983,8,20~25
    [126] 司洪洋,论土石坝应力应变计算中的邓肯模型,水利水电科学研究,1985,1,3~6
    [127] 程展林等,围堰填料的应力应变关系试验研究,长江科学院,1995,15~21
    [128] Corotis, R. B., Hassan, M. and Krizek, R. J., Nonlinear Stress-StrainFormulation forSoils, J. GED, ASCE, 1974, 100 (GT9), 993~1008
    [129] Yudhbir, Varadarajan, A. and Mathur, S. K., Evaluation of Stress-StrainModulus of Saturated Clay, J. GED, ASCE, 1975, 101 (GT3)
    [130] Schultze, E. and Teusen, G., A Common Stress-Strain Relationship for Soils Proceedings of 9th ICSMFE, 1/57, 1979, 1, 277~280
    [131] Eisenstein, Z. and Law, S. T. C., The Rule of Constitutive Laws in Analysis of Embankments,第4届全国土力学与基础工程会议,成都:成都科技大学出版社,1979
    [132] 刘祖德等,应力路径对填土应力应变关系的影响及其应用,岩土工程学报,1982,4(4).221~225
    [133] Domaschuk, L. and Valliappan, P., Nonlinear Settlement Analysis by Finite Element,, J. GED, ASCE, 1975, 101 (GT7)
    [134] Battlino, D. and Majes, B., A HylSoelastic Model of Soils Accounting for Failure, Proc. of 9th ICSMFE, 1977, 1, 39~42
    [135] 屈智炯,土的塑性力学,成都:成都科技大学出版社,1987,71~83
    [136] 高莲士等,粗粒料非线性解耦K—G模型及参数增量回归方法,土石坝工程,1995,2,23~27
    [137] 阎明礼,重塑饱和亚粘土应力—应变的非线性模型,岩土工程学报,1984,3(4)
    [138] 殷建华等,土的非线性剪胀应力~应变模型,老河口:土的抗剪强度与本构关系学术讨论会论文集,1985
    [139] 沈珠江,油罐地基固结变形的非线性分析,水利水运科技情报,1977
    [140] 杨光华,二十世纪应建立岩土材料的本构理论,岩土工程学报,1997,(19)3
    
    [141]杨光华,土的本构模型的数学理论及其应用,清华大学博士学位论文,1998年10月
    [142]Kulhawy, F. H., Duncan, J. M. and Seed H. B., Finite Element Analysis of Stress and Movements in Embankments during Construction, J. SMFD, ASCE, 1972, 93 (SM7)
    [143]Kulhawy, F. H., Duncan, J. M., Stress and Movements in Oroville Dam, J. SMFD, ASCE, 1972, 98 (SM7)
    [144]Naylor, D. J., Numerical Models for Clay Core Dams, Numerical Analysis of Dams, Edited by D. 7. Naylor, K. G. Stagg and O. C. Zienkiewicz, 1975
    [145]Kenneth, L. L. and Izzat, M. I., Static Stresses by Linear and Nonlinear Methods, JGED, ASCE, 1975, 115 (GTg), 871~887
    [146]Adikari, G. S. and Parkin, A. K., Deformation Behaviour of Talbingo Dam, Int. J. Num. Anal. Meth., Geomech., 1982, 3
    [147]H. Imaizumi, and A. E. Sardinha, A Study of Deformation in Concrete Faced Rockfill Dams, In: CFRD Design, Construction and Performance, ASCE, 1985
    [148]Syed Khalid et al., Nonlinear Analysis of Concrete Faced Rockfill Dam, JGED, ASCE, 1990, 116 (5), 822~838
    [149]赵庆红,粗粒料非线性解耦K—G模型及在天生桥面板坝有限元分析中的应用,清华大学水利水电工程系博士学位论文,1996
    [150]Fitzpatrick, M. D. et al., Ten Years Surveillance of Cethana Dam, Transaction of the 14th ICOLD, 1982,111~135
    [151]Filho, P. L. M. et al., Deformation Characteristics of Foz do Aeria Concrete Face Dam, as Reviewed by a Simple Instrumentation System, Transaction of the 15th ICOLD, 1985, 1
    [152]司洪洋,混凝土面板堆石坝的监测性能,中国混凝土面板堆石坝十年学术讨论会论文集,北京:1995
    [153]Fitzpatrick, M. D. et al., Instrumentation and Performance of Cethana Dam, 11th ICOLD Congress, Madrid, Spain, 1973, 3 (Q42-R9), 145~146
    [154]沈珠江,面板堆石坝应力变形分析的若干问题,中国混凝土面板堆石坝十年学术讨论会论文集,北京:1995
    [155]Fitzpatrick, M. D., Monitoring of Face Dams, Symp. on Monitoring of Dams, The Australian Geomechanics Society, Sydney, Australian, 1972
    [156]刘祖得,土石坝变形计算的若干问题,岩土工程学报,1983,5(1)
    [157]柏树田,周晓光,晁华怡,应力路径对堆石变形特性的影响,水力发电学报,1999,第4期,76-80
    [158]希多·义买祖米,混凝土面板坝的变形研究,面板堆石坝文集(一),南京水利科学研究院,1986
    [159]殷宗泽,土的侧膨胀性及其对土石坝应力变形的影响,水利学报,2000(7),49~54
    [160]沈凤生,陈慧远,潘家铮,混凝土面板堆石坝的蓄水变形分析,岩土工程学报,1990,12 (1),73-81
    [161]Hacelas, J. E. and Ramirez C. J., Discussion: A Study of Deformation in Concrete Faced Rockfill Dams, JGED, ASCE, 1987, 113 (GT10)
    [163]柏树田,周晓光,晁华怡,应力路径对堆石变形特性的影响,水力发电学报,1999年第4期,76-80
    [164]Independent Pandel to Review Cause of Teton Darn Failure, Report to U.S. Department of the Interior and the State of Idaho on Failure of Teton Darn, U.S. Bureau of Reclamation, Denver, Colo. Dec.1976
    
    [165]曾开华,殷宗泽,土质心墙坝水力劈裂影响因素的研究,河海大学学报,28(3).2000,1-6
    [166]Bejerrum, L.etc. Hydraulic Fracturing in Field Permeability Testing. Geotechnique, Vol.22,No.2,1972,319-332
    [167]Seed, H.B, The Teton Dam Failure, A Retrospective Review, Proc. Of the 10th ICSMFE, Vol.4,1981,219-238
    [168]Seed, H.B.etc, Hydraulic Fracturing and Its Possible Role in the Teton Dam Failure, Appendix D of Report to U.S.Dept. of the Interior and State of Idaho on Failure of Teton Dam by Independent Pandel to Review Cause of Teton Dam Failure, ,Dec. 1976, D1-D39
    [169]Jaworski, G.W.,Duncan, J.M. and Seed, H.B.,Laboratory Study of Hydraulic Fracturing, ,J.Geotech, ASCE, Vol. 107, No.GT6,1981,713-732
    [170]刘令瑶,崔亦昊,张广文,宽级配砾石土水力劈裂特性的研究,岩土工程学报,Vol.20,No.3,1998,10-13
    [171]殷宗泽,徐志伟,土体的各向异性及其近似模拟,岩土工程学报,24(5),2002,547-551
    [172]H.Sekiguchi and H.Ohta, Induced inisotropy and time dependency in clays, Preseedings of 9th ICSMFE, 1977, 229-238
    [173]Wood,D. Muir and Graham, J.Anisotropic elasticity and yielding of anatural plastic clay, International journal of plasticity, 1990, 6 (4), 377-388
    [174]Noriyuki Yasufuxu, Hidekazu Murata and Masayuki Hyodo, Yield characteristics of anisotropically consilidated sand under low and high stresses, soils and foundations, Vol 31, No.1, 95-109, Mar, 1991
    [175]L.callisto 和 G.calabresi Callisto, L. and Calabresi, G., Mechanical Behavior of a Natural Soft Clay, Geotechnique. 1998, 48 (4), 495~513
    [176]施建勇,赵维炳等,软粘土的各向异性和小应变条件下的本构模型,岩土力学,21(3),20~22,2000
    [177]孙德安,姚仰平,殷宗泽,初始应力各向异性土的弹塑性模型,岩土力学,21(9),2000,222-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700