用户名: 密码: 验证码:
金属间化合物Nd(Fe_(1-x)Co_x)_(10)V_2的自旋重取向和微波磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Spin Reorientation Transition and the Microwave Properties of Intermetallic Compounds of Nd(Fe_(1-x)Co_x)_(10)V_2
  • 作者:刘忻
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2010
  • 导师:李发伸
  • 学科代码:070205
  • 学位授予单位:兰州大学
  • 论文提交日期:2010-05-01
摘要
传统的高频磁性材料的初始磁导率和共振频率的乘积遵从Snoek极限,逐渐难以满足更高频率下对材料的要求。本文提出具有平面各向异性的稀土-3d过渡金属间化合物颗粒有望突破Snoek极限,具有高面外各向异性场和较低的面内各向异性场的稀土-3d金属间化合物可以大幅度提高材料的磁导率的同时,使共振频率保持在较高的范围。
     以V为稳定元素,Co为替代元素,采用真空电弧熔炼和真空热处理制备了不同Co替代含量的1:12型稀土铁基金属间化合物样品。然后利用室温粉末样品的X射线衍射、振动样品磁强计等实验方法对这些化合物的结构与磁性进行了研究。对用石蜡混合粉末制成的复合材料样品,使用同轴线方法对其高频性能进行了测量与分析。分析了Co元素对Fe元素的替代对金属间化合物的结构和磁性,以及磁晶各向异性和高频磁性能的影响,并讨论了各向异性对高频磁性的影响和高频复数磁导率的机制。得到以下结论:
     (1)对该化合物的研究发现,在x=0-0.5的范围内,可以得到单一的ThMn12型结构的纯相。随着Co原子的替代量的增加,Nd(Fe1-xCox)10V2的晶格常数单调减小,晶胞体积收缩,这是由于Co原子半径小于Fe原子半径导致的。
     (2)随着Co原子的替代量的增加,Nd(Fe1-xCox)10V2的饱和磁化强度由115emu/g (x=0)增加到122 emu/g (x=0.2),而后减小到96 emu/g(x=0.5);其矫顽力则先减小后增大;样品的易磁化方向由平行于c轴(x=0)转变为平行于a-b平面(x=0.2),当Co原子含量进一步增加时,易磁化方向再次趋向平行于c轴(x=0.5)。(3)随着Co原子的替代量的增加,Nd(Fe1-xCox)10V2的居里温度由570 K(x=0),单调增加到676 K(x=0.4),但是当Co含量继续增加时,居里温度下降到662 K(x=0.5)。这是由于Co原子先占据原子间距较小的8f和8j位置,使得Fe-Fe负相互作用减弱,3d次晶格整体的相互作用增强,从而提高了居里温度。
     (4)随着Co原子的替代量的增加,Nd(Fe1-xCox)10V2的自旋重取向温度也发生了变化,其室温以下的自旋重取向温度由120 K(x=0)逐渐增加到280K(x=0.4)。在室温以上,当没有Co原子的掺入时(x=0),测量温度直到居里转变点都没有自旋重取向现象。但当Co原子掺入后,出现了自旋重取向现象,并且自旋重取向的温度随着Co含量的增加不断升高,直到x=0.5时,自旋重取向温度降低,但是自旋重取向发生时易磁化方向的转变已经与前面的变化不同。这说明稀土次晶格在与Fe次晶格的竞争中逐渐占优,Co原子的替代使得Fe次晶格的各向异性减弱。
     (5)通过穆斯堡尔谱的测量,可以看到V原子优先占据品格中的8i位置。但Co原子替代Fe原子进入晶格后,Nd(Fe1-xCox)10V2中的Co原子表现出明显的择优占据,当Co元素刚开始进入晶格中时,由于原子间距的不同和熵的原因,Co原子优先进入8f和8j位置。随着Co原子的替代,8i和8j位置上的同质异能随着Co原子含量的增加不断增大,但在8f位置上其基本保持不变;四极矩劈裂在x=0和x=0.15之间以及x=0.4和x=0.5之间发生了突变,说明了存在易磁化方向的转变。
     (6)随着Co原子的替代量的增加,体积比为35%的Nd(Fe1-xCox)10V2粉末/石蜡复合样品的复介电常数并没有随着频率发生明显的变化,并且对于不同Co含量的样品,复介电常数值也没有较大的变化。但是复数磁导率随着Co原子的替代量的不同发生了明显的变化:对x=0的样品,其低频磁导率为2.2,当x=0.2时,其低频磁导率升高为3.2,当x=0.5时,其低频磁导率又降为2.3;其磁导率虚部在x=0和x=0.5时,整个测量范围内没有共振峰出现,并且磁损耗主要是由涡流损耗贡献的,但是对于x=0.2-0.4等样品,磁导率虚部出现了明显的共振吸收峰,其损耗中主要由平面各向异性导致的自然共振贡献的。这是因为其高频磁性与磁晶各向异性有很大的关系,当各向异性发生变化时,磁导率也会随之变化。从上面的实验结果可以看出,具有平面各向异性的Nd(Fe1-xCox)10V2样品,具有更好的高频磁性。
     (7)随着Co原子含量的增加导致的Nd(Fe1-xCox)10V2样品的磁各向异性的转变,使得样品的微波吸收性能也发生了明显的变化,根据测量得到的磁导率和介电常数计算出了不同易磁化方向样品的反射损耗,对于面各向异性的样品(x=0.2)具有比单轴各向异性的样品(x=0)优异的微波吸收性能。
The property of traditional high frequency magnetic materials obeys the Snoek limit, thus it is hard to improve. This study is based on principle of the rare earth-3d intermetallic compounds particles with planar magnetocrystalline anisotropy can exceed the limitation of the Snoek limit. Under the common acting of a small in plane anisotropic field and a rather large out of plane anisotropic field, which can get a higher permeability without a badly descent of resonance frequency.
     Using the Vanadium as a stabilizing element, and using the Cobalt to substitute the iron, The ThMn12-type rare earth-3d intermetallic compounds of Nd(Fe1-xCox)10V2 were prepared by means of vacuum arc melting, subsequent vacuum annealing, then they were ball milling for 12 hours. The influence of the substitution of Cobalt for iron on the structure and statistic magnetic properties of these compounds is investigated by X-ray powder diffraction and magnetic measurements. The paraffin composites were prepared by mixing paraffin with compounds particles and pressing into toroidal shape, so that the relative complex permeability of the composites has been measured in the range of 0.1-10 GHz. The mechanism of relative complex permeability affected by the change of anisotropy in high frequency has been discussed. The main research contents and results are shown as follows:
     (1) The structure of Nd(Fe1-xCox)10V2 compounds is a single phase with tetragonal ThMn12-type structure in a range of x=0-0.5. The lattice constants and unit-cell volume decrease monotonically with increasing of Co concentration, due to Cobalt atom radius is smaller than iron.
     (2) The saturation magnetization of Nd(Fe1-xCox)10V2 compounds increase from 115 emu/g (x=0) to 122 emu/g (x=0.2) at first and then decrease to 96 emu/g (x=0.5) with increasing Co concentration while the coercivity of the compounds are decreasing firstly and then keep constant, then it increased abruptly. The easy magnitization direction of the compounds also changed with the Co content from c-axial (x=0) to a-b plane(x=0.2), and return to c-axial when x=0.5.
     (3) The Curie temperature (Tc) of Nd(Fe1-xCox)10V2 compounds increase monotonically from 570 K (x=0) to 676 K (x=0.4) with increasing of Co concentration, but it decreased to 662 K (x=0.5)when further increase the Co content. The decrease of interatomic distances and a preferential substitution of Co for Fe in regions where there is negative exchange could account for the strengthening of exchange interaction and thus for an enhancement of Tc,
     (4) The M-T curves show that the temperature of spin reorientation transition (SRT) ascent quickly with increasing the Co concentration:below the room temperature, the temperature of SRT increased from 120 K (x=0) to 280 K (x=0.4); Above the room temperature, there was no SRT when x=0, while the SRT appeared after Co enter the compounds, and its temperature increased with increasing of Co content till x=0.4, when x=0.5 the temperature of SRT decreased and the transition is different with before. It is account for the Co substitution weakens the anisotropy of Fe sublattice.
     (5) By the Mossbauer measurement, the V atom preferes to occupy the 8i sites. When Co atom substituted the Fe atom, the Co appeared to occupy the 8f and 8j sites, this is account for the 8f and 8j sites have smaller interatomic distances and this occupation made the system with low enthalpy. The Isomer Shift (IS) of 8i and 8j sites increased obviously while that of 8f sites was almost constant. The Quadrupole Splitting (QS) value changed abruptly in 8f sites between x=0 and x=0.15, as well as in 8i sits between x=0.4 and x=0.5, which means the transition of the easy magnetization direction exists in these ranges.
     (6) For the paraffin composites with 35 vol.% of Nd(Fe1-xCox)10V2, both of real and imagine part of the permittivity was almost constant in our measurement frequency range, and for different x, the value did not change a lot neither, however the complex permeability varied with the increasing of Co concentration, the real part of permeability at low frequency was 2.2 for x=0, and then it ascend to 3.2 for x=0.2, when x=0.5, it drops to 2.3; the imagine part of permeability has no resonance peak for x=0 and x=0.5, and the eddy current loss is the main loss, but there was a resonance peak for x=0.15-0.4, and the loss was caused by nature resonance, that is in respect that the permeability has a relationship with anisotropy, when anisotropy changed, the permeability would change too.
     (7) The absorbing properties of the Nd(Fe1-xCox)10V2 with plane anisotropy were much better than the ones with uniaxial anisotropy.
引文
[1]Y. Naito, K. Suetaki, IEEE Trans. Microwave Theory Tech.19,65-72 (1971).
    [2]H. M. Musal, H. T. Hahn IEEE Trans. Magn.25,3851-3853 (1989).
    [3]M. Matsumoto and Y. Miyata, IEEE Trans. Magn.33,523 (1997).
    [4]K. M. Lim, M. C. Kim, K. A. Lee and C. G. Park, IEEE Trans. Magn.39,1836 (2003).
    [5]胡传圻 隐身涂层技术化学工业出版社2004 p231
    [6]R. C. O'Hnadley Modern Magnetic Materials-Principles and Applications, John Wiley& Sons 2000 p357
    [7]M. J. Park, J. Choi, S. S. Kim, IEEE Trans. Magn.,36,3272 (2000)
    [8]Y. Wang and M. N. Afsar, MICROWAVE AND OPTICAL TECHNOLOGY LETTERS 42,458-459 (2004)
    [9]Y. B. Feng, T. Qiu, C. Y. Shen and X. Y. Li, IEEE Trans. Magn.42,363 (2006)
    [10]M. X. Yu, X. C. Li, R. Z. Gong, Y. F. He, P. X. Lu, Journal of Alloys and Compounds,2007
    [11]S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, M. Egashira, Journal of Magnetism and Magnetic Materials 312,181-186 (2007).
    [12]J. R. Liu, M. Itoh and K. Machida, Appl. Phys. Lett.88,062503 (2006).]
    [13]S. S. Kim, S. T. Kim, Y. C. Yoon and K. S. Lee, J. Appl. Phys.97,10F905-1-3 (2005).
    [14]R. M. Walser, W. Win and K. U. Valanju, IEEE Trans. Magn.34,1390 (1998)
    [15]T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura and K. Hatakeyama, J. Appl. Phys.78,3983(1995).
    [16]T. Nakamura, T. Tsutaoka and H. Hatakeyama, J. Mag. Mag. Mater.138,319 (1994)
    [17]李萌远,铁氧体物理学科学出版社,1978
    [18]近角聪信,磁性体手册(下)北京冶金工业出版社,1948
    [19]K. Kondo, S. Yoshida, H. Ono and M. Abe, J. Appl. Phys.101,09M5023 (2007).
    [20]A. K. Subramani, N. Matsushita, T. Watanabe, M. Tada and M. Abe, J. Appl. Phys.101,09M504 (2007).
    [21]N. Matsushita, T. Nakamura and M. Abe, J. Appl. Phys.93,7133 (2003).
    [22]N. Imaoka, Y. Koyama, T. Nakao, S. Nakaoka, T. Yamaguchi, E. Kakimoto, M. Tada, T. Nakagawa and M. Abe, J. Appl. Phys.103,07E129 (2008).
    [23]A. K. Subramani, N. Matsushita, T. Watanabe, K. Kondo, M. Tada, M. Abe and M. Yoshimura, J. Appl. Phys.103,07E502 (2008).
    [24]K. Kondo, S. Yoshida, H. Ono, M. Abe, J. Appl. Phys.101,09M502 (2007)
    [25]Y. G. Ma, Y. Liu, C. Y. Tan, Z. W. Liu, and C. K. Ong, J. Appl. Phys.100,054307 (2006)
    [26]K. Seemann, H. Leiste and V. Bekker, J. Magn. Magn. Mater.283,310 (2004).
    [27]J. Shim, J. Kim, S. H. Han, H. J. Kim, K. H. Kim and M. Yamaguchi, J. Magn. Magn. Mater.290-291,205 (2005).
    [28]Y. M. Kim, D. Choi, K. H. Kim, J. Kim, S. H. Han and H. J. Kim, J. Magn. Magn. Mater.239,498 (2002).
    [29]S. Han, I. Kim, J. Kim, K. H. Ki Hyeon Kim and M. Yamaguchi, J. Magn. Magn. Mater.272-276,1490 (2004).
    [30]S. Jin, W. Zhu, R. B. van Dover, T. H. Tiefel, V. Korenivski and L. H. Chen, Appl. Phys. Lett.70,3161(1997)
    [31]I. Fergen, K. Seemann, A.v.d.Weth and A. Schuppen, J. Magn. Magn. Mater. 242-245,146(2002).
    [32]K. E. Lee, N. D. Ha, D. S. Sun, P. Kollu, C. G. Kim and C. O. Kim, J. Magn. Magn. Mater.304, e189 (2006).
    [33]K. E. Lee, N. D. Ha, D. S. Sun, P. Kollu, C. G Kim and C. O. Kim, J. Magn. Magn. Mater.304, e192 (2006)
    [34]O. Acher, B. S. K. U. Queste and R. Mattheis, J. Appl. Phys.93,6668 (2003)
    [35]B. K. Kuanr, R. E. Camley and Z. Celinski, J. Appl. Phys.93,7723-7725 (2003
    [36]冯则坤,何华辉,磁性材料及器件526(2005)
    [37]S. H. Ge, X. L. Yang, K. Y. Kim, L. Xi, X. M. Kou, D. S. Yao, B. S. Li and X. W. Wang IEEE Trans. Magn.41,3307 (2005).
    [38]S. Aoqui and M. Munakata, Mater. Sci. Eng. A 413-414,550 (2005).
    [39]M. Munakata, M. Yagi, M. Motoyama, Y. Shimada, M. Baba, M. Yamaguchi and K. Arai, IEEE Trans. Magn.37,2258 (2001).
    [40]S. H. Ge, D. S. Yao, M. Yamaguchi, X. L. Yang, H. P. Zuo, T. Ishii, D. Zhou and F. S. Li, J. Phys. D:Appl. Phys.40,3660 (2007)
    [41]马昌贵国际电子变压器445(2007)
    [42]A. N. Lagarkov., K. N. Rozanov, N. A. Simonov and S. N. Starostenko p415 Microwave permeability of magnetic film
    [43]D. J. Sellmyer, Y. Liu, and D. Shindo, HANDBOOK OF ADVANCED MAGNETIC MATERIALS, Vol. IV Advanced Magnetic Materials:properties and Applications Tsinghua University Press,2005.
    [44]O. Acher and A. L. Adenot, Phys. Rev. B 62,11324-11327 (2000).
    [45]D. S. Xue, X. L. Fan and C. J. Jiang, Appl. Phys. Lett.89,011910-1-3 (2006)
    [46]阚涛,娄明连,磁性材料与器件 32 18 (2001)
    [47]胡国光, 尹萍,吕庆荣磁性材料与器件31 47(2000)
    [48]李国栋,云月厚磁性材料与器件 32 14 (2001)
    [49]杉本论,日本应用磁学会志,,27(8),862-869(2003).
    [50]前田徹等,粉体および粉未冶金,50(1),63-67(2003).
    [51]凯索尔(R.W.Kelsall)纳米科学与技术北京:科学出版社2007 p1
    [52]C. Kittel, Phys. Rev.73,155 (1948)
    [53]G. Herzer J. Magn. Magn. Mater.294 99 (2005)
    [54]G. Herzer IEEE Trans. Magn.25 3327 (1989),
    [55]G. Herzer IEEE Trans. Magn.26 1397 (1990)
    [56]K. Suzuki, N. Ito. J. S. Garitaonandia J. Non-Crystalline Solids 354 5089 (2008)
    [57]P. Poddar Mater. Sci. Eng. B,106 95 (2004)
    [58]S. Dubourg, S. Queste, O. Acher J. Appl. Phys.97 10F903 (2005)
    [59]G. Viau, F. Fievet-Vincent, F. Fievet, P. Toneguzzo, F. Ravel and O. Acher, J. Appl. Phys.81,2749(1997).
    [60]G Viau, F. Ravel, O. Acher, F. Fievet-Vincent and F. Fievet, J. Appl. Phys.76, 6570(1994)
    [61]M. Z. Wu, H. H. He, Z. S. Zhao and X. Yao, J. Phys. D:Appl. Phys.33,2927 (2000)
    [62]M. Z. Wu, H. H. He, Z. S. Zhao and X. Yao, J. Phys. D:Appl. Phys.34,1069 (2001)
    [63]J. Li, J. Huang, Y. Qin and F. Ma, Mater. Sci. Eng. B 138,199 (2007)
    [64]J. L. Snoek, Physica (Amsterdam) 14,207 (1948).
    [65]J. Smit and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven, The Netherlands,1959.
    [66]H. M. Musal, H. T. Hahn IEEE Trans. Magn.25,3851 (1989).
    [67]S. Chikazumi, Physics of Ferromagnetism.2nd ed., Oxford:Oxford University Press,1997
    [68]G. H. Jonker, H. P. J. Wijin and P. B. Brawn, Philips Tech. Rev.18,145 (1956-57)
    [69]Z. W. Li, L. F. Chen and C. K. Ong, J. Appl. Phys.94,5918 (2003).
    [70]Z. W. Li, L. F. Chen and C. K. Ong, J. Appl. Phys.92,3902 (2002).
    [71]Z. W. Li, G. Q. Lin, L. F. Chen, Y. P. Wu and C. K. Ong, J. Appl. Phys.98, 094310(2005).
    [72]Y. P. Wu, C. K. Ong, Z. W. Li, L. F. Chen, G Q. Lin and S. J. Wang, J. Appl. Phys. 97 063909 (2005).
    [73]Y. P. Wu, Z. W. Li, L. F. Chen, S. J. Wang and C. K. Ong, J. Appl. Phys.95 4235 (2004).
    [1]I.A.Campbell, J. Phys. F:Metal Phys.2, L47 (1972)
    [2]K.H.J.Buschow, Phys. Status Solidi(a).7,199 (1971)
    [3]M.A.Ruderman and C.Kittel, Phys. Rev.96,99 (1954)
    [4]周寿增,董清飞,超强永磁体-稀土铁系永磁材料,冶金工业出版社,1999。
    [5]H. Takahashi, K. Hikosaka, S. Ohtsuka, A. Seo, T. Ukai, N. Mori, J. Appl. Phys. 63,3595(1988).
    [6]E. Tatsumoto, T. Okamoto, H. Fujii, and C. Inoue, J. Phys. (Paris) 32, C1-550 (1971)
    [7]M. Sagawa, S. Fujimura, M. Togo and Y. J. matura, J. Appl. Phys.55,2083 (1984)
    [8]K. H. J. Buschow, Rep. Prog. Phys.40,1179 (1977)
    [9]H. S. Li, and J. M. D. Coey, Hanbook of Magnetic Materials, vol.6, (North-Holland, Amsterdam,1983)
    [10]L. Schultz and M. Katter. Supermagnets and hard Magnetic materials, Kluwer Academics Publisher, Netherland,1991
    [11]Y. C. Yang, X. Zhang, S. L. Ge et al, J. Appl. Phys.70 6001 (1991)
    [12]D. P. F. Hurley and J. M. D. Coey. J. Phys.:Condens Matter 4 5573 (1992)
    [13]W. Gong and G. C. Hadjipanayis. J. Appl. Phys.736245 (1993)
    [14]Y. C. Yang, X. D. Zhang, S. L. Ge, et al. J. appl. Phys.70 6001 (1991)
    [15]B. P. Hu, H.S. Li, J. P. Gavigan, and J. M. D. Coey J. Phys. Condens. Matter 1 755(1989)
    [16]W. Liu, X. K. Sun, Z. D. Zhang. J. Phys:Comdens Matter 10 379 (1998)
    [17]Y. Z. Wang, G. C. Hadjipanayis, A. Kim, et al. J. Magn. Magn. Mater.104 1132 (1992)
    [18]K. H. J. Buschow J. Magn. Magn. Mater.80 1 (1989)
    [19]X. C. Kou, R. Grossinger and G. Wiesinger. Phys. Rev. B 51 8254 (1995)
    [20]Y. C. Yang, Q. Pan, X. H. Zhang, et al. J. Appl. Phys.74 4066 (1993)
    [21]K.Ohashi, T. Yokoyama, R. Osugi and Y.Tawara, IEEE Trans. Magn. MAG-23 3101 (1987)
    [22]S. F. Cheng, J. Magn. Magn. Mater.75 330 (1988)
    [23]M. Jurczyk, J. Magn. Magn. Mater.82 239 (1989)
    [24]M. Jurczyk, G. K. Nicolaides and K. V. Rao, J. Appl. Phys.70 6110 (1991)
    [25]Chin Lin J. appl. Phys.69 (1991) 5554
    [26]F.M.Yang, N.Tang and J.J.Wang, J. Appl. Phys.75,6241 (1994)
    .[27] Q. Li, Y. Lu, R. W. Zhao, O. Tegus and F. M. Yang, J.Appl. Phys.70 6116 (1991)
    [28]L. M. Garcia, R. Burriel, F. Luis, E. Palacios, J. Bartolome, E. Tomey, D. Fruchart, J. L. Soubeyroux, D. Gignoux, IEEE Trans. Magn. MAG-30,595 (1994)
    [29]F. Luis, R. Burriel, L. M. Garcia, E. Palacios, J. Bartolome, E. Tomey, D. Fruchart, J. L. Soubeyroux, S. Miraglia, R. Fruchart, D. Gignoux, IEEE Trans. Magn. MAG-30,583 (1994)
    [30]马如璋,徐英庭,穆斯堡尔谱学,科学出版社,1998.
    [31]夏元复,陈懿,穆斯堡尔谱学基础及其应用,科学出版社,1987.
    [32]陈义龙,穆斯堡尔效应与晶格动力学,武汉大学出版社,第一版
    [33]H. Ebert, P. Strange and B. L.Gyorffy, J.Phys. F 18 1135 (1988)
    [34]R. J. Zhou, Cz.Kapusta, M. Rosenberg, K. H. J. Buschow J. Alloys and Compounds.184 15(1992)
    [35]廖绍彬,铁磁学(下册),科学出版社
    [36]宛德福,马兴隆,磁性物理学,电子工业出版社。[37]近角聪信(著),葛世慧(译),铁磁性物理,兰州大学出版社。
    [1]李树棠,晶体x射线衍射学基础,冶金工业出版社,1990.
    [2]黄兰友,刘绪平,《电子显微镜与电子光学》,1991
    [3]李培森,物性测量原理与测试分析方法,兰州大学出版社,1994.
    [4]S. Diego, Magnetic Property Measurement Systems:Systems aand Options. CA:Quantum Design,1999.
    [5]米克秒,超导电性及其应用,科学出版社,1980.
    [6]马如璋,徐英庭,穆斯堡尔谱学,科学出版社,1998.
    [7]夏元复,陈懿,穆斯堡尔谱学基础及其应用,科学出版社,1987.
    [8]A. M. Nicolson and G. Ross, IEEE Trans. Instrum. Meas., IM-19,377(1970)
    [9]W. B. Weir, Proc. IEEE,62,33(1974)
    [10]姜山北京交通大学硕士学位论文2006
    [1]M.Jurczyk,G K.Nico1aides and K.V.Rao,J.Magn.Magn.Mat.94 L6(1991)
    [2]D. B. de Mooij and K. H. J. Buschow, Philips J. Res.42246 (1987)
    [3]C.Kittel, Introduction of Soild State Physics,5th ed. (wiley, New York,1976), P 473
    [4]A. R. Williams, V. L. Moruzzi, A.P. Malozemoff and K.Terakura, IEEE Trans. Magn. MAG 19 1983 (1983)]
    [5]R.H. Victora and L. M. Falicov Phys. Rev. B 30 259 (1984)
    [6]E. Burzo, Solid State Commun.,25 525 (1978)
    [7]K.N.R. Taylor and C.A. Poldy, J. Phys. F,5 1593 (1975)
    [8]Y. Matsuura, S.Hirosawa, H. Yamanoto, S. Fujimura and M. Sagawa, Apppl. Phys. Lett.,46 308 (1985)
    [9]D. Yang, J. L. Wang, N. Tang, Y. P. Shen and F. M. Yang Appl. Phys. Lett.74. 4020(1999)
    [10]W. G. Haije, J. Spijkerman, F. R. de Boer, K. Bakker and K. H. J. Buschow J. Less-common Met.162 285 (1990)
    [11]Xu Xie and S. A. Shaheen J. Appl. Phys.73 6248 (1993)
    [12]L. M. Garcia, R. Burriel, F. Luis, E. Palacios, J. Bartolome, E. Tomey, D. Fruchart, J. L. Soubeyroux, D. Gignoux, IEEE Trans. Magn. MAG-30,595 (1994)
    [13]Xu Xie and S.A. Shaheen, J. Magn. Magn. Mater.118, L6 (1993)
    [14]K. H. J. Buschow J. Appl. Phys.63 3130 (1988)
    [15]M. Jurczyk J. less-Common.Meta.162 149 (1990)
    [16]M. Jurczyk, G. K. Nicolaides and K.V. Rao J. less-Common.Meta.169 L11 (1991)
    [17]Z. W. Li, X. Z. Zhou, A. H. Morrish and Y. C. Yang, J. Phys.:Condens. Matter 2 (1990)
    [18]H. S. Li, J. M. D. Coey, Handbook of Magnetic Materials Vol.6 Elsevier 1991
    [19]J.H. V. J. Brabers, G. F. Zhou, F. R. de Boer and K. H. J. Buschow J. Magn. Magn. Mater.118 339 (1993)
    [20]W. F. Liu, G. H. Rao, Z. W. Ouyang, H. F. Yang, G. Y. Liu, X. M. Feng, H. Chang and J. K. Liang, Appl. Phys. Lett.82 4743 (2003)
    [21]W. F. Liu, G. H. Rao, Z. W. Ouyang, H. F. Yang, G. Y. Liu, X. M. Feng, H. W. Ma, S. Y. Wang and J. K. Liang, J.Appl. Phys.95 1612 (2004)
    [22]V. K. Sinha, S. F. Cheng, W. E. Wallace and S. G. Sankar J. Magn. Magn. Mater. 81227(1989)
    [23]S. F. Cheng, J. Magn. Magn. Mater.75 330 (1988)
    [24]L. M. Garcia, R. Burriel, F. Luis, E. Palacios, J. Bartolome, E. Tomey, D. Fruchart, J. L. Soubeyroux, D. Gignoux, IEEE Trans. Magn. MAG-30,595 (1994)
    [25]F. Luis, R. Burriel, L. M. Garcia, E. Palacios, J. Bartolome, E. Tomey, D. Fruchart, J. L. Soubeyroux, S. Miraglia, R. Fruchart, D. Gignoux, IEEE Trans. Magn. MAG-30,583 (1994)
    [1]Wojciech Suski, Handbook on the Physics and Chemistry of Rare Earths Vol.22 Chapter 129 (1996)
    [2]C. Christides, A. Kostikas, A. Simopoulos, D. Niarchos and G. Zouganelis J. Magn. Magn. Mater.86.367(1990)
    [3]O. Moze, L. Parreti, M. Solzi and W. I. F. David Solid State Commun.66 465 (1988)
    [4]F. R. de Boer, Z. G Zhao, K. H. J. Buschow J. Magn. Magn. Mater.157/158 504 (1996)
    [5]J.J. Bara, B.F. Bogacz, A. T. Pedziwiatr, R. Wielgosz J. Alloy Comp.307 45 (2000)
    [6]L. Bessais, C. Djega-Mariadassou, J. M. Greneche J. Magn. Magn. Mater.226-230, 1564(2001)
    [7]Z. W. Li, X. Z. Zhou and A. H. Morrish J. Appl. Phys.69 5602 (1991)
    [8]Y. C. Yang, H. Sun, Z. Y. Zhang, T. Luo, J. L. Gao Solid State Commun.68 175 (1988)
    [9]C. Christides, A. Kostikas, A. Sunopolous, D. Niarchos and G Zouganelis J. Magn. Magn. Mater.86 367 (1990)
    [10]J. F. Hu, Z. W. Dong, Y. L. Liu and Z. X. Wang Physica B 179 89 (1992)
    [11]J.J. Bara, B.F. Bogacz, A. T. Pedziwiatr, R. Wielgosz J. Alloy Comp.307 45 (2000)
    [1]F. R. de Boer, and K. H. J. Buschow Philips J. Res.42 246
    [2]H. S. Li and J. M. D. Coey Hanbook of Magnetic Materials, vol.6, (North-Holland, Amsterdam,1983), p.10
    [3]J. L. Snoek Physica 14 207 (1948)
    [4]L. X. Lian, L. J. Deng, M. Han and S. D. Feng J. Alloy Comp.441 301 (2007),
    [5]J. R. Liu, M. Itoh and K. Machida Electrochemical and Solid State Letters 7 J9-J11(2004)]
    [6]S. B. Liao, Ferromagnetic Physics (3) (Science, Beijing,2000) p 17
    [7]M. Z. Wu, Y. D. Zhang amd S. Hui Appl. Phys. Lett.80 4404 (2002)
    [8]C. Kittel, Phys. Rev.73 155 (1948)
    [9]J. Smit, and H. P. J. Wijn, Ferrites (Eindhoven:Philips Technical Library) 282 (1959)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700